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Statistical mechanics of stationary states. II. Applications to low-density systems
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The singlet distribution function (SDF) and the first two sum rules of the dynamic structure factor in low-

density simple fluids are computed using the formalism developed in the first paper in this series. It is shown
that the correlation-function expression for the SDF reduces to the Chapman-Enskog and Choh-Uhlenbeck
forms in the low-density regime. The leading density dependence of the sum rules in nonequilibrium
stationary states (NESS), with and without convection is given, and explicit forms for "Maxwell molecules"
are computed. The results clearly show that local-equilibrium theories -yield incomplete results for the sum
rules in the small-wave-vector regime. The fact that time-reversal symmetry is broken in NESS yields the
new result that the first sum rule is nonzero even in the absence of convection. La'stly, the validity of the
separation of time-scale assumption used in the formal analysis is examined.

I. INTRODUCTION

The purpose of this article is to implement (and
supplement) the formal theory presented in our
previous paper' (hereafter denoted as I). The im-
plementation includes two topics of considerable
experimental importance. The first is the non-
equilibrium singlet distribution function and the
second is sum rules for the nonequilibrium steady-
state (NESS) dynamical structure factor. Fur-
thermore, we supplement the theory presented in
I by examining at low densities the separation of
time-scales assumption used in the derivations
presented in I.

The singlet distribution function (SDF) has been
a center of research activity fo rthe la'st hundred
years. ' The solutions of the Boltzmann equation
(or the generalized one) furnish expressions for
the SDF in low-density systems. The mell-known
Chapman-Enskog procedure gives the lowest order
in density solution, whereas the first-order cor-
rection has been obtained by Choh and Uhlenbeck.
A density expansion of the solution to the BBGKY
(Bogolyubov, Born, Green, Kirkwood, Yvon) hi-
erarchy of equations was performed by Ernst,
Dorfman and Cohen' thereby obtaining explicit ex-
pressions to, various orders of the density.

We show here that the formal theory of I may be
used to obtain a time-correlation function expres-
sion for the SDF that has no obvious density re-
strictions. We verify that the low-density form of
this general expression is identical to the Chap-
man-Enskog and Choh-Uhlenbeck expressions.

The singlet velocity distribution function in a
simple heat-conducting NESS was measured and
reported recently by Baas et al.4 We demonstrate
that our theory agrees, in the appropriate density
regime, with their experimental results.

The second topic considered here is the lower-

order sum rules of the dynamical structure factor, '
for systems at low density. The sum rules of the
dynamical structure factor are measurable in ra-
diation-scattering experiments. We consider them
here mainly to demonstrate explicitly the new sym-
metry properties of the structure factor that were
found formally in I. We calculate the explicit
forms of the zeroth. and first sum rule at low den-
sity for molecular systems with a simple repulsive
interaction, and obtain an estimate of the new
terms in the sum rule. This estimate can be taken
as a measure of the importance of the new term in
the spectrum of (say} light scattered from the
NESS. We find important differences from the pre-
diction of local equilibrium theories. In the small-
wave-vector regime we find that the first sum rule,
which vanishes in local equilibrium, depends on the
wave vector as 1/ks, which is an indication of long-
range order, as is discussed in detail in the com-
panion paper. This result is valid when k is smal-
ler than the inverse mean free path ~, i.e., kA,

«1, and when k is larger than the wave vector
which characterizes the macroscopic gradients in
the system.

The analysis of the structure factor at low densi-
ty has another motivation, in that the very impor-
tant assumption of the separation of time scales
between the quantities (B(r)C(r')~I(-r }) and
K (r, (rs; T) that is implied by the transition be-
tween Eqs. (2.21) and (2.23) in paper I may be
checked. We obtain here an estimate of the relax-
ation time of (B(r)C(r ')~E(-r )) and show what
are the conditions that guarantee the needed sepa-
ration of time scales.

The organization of this paper is as follows: In .

Sec. II we treat the SDF. We consider it in non-
equilibrium states with temperature gradient and
velocity field and show in each case how at low
densities our theory reduces to previous well-
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known results. Section III introduces the sum rules
of the dynamical structure factor. We discuss the
various new contributions to the sum rules and set
the stage for their explicit calculation at low den-
sities. In Sec. IV we perform the density expansion
of the sum rules. To this end, we introduce a
binary-collision expansion of the resolvent opera-
tor and resum the resulting series to obtain an ex-
plicit result in terms of the linearized Boltzmann
collision operator that is valid to lowest order in
the density. In Sec. V we work out the resulting
classical scattering problem for the case of Max-
well molecules. We find a final result which is ex-
tremely simple and fulfills all the formal proper-
ties predicted in I. Section VI is devoted to the
question of separation of time scales. A slight
variation of the density expansion technique is used
to obtain the time-domain representation of
(N),~N ),I~(-T)&. Section VII contains a summary and
concluding remarks.

any particle is found

f(r, p; t)drdp =Prob within a volume dr around

r and dp around p, at time t

At equilibrium,

f„,„(r,p) =(N5(r —r, )&(p- p, )), (2.2)

where the choice of ensemble is unimportant for
the SDF. The nonequilibrium SDF is given by the
nonequilibrium average of the same quantity,

f(r, p; t) =(N5(r - r, (t)) 5(p- p, (t))&„. . (2.3)

d& N5r-r, 5p —p,

As was discussed in I Sec. III, .the nonequilibrium
average can be written as

(N5(r. —r, (t)) 5(p - p, (t))&„,

=(N5(r r, )5(—p - p, )),(t)

II. SINGLET DISTRIBUTION FUNCTION x 1(r', -~)&~(t) ~&p4'(r', t) . (2.4)

A. Correlation function expression for the SDF

The generic singlet distribution function (SDF)
f (r, p; t) is defined by'

As was done in Sec. IV of I [cf. Eq. (4.10)j this ex-
pression may be expanded into a functional Taylor
series, finally yielding an expression which is a
local function of the PC (r, t). The result is, to
first order in gradients of 4,

(N~(r —r, (t)) ~(p —p, (t)))N, , =(N~(r —r, )~(p —p, ))„.„(r, t)

+(N5(r r, )5(p-p, -)A(r'))„.„,(r, t) *(r' —r) ~ Vp4 (r, t)

d~ N5 r-r, 0 p-p, ~I -~ „„r,t ~ V 4 r, t,
0

(2.5)

where the symbol ( &}

'

(r t) denotes an average in a uniform equilibrium system in which p4 =p4(r, t),
It is easy to see that the second term on the right-hand side of Eq. (2.5) vanishes when the A's ai e hy-

drodynamic variable densities. Since the average is taken over a uniform system its dependence on r' is
via ~r —r'~ only. Thus the implicit integral over all r' yields zero. We can then rewrite Eq. (2.5) as

(ttt(r —r, (t)) t)(p —p, (t)})„,, f (r;p, t) —f d ( r(rtt-()r, )p(p —p, )~l(-r))„,„,(r, t) ppp(r, t), :
0

(2.6)

where (N5(r —r, )&(p-' p, )&; =p0(p-mv), (2.9)

(2.7)

(2.8)

and we have used the fact that

f~(r, p, t) = p(r, t)(t}(p-mv(r, t))z, r(-, ,).
The quantity f~(r, p, t) is the usual local-equilibri-
um form of the SDF. The singlet momentum dis-
tribution function (t)(p) is given by

(t}(p) =-(2wmksT) 't'[exp(-P'/2mksT)]

where the subscript v denotes an average in a sys-
tem moving with velocity v.

The second term on the right-hand side of Eq.
(2.6) is the subject of the rest of this section. We
will examine the contributions which arise in sys-
tems which are linearly displaced from equilibri-
um due to gradients in temperature and velocity.
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Thus we drop the notation ( )„.(r, t) from the dis-
sipative correlation function appearing in Eq.
(2.6). We shall carry out the calculations for these
terms in the canonical ensemble.

B. Dissipative term in the SDF

The integral in the dissipative term in Eq. (2.6)
ls

(~(r-r )~(P-P )f (-T)) (f~
0

Oppenheim, ~ and rewrite Eq. (2.11) as

D=p dpi'~ p pz px Yp~p =p p Ypp
(2.13)

where

Y(p„p) =- lim lim dp" '
s~0+ N, V ~ ~

N/V fixed

&& Q(p&}V"(0}p "G„(s)~I
~ 0), (2.14)

p & p-p~~I -T d
0

(2.10) pN is the N-particle coordinate space distribution
function, and

where the second equality follows from transla-
tional invariance.

Introducing the propagator G„(t)—=e'~', where
iJ is the N-particle Liouville operator, we can
rewrite Eq. (2.10) in the form

(qelo(e'")=, fee'e """'oe"'", (2.(e)

for an arbitrary operator O.
In Ref. 7, it is shown that pl'(p„p) can be density

expanded to yield
D=p 6 p-px GN -~ ~l' d

0 p&(p|, p) = I""(p,)+pI'"(p, )+ (2.16)

= lim lim p 5 p-p, GN -7'~I & "d&
s~O+ N, V ~~ 0

N/V fixed

G„(s}-=I/(s+tI. ). (2.12)

We proceed by using the notation of Hamer and

= lim Iim p (6(p —p, )G„(s)~I), (2.11)
s~O+ N, V ~ ~

N/V fixed

where we have used the usual method to obtain the
resolvent operator

where, for repulsive forces, Y' ' and Y'" are sol-
utions to the appropriate integral equations (de-
pending on ~I) of the Chapman-Enskog and Choh-
Uhlenbeck form, respectively. For attractive po-
tentials, the integral equation for Y' ' remains the
same and the integral equation for Y "& is mod-
ified. '

The contributions to the dissipative term in Eq.
(2.6) arise from temperature gradients and veloc-
ity gradients. In order to make contact with pre-
vious work we rewrite this term in the form

d~ N5 r-r, 5 p-p, ~I -& ~ V 4 r, t

= p lim lim ((6(p- p, )G~(s)Is r) ~ (I('p(r, t) —(6(p- p, )G~(s}[&—3 Tr(r)1 j): (('pv(r, t)
s~O N, V ~~

N/V fixed

— 5 p-p, (GN s 3 Tr(~ --,' Ter ——N+ —E V ~ v r, t
(Bp ae ip

0

=Ds ~ VP(r, t)- L'~: vPv(r, t}——,
' TrD~v ~ Pv(r, t), (2.17)

(2.18)

It was shown in Ref. 7, Eq. (2.3), that

where in the second equality we used the explicit
form of I~ and, where the D's are defined by Eq.
(2.11}. Here D~ is the traceless part of D~.

We adopt the conventional notation'

Ys"(p) = ksTA' '(p) . -

where the linearized Boltzmann collision operator
is defined by

ZB(p)-=- fd((, f ,edef . d(Q(p (

& (&(P,) +&(P, ) —&(P,*)—&(P,*)),
gA~'& =- p' 5 p

2m', T 2
(2.19)

(2.20)
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where B(p) is any function of p, I) is the impact pa-
rameter, () is the azimuthal angle and the super-
script ~ denotes the value of the quantity before the
(12) collision which gives final momenta p, and p, .
Note that the operator g defined here differs from
that in Ref. 7. There is an unimportant difference
in sign and in the location of P(p2) in the two opera-
tors.

Again, we use the conventional notation'

Y' '(p) -=I(,'sTB' '(p), (2.21)

and find from Eq. (2.21) of Ref. 7 that

S '""'= ( S r S S S ') '

Finally, we find that

TrYp(0) =0

(2.22)

(2.23)

(see p. 224 of Ref. I).
Combining the results of Eqs. (2.2), (2.6), (2.17},

(2.21), and (2.23), we find

f(r, p, t) =f~(r, p, t}

+f„(r,p) p ~ V Inr(r, f)

B(())(p)

p
(2.24)

w hich is valid to lowest order in density and to
linear order in deviations from equilibrium. The
extension to all orders in 4 and linear order in
v'P4 is discussed in Ref. 7. The results are

f(r, p, t) =f,(r, p, t)

~(
A' '(p mv(r, —t)) vlnT(r, t)

p(r, &)

"'"' -""'
~ -(- )'~ (225)

which is valid to lowest order in density and linear
order in VP4. In this expression, the tempera-
tures which appear in Eqs. (2.19) and (2.22) must
be replaced by T(r, t). Equation (2.25) is the
Chapman-Enskog form for f(r, p, t).

The extension of Eq. (2.25) to next order in the
density is readily carried out using Ref. V. For
repulsive forces, the results are in agreement with
Choh and Uhlenbeck. For attractive forces, wit/
bound states, the integral equations for Y'" are
given in Ref. 7.

As mentioned in the Introduction, the SDF has
been measur ed recently for a heat-conducting sta-
tionary state by Baas ep al.4 They report very good
agreement with the form of Eq. (2.25) in the ab-
sence of a velocity field.

In summary, we have shown in this section that
our correlation-function expression for the SDF

III. DYNAMIC STRUCTURE FACTOR: SUM RULES

We now turn to considerations of the dynamic
structure factor in stationary nonequilibrium sys-
tems. As was mentioned in the Introduction, this
is an experimentally measurable quantity and plays
a major roIe in the scattering of light, neutrons,
etc. from fluid systems. '

As was shown in I, the dynamic structure factor
can be written

S-„.(r) = S-„'„'(r)+SP„(r)+W-„(r), (3 I)

where the various terms in the above expression
were defined in Eqs. (4.19a)-(4.19c) of paper I. As
was discussed in paper I, the first term is just an
equilibrium dynamic structure factor in a uniform
system where P4 =PC(r). The second term is a
nonlocality correction to the first term and has the
same ~ symmetry.

The last term in Eq. (3.1) does not correspond to
any equilibrium like phenomenon, and represents
a coupling to the dissipative currents present in
our system.

Many of the new features embodied in Eq. (3.1)
may be found by studying the sum rules, or mo-
ments of S), (r). The jth sum rule is defined by'

Stir'(r) = —J dtr(itr)'S „(r), - (3 2)

&~"(~)-=(~"-'5r))'"+(S"'(r))'"+II~"(r), (3.3)
k k

where the symbol P denotes the Cauchy principal
value of the integral and where each of the three
terms on the right-hand side of Eq. (3.3) arises
from the sum rule associated with the correspond-
ing term in Eq. (3.1).

Use of the definition of the time Fourier trans-
form and Eqs. (4.19) and (4.15) of paper I yields

(3hoqr))(s) — I (~(s)~ )y k -k horn ' (3.4a)

and

(3.4b)

reduces to the usual kinetic theory expressions at
low density. We have demonstrated this explicitly
for the Chapman-Enskog solution and indicated how
the usual Choh-Uhlenbeck corrections appear. It
should be stressed that the correlation-function
method &s not restricted to the low-density regime
and thus our result for the SDF does not have ap-
parent density limitations.
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Sr& (r}=--:— I dr([Nr N r+(-1)rNrN j&

x~1( y)) ~ gP@(r).

In this fast expression,

v& )[ d'

(3.4c)

(3.5)

where p(~&(r) is the equilibrium pair distribution
function. Equation (3.10) becomes

( N&( })(1& (k )
(N|;N ),}

2V

(Sr (r)}r"=-(V-,'[)r r(r)) f rd„e xe[ r}rr„[
and only linear deviations from equilibrium are
considered.

To this order

12 (p (r12 } p

(3.12)

(@Qr})'~'=—(Ng N [,)+ —(N[, N )Ar) p@(r).

r

ho ~ 1 (2j+1)
(S[,

' (r))('~"&= —(N-„N -„P,) .[3v(r). (3.V)

In particular, for j=0
(S„- (r))"'= —(N-„N 1;)sk v(r). (3.8)

Qf course these odd moments vanish in the ab-
sence of flow, and are responsible for the Doppler
shifts associated with light scattering from moving
systems.

From Eq. (3.4b} it follows that

(S[, (r))"&=
3

v-„~ ( "'"
~

v'p4„(r}
&sPI &S,v

-( S") irde, ( )

+ (Ng N -„Pr) Pv(r}i, (3.9}

where S&,~ is the equilibrium jth sum rule. The
first two terms in Eq. (3.9}vanish for odd j where-
as the last is zero for even j. When j= 1 this last
expression becomes

(ss(rl)r"=- 1 ps
~

—(ppN i)r„) si(r)rr)

V& [(N[,N g) V„(k.v(r})] d (3.10)

Noting that V.v(r) =0 in the steady state, and that

—(N}N=„) = fdr, exp [r}r .r, )[p' '(r) —p ) + p, ,
k ss 0, (3.11)

Using equilibrium time-reversal symmetry, it
may be directly verified that for even j (Sk (r))(&'

is, to linear order, equal to the same equilibrium
moment in a system which is uniform, at rest, and
has chemical potential and temperature equal to
those of the system at point r. For odd j the first
term on the right-hand side of Eq. (3.6) vanishes
and only couplings to momentum survive in the
second. In fact

Since p'I'(r»)- p2 vanishes for r» larger than some
microscopic correlation length ~„we see that the
contribution of Eq. (3.12) to the first sum rule is of
order kg, p2 and is thus negligible. One may pro-
ceed in a manner analogous to that used above to
verify that all the contributions of Eq. (3.9) to the
lower-order sum rules will be at least of order
p2k&, and may therefore be neglected. The physi-
cal reason for this is that the low moments are
characteristics of short-time phenomena and the're-
fore probe only small distances. Thus the effects
of the gradients are not felt.

The analysis of the W-„(r) does not proceed in the
above manner, since they do not correspond to any
of the usually studied correlation functions. How-
ever, they can be density expanded and this is the
subject of Sec. IV.

We may, however, again use symmetry under
inversion to show that the contril&utions of (3.4c)
to the various sum rules are the following: when

j is even, - coupling only to I~ need be considered.
VFhen j is odd, only the corr'elations involving I~
survive. Thus the analysis of the contributions of
Eq. (3.4c) separate naturally to the cases with and
without a velocity field. In the next sections we
evaluate the contributions to the low sum rules
that arise from Eq. (3.4c) for systems at low den-
si

IV. DENSITY EXPANSION OF Vg (r)

(J) ~
In this section, we evaluate the moments Wt; (r)

at low density. Since they involve equilibrium
time-correlation functions, any of the standard
techniques for generating the density expansion
may be used. We will use the resummation tech-
nique first developed by Zwanzig' for the density
expansion of the self-diffusion constant.

In what follows, many of the technical details are
similar to those appearing in Kawasaki and Op-
penheim's9 " treatment of the shear viscosity. As
will soom become apparent, calculation of all the
moments is beyond the scope of this work and thus
we restrict ourselves to the first two.
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A. Temperature-gradient term

From Eq. (3.4c) we find that

appear only in the first density correction. Noting
that

WgE = dT' N~ N g+ -1 ~N&N
0

x Iz( T)) . PP(r) . (4.1)

p))((rN) V Ã g s '(d( r pN(qN)

where

(4.7)

For even j this term vanishes by symmetry (cf.
Sec. IV of I). Since it contains the equilibrium
average of a vector, the term is odd in k under in-
version. On the other hand, by inspection, it is
even in k when j is even, and thus must vanish.
The contribution to the first sum rule does not van-
ish. As before we write it in the form

t)"(q")-=fdr "e" ' p"(r"),

q+q + ~ ~ ~ +q =0

we find, by using (4.4), that

W-„z(r) = lim ~ Q dp "p"(q")
0+ m

(4 6)

Wk z(r) = ~ d7'(PkN (,Gz( 7)l r-, z) (qpp(r)
0

= lim (P„N -„G„(s)I, ) Vp(r), (4.2)]f S. z

where again G„(s) is the resolvent operator de-
fined in Eq. (2.12).

It is to be understood that in Eq. (4.2) and suc-
ceeding equations, the thermodynamic limit
(N-~, V -~, N/V fixed) is to be taken before the
limit as s-O'. Using the fact that the particles
are identical, and the definitions of N& and P&

gives

W& z(r) = lim — [(Np, G„(s}Irz)
0+ et V

+ (N(N 1) p,e'"'»-G„(s)lr z)] ~ VP(r) .

x
'

'(t)(p, }p,(q, k, q, +k, q" '(G (s)(5")

x (1+6'„+(N- 2)6„)
2

x '
~

p' ——'k T ~ gp(r),
m (2m

(4.9)

where we have used the notation of Eq. (2.15}and

introduced the particle exchange operator, t,&

which replaces p, by p~.
For convenience we define the operator 8(s), an

operator on the momentum space of particle 1, by

( )=(-)(el)q) g f dp 'pe(q )

N

x g p(p )(q, —k, q, + k, q" '~ G„(s)~0")

(4.3)

The first term in the last expression vanishes be-
cause Np, is equivalent to P~ in the average and

this is both conserved and orthogona1 to I~. For,
k 0 we may replace the grand canonical average
by a canonical one. This gives

x [1+ 6'»+ (N 2)(d'»)], -
which allows us to rewrite Eq. (4.9) as

W), z(r) = lim — dp, p(p~)p~ g(s)
0+ m

I m, 2m 2 )

(4.10}

)rj' (r)=)im —p()e —l)' fdredp" p"(r")
Nl

x f(p)[p ' ''
G ( )I ] ~ gP( },

j=l

where

(4.4)

(4.11)

At this point the binary-collision expansion for
the resolvent is introduced, ' that is,

/

G„(s)=Go(s) —g GOT„GO+ g GOT~GOT&GO —~ ~ ~,
(X 0,'~y

(4.12)

pjV(rdd) —s BU(I ) -Bv( r+}dr e (4.5)

p, m p', m--,'u, T . (4.6)

As is usually the case the explicit potential terms

In addition, to leading order in the density we may
take

where the sums are over all possible pairs of par-
ticles with the proviso that consecutive identical
pairs are forbidden. The reader is referred to
Zwanzig' for a discussion of the properties of the
binary-collision operator and of GD(s), the free-
particle resolvent operator. The important prop-
erties of these two operators are as follows:

(i) Any matrix element of T„, i.e., (q"ITalq'")
is proportional to V ' in the thermodynamic limit.
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(ii) (q"lT„fq'") -a(q» ' —q'" ')s(q, +q, —q,'- q,'),
where 6 is.a multidimensional Kronecker 5 func-
tion,

(iii) (q»fGDfq' ) =g(q»)h(q"- q'"), where

T~~=-8 ~+~~JGoT z=-~~g+T~J Go~&&

where

sU(r, r—) s s

8(F( —1'~} 8 P( s p

(4.15a)

(4.15b)

g(q") -=(s+ ' " p»/m) '

(iv) The following equation holds

(4.13)

2 =-lim dp, P(p, )(0 f VT» l0)(1+(P»), (4.14)
g~0+

where g is the linearized Boltzmann collision op-
erator defined in Eq. (2.25).

(v) The matrix elements (q"
f T,~ f

q' )»are opera
tors on the momentum space of particles (ij) Th.ey
give zero when they act on any quantity conserved
in an (ij) collision.

(vi) The following equation holds:

or

p»(r») V»

P"(q")= a(q") .

(4.16a)

(4.16b)

Substituting Eqs. (4.12) and (4.16b) into (4.10) al-
lows us to rewrite the latter as

Note that property (vi) imples (v). As a final re-
mark, we note that for systems interacting via
short-range forces, the leading density dependence

(I)
of W-„s(r) can be found by neglecting all statistical
correlations. That is,

O(a)= fop" ' '

O(pz)(-( k, l kTGI 0)((+ p)+ (N k)((-k k—)G T„lo)—(o(T„(o)()+p,, )

+(-k, klG. T,.IO)—(OfT..fO)((|,.+5',.)

+(-k, k, olG.T .I-k, k, o}(-k,klG. T..Io)(1+5'„)

+(—k, k, 0lGDT„lO, k, —k)(0, k, -k fGDT„f0)(6' +»6' )»
+ (-k, k, 0

f GDT„ f
-k, k, 0)(-k, k l GDT 2 l 0)(1+6'„)

+ (-k, kO(G, T„(—, k, 0, k)(-k, 0, k I G,T„I O)(l + O'„) — ), (4.17)

where we have not written out any of the terms con-
taining more than two T operators or three par-
ticles. In obtaining this expression use was made
of the conservation rules associated with the T and

G, operators [cf. properties (ii)-(iii) above] and
the fact that the right-most T must involve parti-
cles 1, 2, or 3 fthis follows from Eqs. (4.15)].

Examining Eq. (4.17) we see that each term di-
verges as s-O'. Further, property (i) shows
that a term containing n particles is of order p" '
in our expansion of 8(s), in the thermodynamic
limit. Special attention must be given to the last
four terms appearing in Eq. (4.16). For example,
using property (iii) gives

p'(-k, k, Ol VG,T„f-k, k, 0)

x(-k, k, lGDVT„IO)(1+(p, 2)

=p'g»(-k)(0 l VT„ lO)

x g»(»(0 I VT» IO)(1+ d») (4 18)

g„(k) -=(s +gfY ~ (p, —p, )/m) '. (4.19)

Equation (4.18) and (4.19) show that, as s-0', the
fourth term in the expansion of Q(s) is roughly
speaking O(p'/sk'). For high k, this is a weaker
divergence than the other s ' term in Eq. (4.17).
On the other hand, as k -0 the "strength" of this
term increases, and it may be larger than the
terms with the same s dependence. In this work
we are interested in both the high- and low-k
regimes and thus we are forced to keep all the
terms which appear in Eq. (4.17).

Let us examine some of the other terms which
occur in the binary-collision expansion of g(s).
One of the three T terms is

where for ka «1 (a is the range of the potential) we
may neglect the k dependence of the T matrix ele-
ments and
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(-k, k
i VG()T,2G()VT„G()T„i 0)

2

x(0( VT„]0)g, (q —k)(0( VT» (0)

-O(p jsk), as s-0'. (4.20)

This is an example of a correlated collision term.
The sum over q "protects" the g»(q —k) and a
weaker divergence results (see Refs. 6 and 12 for
a more detailed discussion). To leading order in
density we may thus neglect the correlated colli-
sion terms (i.e., terms containing sums over in-
termediate wave vectors)

A second class of terms is that beginning with a
T„.not involving either particle 1 or 2. Using
property (iv) and the fact that the kinetic energy is
conserved in a completed collision, it follows that
these terms have a weaker s divergence than those
which begin with 1 or 2 and thus do not contribute
to leading order in density.

The remaining terms in the binary-collision ex-
pansion of g(s) contain no intermediate wave-vector
sums and begin with a T involving 1 or 2. A given
term will factorize into two parts. There will be a
series of G,T matrix elements in which the wave
vector k appears on both sides, such as in
(-k, k, 0

~ GGT23 ~-k, k, 0). Then there will be a fac-
tor (. . . , k, . . .—k ~G&T j0) followed by factors in-
volving only (0~ T IO). As was discussed above,
for small k, all of these terms are non-negligible.
The terms involving k matrix elements are known

as "ring collision terms" and have been extensive-
ly studied" within the context of the long time tails
and the logarithmic terms in the density expansion
of transport coefficients. The methods used there
to resum these terms may be used here. In what
mill follow we use the method outlined by Kamasaki
and Oppenhelm. ~2

By introducing the operators A, (i), Ad(i), defined
as

A, (i)A =—fdp d(p~)VG T& A (4.21)

and

A, (i)A-=fdp, d(p, )VG,TVP„A, i, =1,2, (4.22)

n+n'+Z

Jtdpmy(p2) ( k k~A ( )

~A„(nJVG, T» ~O)(1+4»}

x(0tA„(1) ~ ~ 'A. , (1)I0)

where

u&, v,. =l or d, i=1, . . . , n, or 1, . . . , n',

e,. =1 or 2,

(4.23)

and where the terms with n or n'=0 are included
(i.e. , those without A's in either factor). Summing
over all possible values ofn, n', fu), (v), and (oj
gives

one can show" that any term in Eq. (4.17) is equiv-
alent to a term of the form

()(*)=-2f dp d(p )(-k kl()+pG, (A, (1)+A,()i+A, (2)+A, (2))j 'VG, T„(0)

&&(I+ @„)(Oj[s+ps(A, (I}+A„(I))]')0). (4.24)

p, =- lim — dp, Q(p, }(OjVT»~0)(1+6'„),
s~o+

(4.25)

neglecting the k dependence of the 7 matrix ele-
ments appearing in Eq. (4.24), and using Eqs.
(4.21), (4.22), and (4.19) shows that

()(*)=-pf d(k(P.d) .2 (- -
)/

&& (Oi VT», (0)(1+(P»}S- Pgg
(4.26)

In arriving at this last result, we have used the

Defining a Boltzmann collision operator for par-
ticle z by

fact that to leading order in p the s dependence of
the T matrix elements may be neglected. This
corresponds to dropping partially completed colli-
sions, a higher-density correction.

The physical significance of the operator
(s —K ~ (p, —p, }/m —pg2 + pg, } ' is clear. It is
simply a free-particle propagator for particles
(1, 2) which is modified by collisions with other
fluid particles. As we shall demonstrate below,
the appearance of the (())C, + pg, in this operator ac-
counts for the collisional damping associated with
a collective motion of wave vector k. For small
wave vectors this can be quite important. On the
other hand for large k, that is, k greater than the
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inverse mean free path, the collision terms are
unimportant and Eq. (4.26) becomes

e(p. )
Q(s) =-p d~ ~ (»» )/

x (0 ( VT, i 0)(1 + 6', )XR

T g=+ '
p» p2p» p»

with

1
0'- fk (p, —p, }/m —p)G, —.pg,

x y's(pg, P2), (4.28)

+ (p p.}=-p(0I1'T.to}(1+5'.)
1 ( 2

1

(4.29)

and where the s-0' limit has been taken. Note
that I~ is orthogonal to the conserved variables
(collisional invariants), and thus g, Is is well de-
fined. Proceeding in the manner6'~ used to show
Eq. (4.14) one may easily verify that

-(0lyT t0}(I+5'„)f(P)

bdb d p» + p

-f(p*}-f(p*}l

(4.30)

where f(p, ) is any function of p, and the notation is
as in Eq. (2.25}. Using this fact and Eq. (2.19)
shows that

u»pa' (4 27)

where the correction introduced by neglecting the
bath collisions is of higher order in density.

Combining Eqs. (4.26) and (4.11) yields +"X,E= ' dp» dp2 p» p2 p» g p»~p2 y

where Eq. (4.28) was used. This shows that once
the solution to Eq. (4.32) is known the calculation
of the first sum rule in the presence of a tempera-
ture gradient reduces to evaluating an integral.
Before turning to Eq. (4.32) we analyze the velocity
terms.

B. Velonty-gradient terms

The analysis of the v terms proceeds along the
same lines as the V'7.' ones. As was discussed in
the preceding section, only even moments arise
from the velocity gradients. The contribution to
the zeroth sum rule is nontrivial and may be writ-
ten

wf p(r)=- —f dv()( „N (p)(-r)):-(()v(r))
0

=-p lim (N 1)(e' '»-G„(s)™lrp): V)6v(r),
s~O+

where we have used particle identity in obtaining
the last equality.

As was shown in Sec. II, we may take

g(p P
& m 3m] (4.34)

at low densities. Proceeding as in the case of the
temperature gradient, we find

(4.28) we in'troduce an auxiliary function,

Qs(p„p, ), which satisfies

-. Pi —P210'-8s i- pC, —pP2 Qs(pg, P2)m

=&,(p„p.) (4.32)

where Qs also depends on p and k. Postponing the
actual solution of Eq. (4.32) for a moment we see
that

Ee(p„pa) =- ' '
I(', eT b db

m ~
0

27I'

x dy [A«) (p, ) +A& "(p, )
0

W(( p (r) = -p lim dp, P(p, )8(s)
8~0

(4.35}

A'"(p,*) —A'") p.*)]—&P(r),

(4.31)

Using Eq. (4.27) for g(s) allows us to rewrite Eq.
(4.35) as:

where A'0'(p) appears in the correction to the SDF
in the presence of a termperature gradient. For a
given molecular interaction, the functions A'0'(p)
can be computed using a variety of techniques. In
Sec. V we shall carry this out for Maxwell mole-
cule s.

In order to compute the integral appearing in Eq.

wFi(~)= 0 Id@ dP ((P )('(P )—

x [0'- gl(: ~ (pi —p )/m —p1', , —pg, ]
(4.36)

where



1816 DAVID RO N IS, ITANIA R PR 0 CACCIA, AND IRWIN 0PPEN HEIM 19

F-(p„P,) —= -p(OI T„VI0)(1+(F„)0,0'- pC,

xl P'P' —P ' 1 l: vpv(r)
lt--
&m 3m

pl p2 bdb
0

+B&o) p
0

p(o&(pw) Ft(o)(pe)] ~ Vv(r)

(4.37)

than the inverse mean free path, k(knT/m)1 2/pX»1
and the effect of collisions is small (in fact it is the
same size as the higher-density corrections to the
sum rules). On the other hand, for k's typically
found in light scattering, this parameter is small.

As we shall now show, the size of k determines
whether a hydrodynamic (small-k) or kinetic
(large-k) behavior is found.

When k is large, the collision terms in Eq. (4.41)
can be omitted, and the resulting equation is then
trivially solved:

(4.38) Q„(p„p,) = (s - sk (p, —P, )/m) F„(p„ps), (4.42)

wt', -, (p) =-p f dp, pp, p(p, )p(p. )Q;(p„p.). (4.40)

Again, Qp depends on p and k. Thus, as was seen
in the case of a temperature gradient, the contri-
bution of the velocity gradient to the zeroth sum
rule involves the solution of an inhomogeneous in-
tegral equation, Eq. (4.39). Once this is accomp-
lished, the evaluation of the sum rule reduces to
performing some integrations.

The remainder of this section i.s devoted to solv-
ing Eqs. (4.32) and (4.39).

The last equality follows from Eqs. (2.22) and

(4.30). Introducing the function Qp(p„ps), defined

by

(o -» (Pl P2)/-p~l -p~s)-QP(pl, Pn)= P(pl P2»

(4.39)

allows Eq. (4.36) to be reexpressed as

[cf. Eq. (4.27)]. For a given interaction potential,
F„(p„ps) can be found [cf. Eqs. (4.31) and (4.39)]
and the sum rules computed using Eqs. (4.33),
(4.40), and (4.42). This procedure is carried out
in Sec. V for Maxwell molecules.

When 4 is small a different approach is used. We
consider the eigenvalue problem.

(-,' s —21t p, /m - p&, )@j(p, ) = (2 s+ oj,)+,(p, ) . (4.43)

In Appendix A, we show some of the formal prop-
erties of the operator —,

' s —ik ~ p, /m- pg, . The
most important property is that the eigenfunctions
(4„) are orthonormal in the sense that

(4.44)

where the symbol * denotes complex conjugation
(not to be confused with the value before a colli-
sion).

Writing

C. Functions Q (ii, ,g2)

The remaining nontrivial step in obtaining the
sum rules is to solve Eqs. (4.32) and (4.39). That
isy

(s —» (P —P )/m —p& —p& )Q (P P )

=F„(p„p,), ct =E, P, (4.41)

where for a later application, the Laplace trans-
form variable s has been reintroduced. In any of
the sum rules, the limit g-0'is to be taken once
Eq. (4.41) is solved.

The exact solution of Eq. (4.41) for any k, s, and
interaction potential is, if possible, an extremely
difficult task. Fortunately, approximate solutions,
valid for the high-and low-k regimes, are not too
difficult to find. By high- and low-k regimes, we
mean those where the streaming or collision terms
on the left-hand side of Eq. (4.41) are more im-
portant. Roughly speaking, the parameter which
determines the regime is (kkTn/)m' 2/pX, where X

is one of the nonzero eigenvalues of the linearized
Boltzmann collision operator. When k is larger

Q (p„p,)= +Q.(j, f)Fj (p, )F*, (p ),

and using Eqs. (4.41), (4.43), (A2), and (4.44)
gives

(4.45)

(s+(u, + td", )j)„(j,()=fdpdp, p(p)p(p, )

x @j (pl)+, (ps)F„(p„ps)

=-F.(j, l). (4.46)

Q(2(Plj Ps) = Z, oj + oj)p, (P1) f (P2) (4.47)

which may be used in either of Eqs. (4.33) or
(4.40) to compute the appropriate contribution to
the sum rules.

While being an exact result, Eq. (4.47) is not
useful unless the eigenfunctions and eigenvalues
are known. Since we now consider the small-k
regime, the term proportional to k in Eq. (4.43)
can be handled using perturbation theory. That is,

Thus solving (4.46) for Q ( j, l) and using Eq. (4.45)
yields
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~ = ~«)+k~&'&+k2~&»+"f (4.48a)

the eigenfunctions and eigenvalues are expanded in
a series in k:

ficient to compute w to second order and only the
C(o)(j)

The collisional invariants are chosen in the usual
fashion:

and

+ (p ) =+'"(p )+&+'"(p )+ "
The lowest-order terms satisfy

(4.48b)
S,(p, ) = 1

(p', /2m ——,
' u, r)

1(pl)
(

3 )1/2y zr2 B

(4.54a)

(4.54b)

where

(Pr) =S/(P&), R/ = P)(/, - (4.50a)

pg y (o)(p ) — &o(o)@(o) (4.49)

which shows that to leading order the (@/o&(p, )}are
eigenfunctions of the linearized Boltzmann colli-
sion operator, or

S. ..(p, ) =-p, /(mu, V )"'. (4.54c)

In addition, the x axis is chosen to lie along k.
Using Eq. (4.52) for the collisional invariants
yields

&u/ '=0, C'„'(j)=0, )r &4, j ~4,

SS~(p, ) X,s/(p—, ) . (4.50b)
and

The eigenvalues ~f of the linearized. Boltzmann
collision operator have the property that they are
real and nonpositive. In fact, unless S/(p, ) is a
collisional invariant they are strictly negative.
For the collisional invariants, Af =0. This is an
extremely important point, since it means that the
terms in Eq. (4.4V) where both j and I correspond
to collisional invariants go at least like k ' as k
-0 (s-0' having already been taken) and should
thus dominate in the small-k regime. As we shall
show below, the most divergent terms are propor-
tional to k ' and give a nonvanishing contribution
to the sum rules.

The various corrections terms in Eqs. (4.48) are
found by expanding

(4.55)

(4.56a)

(4.56b)

(4.56c)

and

(o&)& =+ic„C&"(3,4) = [(-')' ' (-')' ' +1,0, 0],

with

(4.56d)

&o&r&C&o&(j) g f/ C&o&(j) p
n-01

Equation (4.55) is an eigenvalue problem Usin.g
Eqs. (4.55), (4.54), and (4.53) gives for the five
solutions of Eq. (4.55)

(0&"=0 c& &(0)=[0 0 0 1 0]
(L)' "= O,

i

C ' '(1) = [0, 0, 0, 0, 1],
(o&r) —0 C(o&(2) —

(
—')r/o[ (2))/o 1 P P P]

(')= gs„( p) cr&&(j)

n=0
(4.51)

c, =-(a Ir, r/m)'/'. (4.5V)

where it should be remembered that the zero-order
eigenfunctions {S/} satisfy the orthogonality re-
quirement, Eq. (4.44). Using Eqs. (4.51), (4.48),
and (4.44) in (4.43) gives, on equating the coeffi-
cients of each order in k:

(rut '+pi„)c'"())+Q a&"'c„" ' '(j)

+ Z I/O n
C" "(j)=0

n1-0

where C'„"(j) =0 for I &0 and

(4.52)

U„„=-
~

~ dp, (II)(p, )s,*(p,)p,s„(P,) . (4.53)

This is completely analogous to perturbation theory
of degenerate states in quantum mechanics.

As was mentioned above we require only the cor-
rections to the collisional invariants since this
yields the most divergent part of Q . In fact, in
order to find the leading k dependence, it is suf-

Note that Eq. (4.5V) is the low-density form of the
adiabatic sound speed, and that the eigenfunctions
given by Eq. (4.56) are orthonormal. The first two
are just the transverse velocity modes, the third
the heat mode, and the last two the longitudinal
sound modes as are found in the hydrodynamics of
simple fluids, at low density.

By examining Eq. (4.52) for I=2 one may easily
show that

~,(p, ) = g C'„"(j)S,(p, )
n=O

(4.59)

and using Eqs. (4.58) and (4.56) for (o/. This gives

j ~ 4 (4.58)

where the zero-order coefficients are given by
Eqs. (4.56). Returning to Eqs. (4.4V) we see that
the leading k dependence is found by taking
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4

9 (P„p,) = g (s+ ~, + ~)) '
j,l=O

dprdp2 PX P2 +n Piy P2

4 4

g c'„')(j)c'"(j)s.(p')s. (p )
n&=0 n =0

4
x g g C„';&(E)C'„,"(E)S„,(p.')S„,(p ).

3

(4.60)

Using Eq.. (4.60) in Eqs. (4.33) and (4.40) gives

W-k s = (&o, + co*, )
' (mk, T)'~'pik 4

m
g 0 n @ 0

x dp&dp2 p, p F~ p~p

U(r, )) = e/t-, ), e &0, (5.1)

which is often referred to in the literature as a
Maxwell molecule potential. " 'This choice is mo-
tivated by the simple solutions of the linearized
Boltzmann equation which result for this potential.
The qualitative features of the low-density proper-
ties of molecules which interact via other poten-
tials are known to be similar. '

The main advantage of Maxwell molecules lies
in the fact that the eigenfunctions of the linearized
Boltzmann collision operator have a very simple
form. In fact, they are given in terms of Sonine
polynomials. 2 Further, the eigenvalues are known
exactly. For our purposes we require only the col-
lisional invariants and the eigenfunctions corres-
ponding to two other eigenvalues:

x s (p )s„(p,)c„'(j)c„'(f)
x C(0&(j)C(0)($) (4.61a)

(, ,g, p . p' 5)I
(mu, r)"2 2m&, Z 2)() '

with eigenvalue A,, „and

(5.2a)

(0)
li'k. P

=- g (~&+~i) '
g, l=0

4
&( Q JtdP dP (I(&(P )(P(P )+p(P P )

n&, n2=0

&( s„ (p, )s„ (p, )

C„'"(j)C„' '(l)C'"( j)C' '(l), (4.61b)

where we have again used the orthonormality prop-
erties of the S&(p). This form is valid for small k.
Alternatively for large k Eq. (4.42) is used in Eqs.
(4.33) and (4.40), thereby obtaining

(a) p)(p(p, )(p(p2)ii'k, );=Pfk '
dpi' dP2 0+ 1 ..- i +s(px~p2)0 —ik (PZ —P2 J

(4.62a)

l, (p.p, p.p. p, p.
(b))/2( 2 ( 2) (

(p
2 2)j

with eigenvalue Ao 2 The eigenvalues A, y y and Ao 2

are

)(, , =-4'")(4)(a/m)'~' (5.3a)

) „=-6vA "&(4)(~/m)'". (5.3b)

The quantity A"'(4) is given in Refs. 2(a)-2(c) and
equals 0.308. Note that the eigenfunctions given in
Eqs, (5.2) are orthonormal, both to themselves and
to the collisional invariants.

Since the tensor (pp ——,
' p'1) is a linear combina-

tion of the eigenfunctions in Eq. (5.2b), it is a
simple matter to use Eqs. (5.2) to solve (2.19) and
(2.22) with the result

I

(4.62l)k.P P Pl P2 0+ ~Q. (p p )
ksT)(, , &(2m 2 ] m

(5.4a)

Equations (4.61) and (4.62) depend only on the fact
that the density is low, and that the interaction po-
tential is short range. Unfortunately, one still
needs to consider the details of the scattering prob-
lem and the spectrum of the collision operator for
each choice of interparticle potential. In Sec. V we
carry out this task for Maxwell molecules.

2
8"'( )=— b' ' —)' 1) (b 4b)

m 3 m

Using this last result, we show in Appendix B,
that

E,(p„p, ) =-(3p ../m') ~ (p„p„——,
' p'„1) vp (5.5a)

V. SUM RULES FOR MAXWELL MOLECULES Ep (P) P2) = (4/m)(p»p» 3 1p»): vpv, (5.5b)

In this section we shall compute the value of the
sum rules at low densities. %'e choose a particu-
lar form for the interparticle potential': ]p, m -p&+p2y P12 —2 (pl p2) ' (5.6)

where the (1,2) center of mass and relative mo-
menta are defined by
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As a final preliminary remark, we note. that
p„S„(x), n ~4 can be written as a linear combina-
tion of the eigenfunctions given in Eqs. (4 54) and
(5.2). This allows the matrix elements U„„,
where n or n' ~4, . to be evaluated in a straight-
forward fashion using orthonormality and Eq.
(4.53). Comb'ining this with Eqs. (4.56) and (4.58)
yields

kBT =F
mph, j g pCp,

and

(5.9b)

kBT 1 2 1 Cb
1

K 4
»np 3Xy y 3Ag p 2 C» pCp 3 mp

=—I', , (5.9c)

1/x, „j=0

t 3~X,&+3~0.,2

(5.7)

where the sound and heat damping constants, g,
and I'~, are the same as are found in the hydro-
dynamics of simple fluids. Equations (5.9) show
that the small-k collisional damping times are hy-
drodynamic as was expected.

With these results the calculation of the sum
rules can now be completed.

k,T 5k
(5.8)

and the low-density forms of the heat capacities at
constant pressure and volume per particle (C~ and

C», respectively) gives

kBT g

mph, mp ' (5.9a)

Noting that the shear viscosity g and thermal con-
ductivity g for a low-density Maxwell molecule gas
are given by

A. Small-wave-vector regime

(&) (0)
When the wave vector is small TV& ~ and ~& p

are computed from Eqs. (4.61). The calculation is
straightforward, although tedious, and we omit
many of the details.

For the VT terms, using Eqs. (4.6la) and (4.56),
we see that only terms with j, E=2, 3, 4 in Eq.
(4.61a) are nonzero. Of these terms, the most di-
vergent ones are those where j= 1 =3, 4 [cf. Eqs.
(4.48a), (4.65), and (5.7)]. Lastly, note that
(n„n) =0, 1, 2)

!

dp, dp2 p(p, )p(p, )S„,(p, )S„,(p2)Fs(p„p), ) = s
~ 4, , (n„n ) =(1,2) or (2, 1)

0, otherwise
(5.10)

W- (r)= P s — + 0(1) (5.lla)
2Z k2 m

pksT ik VinP(r)
2Z",k' m

(5.11b)

where we have used Eq. (5.9c) and where the sec-
ond equality is valid to linear. order in displace-

which follows directly from Eqs. (5.5a) and (4.54).
Combining Eqs. (5.10), (5.7), (4.6la), and (4.56)
yields

ments from equilibrium. Thus using Eqs. (3.8),
(3.11), and (5.11) in (3.3) gives for the low-k low-
density form of the first sum rule

Sr (r) = ri)c (r(r) + r (r))(r)) . (5.)r)r.a
W'e postpone the discussion of this result until the
end of this work.

(o)
The calculation of Wg»(r) proceeds exactly as

above except for the fact that now Eq. (4.61b) is
used. Using Eq. (5.5b) we find (n„n =0, 1, 2)

2 ~——V V n=n=21

2ggx

t dp, dp~ p(p, )p(p~)S„(p, )S„(p,) E» (p„p2) =
~

, 0, otherwise
(5.13)
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As was done in the first sum rule, Eq. (5.13) is
used in conjunction with Eqs. (4.56) and (4.6lb) to
give

w«";( )=-
2& p, (p p, . («F(F)-l(v «(F)))

S

+0(k '). (5.14)

Combining Eqs. (5.14) and (3.11) gives for the

zeroth sum rule

p«(F)=p(F)() — (Fk: (vv(r') ——, v v(r)1)) .
S

(5.15)

The result is valid for small k and p and close to
equilibrium.

B. Large-wave-vector regime

When k is large, the sum rules are obtained by using Eqs. (5.5) in (4.62). That is,

- P, 4(p, )k(p. }p. (P,.p,.—P„1).VP(r)
dP1 dP2 s -0'

~
'' m S —4& '

P12

p nk, r "' gk
V lnp(r)

4 pyg

Using this last expression and Eqs. (3.8) and (3.11) shows that for large k
~«

(1) (-) ( ) ( )
1 FFksT '~2 VlnP(r)

k

As was discussed above, this result is valid when ka «1 but still in the kinetic regime.
Proceeding in a similar manner, shows Icf. Eqs. (5.5b) and (4.62b)]

1 1 2

(r) 4p dp dp
0 Pl 0 P2 P12P12 2 P 12 'qpv(r) s 0+

s-22 p,12

/FFFFF l'~' (kk ——')IF 1

k()T )

(5.16)

(5.17)

(5.18)

This in turn gives

S-„(r)= p(r) 1 —(&™
~ &2

. (Vv(r) ——,
'

V v(r)1)(f,T )

function

(A (, A (,~I(-1)) (6.1)

(5.19)

The new contributions to the sum rules have some
common features tcf. Eqs. (5.19), (5.17), (5.15),
and (5.12)] in that they are proportional either to
Vln p(r)/l'2 or 0 'kk: (Vv(r) ——, V ~ v(r)1). Aside
from this, the similarity between the high- and
low-k results ends. The significance of this differ-
ence is discussed in Sec. VII. As a last comment
we note that for systems in NESS, V v(r) =0,
thereby simplifying the results somewhat.

VI. ASSUMPTION OF SEPARATION OF TIME SCALES

decays on a time scale which is short compared to
the macroscopic time scale. By macroscopic time
scale, we mean the time scale of fluctuations
whose characteristic length equals that of the ma-
croscopic nonequilibrium phenomena. To be more
specific, we want Eq. (6.1) to decay faster than,
(A(, (&)A») where k' is of the order of the inverse
macroscopic length scale.

Using the density expansion technique, we can
investigate the separation of time scale assumption
for low-density systems and thereby determine its
range of validity. In this section we do this for
Maxwell molecules. For concreteness we shall
examine the correlation function.

The formal analysis of I depended strongly on the
separation of the time-scale assumption. As was
discussed there, this means that the correlation

1
Q(k, T) =——(N), N kIp(-~)) .

Its Laplace transform is defined as

(6 2)
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A(k, s) -=d~ e "—(N-„N pip (-7)) . (6.3)

Q(k, s)=-p' f dj, dp, P(p, )P(p, )

1
8 —'lf ' (pi —Q )/Sl —jog i —F2

x(OiVT„IO)(1+6' )

p~p~
S —PIJg wz

1

3m (6.5)

For Maxwell molecules, as was discussed in Sec.
V, [p,p, ——,

' 1p', ] is an exact eigenfunction of 2, ,
with eigenvalue Ao, [cf. Eq. (5.2b)]. Referring to
Eq. (4.37}we see that

2

Q(k, s}= "
dp, dp, P(p, )P(p2)S- pAO 2

1

s —sk (p, —~)/m —pg, —pg2

Xy'p (p„p, } (6.6)

where the prime implies that the Vt}v(r} factor of
the right-hand side of Eq. (4.37) should be omitted.
For high k the s dependence of the integral appear-
ing in Eq. (6.6) may be omitted (it is of the same
importance as the higher-density corrections) and
thus

tl(k, t) -exp(-p~, ,t}. (6.V)

The decay given by Eq. (6.7} is on the kinetic time
scale. Qn the other hand, the'time scale of the
correlation function (A-„,(t)A g) is hydrodynamic
and thus an excellent separation of the time scales
exists.

%'hen k is small, it is the s dependence of the
integral in Eq. (6.6) which is important. From our
discussion in Sec. IV [cf.Eq. (4.47)] we see that
the decay of 0 will be governed by the real parts
of the characteristic frequencies v~. As was shown
in the last section, these decays were also hydro-
dynamic, having decay constants proportional to
k'I'„k'I'r, etc. For small k', (A-„,(t)A t;,)
evolves on a time scale governed by k~1"„k"I'~,
etc.'""Thus there will be a separation of time scales
as long as k &k', that is, providing one is not in-
terested in NESS fluctuations with macroscopic
wave vectors. Since k' is extremely small this

We can again introduce the resolvent operator (cf.
Sec. IV) to obtain the leading order in density.

2

a(&, ~)=g fdge(i, )B(s)l '—' &' &) (64)

where g(s) is given in Eq. (4.10). Using the low-
density form for g(s), Eq. (4.26), allows Eq. (6.4)
to be rewritten as

requirement is easily satisfied.
A separation of time scales is also expected at

high densities although the situation may be some-
what complicated by the presence of long time
tails. Should long time tails be important, the
standard techniques for circumventing this diffi-
culty may be used. '2

A more careful analysis of Eq. (6.6) could be
used to compute the correction to the light-scatter-
ing spectrum due to Vv(r) W.e do not offer this
consideration here but will present a method for
finding the full spectrum in the next paper. This
method will not depend on the low-density re-
striction and/or choice of Maxwell molecules.

VII. DISCUSSION

We have shown in this paper how the formal the-
ory of I, when applied to low-density systems,
brings about well-known results as well as new
predictions.

We first generated a correlation-function expres-
sion for the SDF, and demonstrated that at low
densities the classical results of Chapman-Enskog
and Choh-Uhlenbeck are recaptured. We stress,
however, that our starting expression, Eq. (2.4),
has no apparent density limitation.

New predictions were obtained when we consider-
ed the sum rules of the dynamic structure factor.
Taking the density-density correlation function as
a typical example of fluctuations in the NESS Eqs.
(5.12), (5.15), (5.1V), and (5.19}allow us to draw
clear cut conclusions about the validity of local-
equilibrium theory for the computation of fluctua-
tions. As long as k is large, the new terms are
not important. Taking Eq. (5.1V) as an example,
we see that the new term is proportional to
(vlnT)/k. This is the ratio of the microscopic and
macroscopic length scales and is negligible for
large k. As k becomes smaller, we must use Eq.
(5.12) to compute the sum rule. The main differ-
ence in the new'term at high and low k is the ap-
pearance of an additional factor, (2/I', k)(ksT/
mm)'~', in the latter. This number is typically
0(10') for light-scattering k's and dramatically in-
creases the size of the new term. As we make k
even smaller the new terms can be made arbitrar-
ily large, (as long as k &k', the macroscopic wave
vector) the size growing as k . A similar analy-
sis holds for the Vv(r) terms.

Thus it is clear that if one is interested in shoxt-
seavelength Phenomena, the ideas of local equilib-
rium are sufficient. The coupligg between the ma-
croscopic flux and the fluctuations in the local
properties is not felt on the short-wavelength
scale. If, however, k is small, and thus one is
interested in /ong-wavelength phenomena, such as
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those characterizing hydrodynamic modes and
light scattering, the importance of the second term
grows, and one cannot in general compute correla-
tion functions with local-equilibrium techniques
alone. The difference between the low- and high-
wave-vector regimes lies mainly in the appearance
of a factor co/I",k in the low-k expressions. In
hydrodynamics, this factor is a measure of the ef-
fectiveness of the damping mechanisms in the sys-
tem. Thus the poorer the damping the larger is the
new term in the sum rules.

From the results of Sec. V we see that the pres-
ence of a temperature gradient causes the first
sum rule to be nonzero even when convection is
absent. This is quite different from what is nor-
mally found in equilibrium systems and may facil-
itate an experimental observation of this effect.
This point will be amplified in the next paper.
(See also paper I.)

As a final remark concerning the fluctuations,
we reiterate that aside from the quantitative as-
pects of the new terms, they have a striking qual-
itative difference from the equilibrium terms.
They have reversed symmetry compared to the
corresponding equilibrium terms, and reflect the
breaking of time-reversal symmetry that arises
from the coupling to the dissipative fluxes.

The analysis presented above allowed us also to
examine the separation of time scales embodied in

the derivation of Eq. (2.23) in paper I. We have
shown in what sense this separation exists and

justify the use of Eq. (2.23) (paper I) for the com-
putation of NESS correlation functions.

In the companion paper we evaluate the density-
density time-correlation functions for dense sys-
tems. We show there that the results obtained
here are not particular to Maxwell molecules or to
low-density systems. We stress that the new qual-
itative aspects of the corrections to the local-
equilibrium sum rules are not an artifact of the
Maxwell molecule potential or of the low density,
and are a direct consequence of the underlying
properties associated with the NESS. We shall also
show that the new features found here are present
in other correlation functions, and in fact lead to
considerable changes in the light scattering spec-
trum.
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APPENDIX A

In this Appendix we consider some of the formal
properties of the eigenvalue problem

(lk p, /m —pZ, )C,(p, ) = &,(k)4', (p, ) .
)

Taking the complex conjugate of Eq. (Al) shows
that

(A1)

&u, (k}= arfd'(-k}. (A2)

The inner product of any two functions of p, is de-
fined as

((f„f.)) =-f dc, b(c if,"(c,)f.(c, ) (A3}

(&,(k) —&,(k)) ((@„+,)) = o (A4)

Thus unless ~,. =&, the eigenfunctions are ortho-
gonal. Further even when +~ = v, we can choose
0

&
y 4, to be orthogonal.

APPENDIX B

In this Appendix we prove Eq. (5.5). Before doing
this we need to evaluate the following integral:

f bdb.
0

d~[plRP» P12P12l . (B1)

Let T be the unitary matrix which gives

T&. =P,./P... (B2)

where l, is the unit vector in the z direction. Let
28(d, p») be the scattering angle, i.e., the angle
between p„and p,*,, Then

which is the usual definition employed in studies of
the Boltzmann equation. With this choice the col-
lision operator is Hermitian. Using (AS) we see
that

((4„(fk .p, /m —p&, )@f))

=(([-2' p, /m- pc, ]e„e,))
or from Eqs. (Al) and (A2)

sin'28 cos2)

~
~ ~

P12P12 P12P12 f 12' .~ ~

~

~

cos28 sin28 cos(()

sin'28 cosp sing

sin'28 sin2%()

sin28 cos28 sing

siob ~ cosbc cosg)
sin28cos28sing ~ T '.

cos22g —1

(Bs)
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Substituting in Eq. (81}we perform the P integra-
tion and obtain

A (P,*.p,*.—P, .p,.)
0

(. o

=p', ~T sin'29 0

(o o

Having Eq. (B6}, we can proceed with the proof
of Eqs. (5.5). Consider first Eq. (5.5a). Using
Eqs. (4.31) and (5.4a) shows that

oc 2'
+s(P1 P2) = db b d(Ii[P 1Pi+P2P2

1,1 0 0

~O(r)
2~2 ~

=-3w sin'( 28(p„, b)) [p„p„——', 1p'„] . (S4)

The remaining b integration is performed after
changing the integration variable to

I

y
—= (iii/16~)' (P /Ii, )' 'b (B5)

r OQ 2r

A [P12P12 P12P12 ]

~ 1/2

pp ip
12

where

A& &(4)=f ydy[1 —coy (29(y)]
0

The quantity A(2'(4) equals 0.308.2

(B6)

where we are considering only Maxwell molecules
[cf. Eq. (5.1)]. Noting' that for Maxwell molecules
the scattering angle 8 depends only on y gives

Transforming to center of mass and relative mo-
menta [cf. Eqs. (5.6)] allows us to rewrite Eq.
(B8) in the form

yy(o, o, )= q' f odd
121 0

&P (r)
d0 P. [Pi P P12P*2]

0

where we have used the facts that p, and p» are
conserved in a collision. Finally using Eqs. (86)
and (5.3a) 'yields

+s(P1 P2) 2 (p12p12 2 P~12 1)

which is Eq. (5.5a).
The proof of Eq. (5.5b) follows in the same fash-

ion.
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