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Optimal configuration of a class of irreversible heat engines. II
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In a previous paper we analyzed a class of irreversible cyclic heat engines to find their optimal opera'ting

configuration for specific performance goals. In that paper the thermodynamic variables of the working fluid

were not treated as dynamical variables, instead the dynamics was replaced by an integral constraint. In this

paper we reanalyze the same class of heat engines treating the thermodynamic variables of the working fluid

as dynamical variables, and we obtain the optimal configuration of the engine when the performance goal is

to maximize the average power output per cycle or, alternatively, to maximize the efficiency of the engine.

To carry through this program it is necessary to use mathematical techniques from optimal-control theory.

Since this subject is unfamiliar to most physicists and chemists, we briefly introduce some of the central

ideas of the theory.

I. INTRODUCTION

In the preceding paper, ' we analyzed a subclass
of cyclic endoreversible engines. Endoreversible
engines were defined as heat engines with working
fluids that undergo reversible transformations and
irreversible processes, if they occur, occur only
due to the interaction between the engine and its
environment. The objective of the analysis was to
obtain the best operating configuration for the en-
gines consistent with a given set of constraints
and a specific operating goal.

The subclass of engines studied in Ref. 1 was
characterized by the requirement that the irre-
versible interaction between the engines and the
environment was (linear) heat conduction. For
these engines two operating goals were consider-
ed, each goal was formulated in terms of a maxi-
mum principle and the calculus of variations was
used to obtain the best operating configuration.

In this paper we will not be able to use the cal-
culus of variations in its standard form but must
instead use optimal-control theory. The reason
for this is that in this paper we wish to treat the
thermodynamic variables describing the working
fluid as dynamical variables. In Ref. 1, the work-
ing fluid was characterized explicitly by its tem-
perature and implicitly by, a second independent
variable, for example, its volume. Since the vol-
ume did not appear explicitly in the equations, it
was possible to solve the maximization problem
without using dynamical equations for the thermo-
dynamic variables of the working fluid. It was ~

simply assumed that the volume could be adjusted
appropriately to give the desired solution. In this
paper we reanalyze the heat engines studied in Ref.
1 including the dynamical equations for the thermo-

II. MODEL HEAT ENGINE

We briefly define the model heat engine, refer-
ring the reader to Ref. 1 for more details. The
engine is a standard engine with a cylinder and
piston which is used to do work on the outside
world. The engine operates cyclically subject to
the following restrictions:

(i) The engine is endoreversible.
(ii) The walls have a constant thermal conduc-

tivity p, however, walls are available such that p
may take on any value such that 0 & p & po.

(iii) When the engine is in thermal contact with
a heat reservoir of absolute temperature T&, the
heat flux into the working fluid is given by a linear
law

i =O(T's- ~), (2.1)

where T is the absolute temperature of the work-

dynamic variables of the working fluid. These
equations complicate the analysis and lead us to
the use of optimal-control theory.

Qptimal-control theory has been developed and
used widely by engineers and mathematicians in
the last 25 years, however, the subject does not
appear to have been used in the analysis of funda-
mental physics problems.

The plan of this paper is as follows. In Sec. II.
we define our model heat engine and formulate the
problem we wish to solve. In Sec. III we solve the
problem formulated in Sec. II and in doing this in-
troduce some techniques from optimal-control
theory. In Sec. IV, we discuss the solution ob-
tained in Sec. IG and make contact with the results
of Ref. i. Finally in Sec. V, we summarize our
results and draw some conclusions from this work.
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W = PVdt,
0

(2.2)

where P and V are the pressure and volume of the
working fluid, the time derivative of V is denoted
by V, and 7 is, the cycling period of the engine.

(vi) The working fluid is a perfect gas, i.e. , an
ideal gas, with constant heat capacities.

Assumptions (i)-(v) are the same, with one ex-
ception, as those of Ref. 1. The exception is in
(ii} where we allow p to be a variable whose value
is determined by the performance goal. Assump-
tion (vi) was unnecessary in Ref. 1, but it is nec-
essary to know the equation of state of the fluid to
treat the dynamics of the working fluid. We have
selected the simplest equation of state so that our
calculations can be done analytically. A seventh
assumption will be added below.

In order to put Eqs. (2.1) and (2.2) into the form
that will be useful for our calculation we use the
first law of thermodynamics for a perfect gas:

ing fluid.
(iv) Each thermal reservoir has a constant tem-

perature T& where

TI, Tq ~ THe

(v) The work done by the engine in one cycle is
given by

—
Catt C C~. (2.9)

This completes the specification of the model
heat engine. We now present the mathematical
techniques that will be used to solve problems (A)
and (B).

III. OPTIMAL CONTROL THEORY (REFS. 2-6)

In the 25 years since its founding, mathemati-
cians and engineers have steadily increased the
range of systems that can be studied using opti-
mal-control theory. We are interested in a par-
ticularly simple type of system and will limit our
discussion accordingly.

c(t) so that either case (A) the average power out-
put is a maximum or case (B) the efficiency is a
maximum for a given value of Q, . These are the
same problems we solved in Ref. 1, however, in
this paper we must ensure that the dynamical equa-
tions (2.4) and (2.6) are satisfied. In order to ob-
tain physically sensible results we must restrict
the variable c which is a constant times the frac-
tional rate of change of the volume of the cylinder.
Thus we add a seventh assumption:

(vii) Let c and cz be arbitrary constant positive
numbers. Then we require that c(t) be restricted
such that

C»T +C»(y- 1)TV/V =q, (2 3)
A. Some definitions of terminology

where Cv is the constant-volume heat capacity of
the gas in the cylinder, y is the ratio of the heat
capacity at constant pressure and Cv, and a dot
over a variable always means the time derivative.
Substituting Eq. (2.1}into (2.3) and defining some
new variables we have

T =—cT +p(Ts —T},

P = (r 1) l-n(V/V—,),

(2.4}

(2.6)

=C, (2.6}

T

8"=Cv CT dt
0

(2.7)

The reason for introducing the variables P and c
will become clear in Sec. III when we outline the
method for solving our problem. Finally we note
that the input energy is given by

9~=C» ~ p(Ts T)8(Ts-—T)dt,
Pp

(2.8}

where 8(x) is the Heaviside step function, 8(x)
= 1 if x & 0 and 8(x) =0 if x & 0.

Our problem is to determine p(t), Ts(t), and

where p =p/C„and V0 is a constant reference vol-
ume. Intermsof thesevariables Eq. (2.2) becomes

A system is an object whose state at any time is
characterized by a set of n real numbers x&, . . ., x„
which may be visualized as a vector x in an n-di-
mensional Euclidean vector space. The system is
assumed to have controls described by m real num-
bers I&, . . . , u whose values influence the evolu-
tion of the state of the system in a way to be speci-
fied below. The controls may be visualized as vec-
tors u in a m-dimensional Euclidean vector space.
We are particularly interested in the case in which
the admissible controls are limited to a closed,
bounded region of this space.

The systems that we are interested in are (dif-
ferential) dynamical systems6 by which we mean
that the state of the system x(t) at time t & to is
uniquely determined by a set of differential equa-
tions

x (t) =F[x(t), u(t) ] (3.1)

and initial conditions x(tp} where F[x,u] and

BF[x,u]/Bxq are continuous vector functions of
x and u, and u(t) is a piecewise continuous vector
function whose values are admissible controls.

In the problem formulated in Sec. II, T and P are
the state variables and TR, p, and c are the con-
trol variables. The equations of motion (2.4) and
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(2.6) with

Ei —= —cT + p(Ts —T) (3.2)

much discussed in the mathematical literature.

C. Pontryagin maximum principle

F2=—c (3.3}

B. Statement of the optimal control problem

The optimal control problem requires us to find
an admissible control u~(t) such that the system
is driven from its initial state to its final state in
the manner that maximizes the performance in-
dex. Such a control is called an oPtAnal control
and the phase space trajectory x*(t}is called an
oPti mal trajectory.

There are obviously a wealth of problems that
fit this definition. In the cases discussed in this
paper the initial and final state are the same and
the time for one cycle is fixed. Problems in which
the system is periodic do not seem to have been

generate a vector function F which satisfies the
requirements of a dynamical system.

Our system is special in several ways. For ex-
ample, F does not depend on time explicitly: such
systems are called autonomous. Our system has
no memory, that is, the evolution of the system
for t & t& (& to} depends only on x(t&) and u(t) for
t & t&. There are no constraints on our state vari-
ables, in general state constraints, which may
take the form of equality constraints 8[x]=0 or
inequality constraints S[x]~ 0, greatly complicate
the problem of finding an optimal solution. Of
course, the state variable T is constrained to be
positive (note P is not, although V~ 0) but this
presents no real difficulty since the optimal solu-
tion will r'equire T & 1'&. Another important spec-
ial feature of our problem is that the controls are
&onine rtial, that is, they may change discontinuous-
ly. For example, c which controls the rate of ex-
pansion of the volume of the cylinder may change
instantaneously from its maximum to its minimum
value at the whim of the controller. In a real sys-
tem there is always a lag due to the inertia of any
movable part, this may be taken into account by
making c continuous but we will no do so.

Next we define a Performance index or cost junc
tiona/ which specifies the operating goal of the
system,

tg
I=G(x„ t, ) + L[x(t), u(t)]dt (3.4)

tp

where x, =x(t, ) is the final state of the system. In
our cise we have 6=—0 and either I=%' or I=W
—pQ& depending on whether we are maximizing the
average power output or efficiency. In the latter
case the constancy of Q& is a constraint.

We will now state the Pontryagin maximum prin-
ciple which provides a set of necessary conditions
for solving the optimal-control problem (this is
often stated in the literature as a minimum princi-
ple). First we define the Hamiltonian H(x, u, () by

H(x, u, g) -=L(x, u) +'$ F(x, u), (3.5)

where L is given in Eq. (3.4) and F is (3.1). The
vector function g(t} is called the costate variable
or the adjoint variable. It pl:ays a role similar to
that played by Lagrange multipliers in variational
calculus, it ensures that the constraint equations
Eq. (3.1) are satisfied. It differs from ordinary
I.agrange multipliers in that it satisfies an equa-
tion of motion:

g(t) =——[x(t), u(t), g(t)],Bx (3.6)

where (BH/Bx)~ =- 8H/Bxj. It is clear why H is called
the Hamiltonian if one notes that Eq. (3.1) may be
written as

x(t) =—[x(t), u(t), P(t)].
8

(3.7)

x"'(t) =—[x' (t), u~(t), P*(t)],
8

$*(t)=- =[x*(t),u*(t), 4*(t)],
X

(3.8)

(3.9)

with x*(to) =xo and x~(t, ) =x,. Furthermore, the
function H[x*(t), u*(t), P(t}]is an absolute maxi-
mum over the set of admissible controls for t in
[t, , t, ]; i.e. ,

H[x*(t), u*(t), I*(t)].- H[x*(t), u, 0"(t)] (3.10)

for any admissible u. Finally

H -=H[x*(t),u*(t), y*(t)] (3.11)

is a constant (for autonomous systems).
Equation (3.8)-(3.11) will provide us with the

equations we need to solve our problem; however,
as we shall see there are eases in which Eq. (3.10)
does not place any restriction on some control
variables, this case leads to what is called the
singular-control problem. In our case this will
not be difficult to deal with, although in general it

The Pontryagin maximum principle states that if
u*(t} is an admissible control and x*(t} is the tra-
jectory corresponding to u* which satisfies the
boundary conditions x~(to) =xo and x*(t&}=x& then
if u~(t) is an optimal control it is necessary that
x*(t) and g~(t} satisfy the canonical system of equa-
tions
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is. Equation (3.11) will be recognized as the con-
servation of energy for dynamical systems which
are invariant with respect to time translation. In
fact the generalization of Eq. (3.11) to nonautono-
mous systems is dH/dt =8H/8t

The Pontryagin maximum principle provides
necessary conditions for solutions to the optimal-
control problem. Sufficient conditions are more
difficult to obtain and to use. However, if a unique
solution to Eqs. (3.8) and (3.9} satisfying the boun-
dary conditions (3.10) and (3.11) exists, then it is
obviously the optimal solution.

Hamiltonian from Eqs. (2.7), (2.4), and (2.5):

H =cT + g&E& + (2F2, (4 1)

H=[(1 —g&)T+P ]2c+g&p(Ts —T).

The equations for the costate variables are

(4.2)

(4.3)

where E, and E2 are defined by Eqs. (3.2} and (3.3).
We have used W/Cv as the performance index. It
is convenient to rewrite Eq. (4.1) as

D. Properties of the solutions to optimal-control problems

all =02 a (4.4)

There are some properties of optimal solutions
that we shall make use of in solving our problem
which we wish to state now. First note that, from
the general theory of ordinary differential equa-
tions, since u(t} is piecewise continuous, x(t) and

|jI(t}are continuous because they are solutions to
Eqs. (3.8) and (3.9).

Secondly, we will make use of the principle of
0Pt&nality which states that any portion of an opti-
mal trajectory is also an optimal trajectory. In
order to see what this means, suppose P(t) is an
optimal trajectory starting at x (to}=x, and ending
at x*(t&) =x&, and u (f} is the optimal control on

[to, f, ] corresponding to that trajectory. Now sup-
pose we seek an optimal trajectory x" (t) on the
interval [f„t, ]where t, & fo &t, suchthat x (f,}=x(t,)
and x (t ) = x,. Then the principle of optimality tells
us that x*(t)=x*(f) is an optimal trajectory tra-
jectory and u*(t) = u*(t) is an optimal control.

This concludes our brief outline of the part of
optimal-control theory we will need subsequently
with the one exception of the singular problem al-
ready mentioned. We shall treat this problem
when it arises.

We now wish to exploit Eq. (3.10). We define

bH=—H[x~(t), u+(f), P(t)]- H[x+(f), u, y+(t)], (4.5)
/

where u is an admissible solution. For a maximum
w'e require that ~H~ 0 so

where
/

0 P pp/CY = pp)

(4.6)

(4.7)

The canonical equations, Eqs. (2.4), (2.6}, (4.3},
and (4.4}, are linear in the state and costate vari-
ables and may be easily solved once the control
variables are specified as functions of time; how-
ever, in general these variables are determined
as functions of the state and costate variables so
that the canonical equations are nonlinear. Fortun-
ately, in our case, the canonical equations will
either be linear or, when they are nonlinear, easy
to solve.

l. Application of the muximum principle

IV. OPTIMAL PERFORMANCE OF A CLASS OF
ENDOREVERSIBLE ENGINES

(4.8)

In this sec tion we apply the r esults of the previous
section to study the model engine defined in Sec.
II. We shall consider two cases specified by the
performance goals used in Ref. 1: case (A) the
average power output is a maximum and case (B)
the efficiency is a maximum. We have included
only those details of the calculation which may be
unfamiliar to most readers.

A. Maximum average power output

Since the period of the engine 7' is a constant
maximizing the average power output in the same
as maximizing Eq. (2.7). We begin by forming the

. Cm C C~o (4.9)

c„ if (1 —g*, }T*+gf&0

c*= -c if (1 —g*, )T*+gf & 0

undetermined if (1 —g~)T*+ gf =0.
(4.10)

The last possibility corresponds to the singular-
control case mentioned in Sec. III. In our case,

We now' consider various possible cases separ-
ately. These will provide us with optimal solutions
from which the optimum cycle will be constructed.
First suppose p =p* and T~ Tg, then the sec—ond
term in (4.6) vanishes and &H~ 0 requires that
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as we shall see, it is not difficult to show that
along the singular part of the trajectory c* is con-
stant.

Next suppose c=c* and Ts T——p, then Eq. (4.6)
reduces to

»=4&(TR T-*}(p' P-)

which implies that

H =([I- $,(t}JT+ g,)c

=$1- g, (to)]T(to) + (2)c. (4.14)

H is a constant as required and the value of c is
determined by Eq. (4.10).

2. p=po, T„=T~ or T»c =c& or -c~:
T(t) =(p,/~)r, +[T(t,)-(p,/a}r ]e- " '0',

p, if g~(Ts-T*) &0

p'= »flf(TR-T*)=o
undetermined if P(rg —T*)=0. (4.11)

p(t} =c(to)+c(t to),—

', (t)= i +[',(t}- /]"" o',

g, (t}=const, (4.15}
The last case again corresponds to a singular-

control problem. It is a simple matter to elimin-
ate this case. First if (,* equals zero for a finite
time interval, then in this interval $&

—0. From
Eq. (4.4) it follows that c*=0 but this in turn im-
plies that H*=O; however, we shall see that there
is an optimum solution with B~ &0 so, since 8* is
constant, we cannot have (~&

—0 for a finite time
interval. Next suppose Tg =T*=0 for'a finite time
interval, then c =c~ or -c since otherwise H* =0
again. In this time interval we can now show that

p(,*T"=0 by differentiating H* with respect to
time (H*=O, remember) and using the canonical
equations to eliminate T and g, . We have already
seen that g*, cannot vanish over a finite interval and
since T*=rg ~ Tz the only possibility is p =0 so
we can include this case in (4.11).

Finally, letc=c" and p=p~, Eq. (4.6}nowbe-
comes

»= If'p*(r" —T') & o

so that

Ts if g'"&0
R

Tzif gf &0,
(4.12}

since p* is non-negative. We have already shown
that the singular case (&*—0 is excluded. If p*=0,
&H=0, the reservoir temperature is irrelevant in
this case because the reservoirs uncouple from the
engine.

2. Optimal solutions

We can now summarize the possible optimal con-
trols and trajectories. The trajectories are ob-
tained by solving the canonical equations for the
given controls. For convenience we now drop the
* and take all subsequent functions to be optimal.

where e =c+po The value of c is determined by
Eq. (4.10) and the value of T„by Eq. (4.12}.

2 p=pa, rs T-—» »o,z(I-A)r+6=0:
T(t) =r„, p(t) =p(t, )+c„(t—t, ),

c„(t}=po(Ts/T, 1), —

'g&(t} =1 —(T„/Ts), $2(t) =- T„/Ts (4.16)

(4.17)

which is positive. Finally we note that g2, which
is constant throughout the cycle, is negative if
condition 3 contributes to the solution.

As we shall see, both isothermal branches are
part of the optimal trajectory. From this and the
constancy of g2 and H we get

T„=4'T„(v'T„+v'T'},

r, = ,'v'Tz(VT„+v'Tz)-.

'(4.18)

(4.19)

TABLE I. Switchings.

where T„ is a constant. This case is the singular
case which we have not yet analyzed. By differen-
ting (1 —P'}T+(2=0 on this interval and using the
canonical equations to eliminate the time deriva-
tives it is easy to show that T, g„and c must all
be constant.

We have used a subscript r to correspond to the
R in T~, i.e. , if T~ =TH, r =h and if T& —T&, r
=t. Equation (4.12) determines the value of Ts
and we see from (4.16) that if Ts Te, $&„&0—im-
plies T„&T» and if Ts =Tz, $„&0 implies T~
&T&. These in turn imply that c„&0 and c& &0.
It is easy to show that

H =po(rs- T.)'/T.

&. p=0, c=c~ or -c: b
bore

c

'a

T(t) =T(t,)e'" '", p(t) =p(t, )+c(t-t,),

g'(t) =1 —[1—$, (to)]e'" 'o', $2(t) =const. (4.12)

Forbidden switehings.
"Allowed switching: Ac=0 and g&-—0.
'Allowed switching: &Tz=o, (1-pg)T'+ $2=0.
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Note that as in Ref. 1, we get T,/T„= (Tz/Ts)'~2.
There are actually eight distinct optimal solu-

tions which we will label 1', 2~, 21„3H, and 3~
where plus refers to c =c&, minus to c =- c and
H and L to the subscript on the reservoir tempera-
ture, &&.

In order to determine the actual optimal trajec-
tory, we next examine what the constancy H and
the continuity of the state and costate variables
imply about switchings between pairs of the opti-
mal solutions.

3. Switchings

In the literature of optimal-control theory, the
surfaces in state variable phase space across
which optimal-control variables change discontin-
uously are called switching surfaces. The switch-
ings are summarized in Table I.

First we observe that a switch between I and 3
is not allowed. The reason for this is that (1 —P&)T
+ (2 is continuous and vanishes for case 3, but
Eq. (4.14) would require that B approach zero as
t approaches the switching time from the side on
which case (a) holds.

A switching between cases 1 and 2 is allowed at

CM

—
Cm

FIG. 2. Optimal controls for maximum power out-
put: pT is the reservoir temperature times the thermal
conductance and c is proportional to the time derivative
of the logarithm of the volume of the cylinder.

I I I

t) tP t3

I I

s t

T(1-4)) + 'Pg

t4 tg tg
I t

FIG. 1. State variables for case A, maximum power
output: T is the temperature and P is proportional to
the volume of the cylinder.

FIG. 3. Costate variables for maximum power output:
g~ is the temperature costate variable and |I)2 is the P
costate variable.
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a time when g, vanishes. This can be seen by com-
paring Eqs. (4.14) and (4.2}. Note that g, may van-
ish at a point of time but, as we have seen above,
not along an interval of time. During such a
switching c must not change since H0.

A switching between cases 2 and 3 is allowed at
an instant when (1 —$&)T + g2 vanishes. TJ4 must
remain constant during this transition since a
change in Ts requires g&

—0 at the instant of
switching. But for case 2, P, & 0 so by continuity
such a switching is eliminated.

Next observe that there cannot be a switching
between 1' and 1, since at such a transition Eq.
(4.10}requires that (1 —g, )T +$2 vanish but then
(4.14) leads to H =0. We also cannot have a switch-
ing between 3~ and 31. because of the continuity of

It is, however, possible to have a switching in
case 2 between T& ——T& and T~ ——T& with c remain-
ing constant provided g& passes through zero at the
switching time. It is also possible for a switching
betw-een -c and c& to occur with T& unchanged
provided (1 —g, )T + g2 vanish at the switching.
However, both T~ and c ca,nnot change simultan-
eously since this requires that H =0.

One interesting and surprising observation is
that a switching between an isothermal and adia-
batic is not allowed along an optimal trajectory.
In fact it turns out that the optimal trajectory has
no adiabatic branches.

We shall see in Sec. IV B that an adiabatic bra.nch
does occur when we maximize efficiency and the
branch drops out of the solution in the limit that
corresponds to the maximum power output.

From f2 to t3, g& continues to decrease and so
does T(1 —(,)+$2 until it vanishes at which time
another switch becomes possible. At t3 we begin
an isothermal branch 31. which lasts until the time
t4 when we switch to a 2& branch. Along this
branch T(1 —g, ) + $2 decreases from zero while (,
increases until it reaches zero at ts. At this time
we switch to a 2H branch until T(1 —g&) + g2 returns
to zero at the end of the cycle t6 —v. Again it is
possible for ari adiabat to occur between the bran-
ches 2I. and 2~ but again this is not part of the opti-
mal trajectory.

So far we have not explained how the times t,
through t, are calculated. t2 —t& and t, —t4 are de-
termined by the vanishing of g~ while t~ f2 and-
f6 —t5 are determined by the vanishing of T(l —g&)
+ P2. t, and t4 —f3 are then fixed by the length of
the cycle, i.e., t6 ——7', and by the end conditions on

p, i.e. , p(0) =p(r) =0 taking Vo to be the smallest
value of the volume. Once t2 —t2 and ts —t4 are
determined, T(t2) and T(f,) are determined.

The complete solution may now be recorded. - It
is convenient to define the quantities

4. Optimal controls and traj'ectory
Jls

4 =C~+po, & =Cm —pp, (4.20)

After this rather lengthy discussion of the possi-
b1.e optimal subtrajectories we are ready to work
out the optimal cycle. As explained at the end of
Sec. IV, the principle of optimality implies that the
cases discussed above may be smoothly connected
to construct the optimal trajectory. Furthermore
since our system is autonomous, i.e., invariant
with respect to time translation, we may choose '

any point along dur optimal trajectory as a start-
ing point.

Figures 1-3 summarize the behavior of the state,
control, and costate variables along the trajectory.
We will begin by assuming that we are at the begin-
ning of a 3~branch, i.e., T& —TH, T =TI„etc. for
0 ~ t ~t&. The only allowed switching is to a branch
2~, i.e. , T& —T~, c=c&, etc. For t between t& and

t2, (, decreases and T(1 —g, ) +$2 increases from
zero —as it must if c =c&. Thus the only possible
transition occurs at t2 when g, vanishes and we get
a 21, branch. It would be possible to have a transi-
tion to the adiabat 1', however, it turns out that
this does not occur. To show this it is necessary
to include such a branch and show that the optimal
solution leads to the branch occuring for zero time.

/ /
4s =po/ ce~ &m =po/ cm.

Since $2 is constant throughout the cycle we record
it only once. Then from (4.16) and (4.19) we have
the following:

for O~t

T =2T„(1+x), p =c~t;

Ts Tp) c =c—l, ——pp(l —x)/(1+x);

(, =2(1-x), g2
——4TH(l +x) .

For t&
~ t & t2

-N4. (t-tg)
1 + ~jg 1 +'6~

P =c~(f —f() + cgf(,

R H& —Ns

—,(1+x)—— e '1 ~N O4. (t-t )

1+~~ 1+a~



For t, ~t~t,
I

1+&v TI, 1+
P =C»(t t1}+-Cg, t1,

TB = TL) C =CN~

(( = [I/(1+5») 1(1 —8"" '"),
T, = ', Tj(I-+x}'+5„(l—x)'].

For t3~t~t4

T = ,'T [(I/-x)+ I],
p =c,(t —t5) + c„(t5- t, ) + c„t„
T~:Tgy c:c): chy

0, =- a [(1/x) —11.

These are positive provided & and && are both less
than 1. For physically reasonable systems these
quantities will generally be much less than 1 since
they are the ratio of adiabatic relaxation time
(1/c„or 1/c„) to the heat-conduction time constant
(I/p5).

Finally we can determine t& and t4 —t3 since

t, + (t4 —t5) = 1' (t—, —t, ) —(t5 —t, )

and from P(t, ) =0

C4[t1 —(t4 —t5) J =—C»(t5 —t1) + C (t5 —t4),

we get

t =—— 1+—(t —t )- 1 —-"- (t —t )
C~ Cm

c ' ' c ' 4'
h h

t4 —t5 ——— 1 ——(t5 —t1) — 1 + —"
(t5 —t4).

CN Cm

C7J CA

For t4 & t & fs
P+

. T=TI ——— + ——y1 + —— g - 4
e 1 1 ~m e (t t)

1 —5 2 x 1 —&m

P — Cttt(t t4) + Cl (t4 t5) + CN(t5 —t1) + Cht1 t

Tg —TI, , C = Cm)

m . ~ (t-t4&
1

1 —e

For t5 ~ t ~ I;8 ——7'

m + 5 + m tM „(t-t5)T c

1 —em Tg 1 —em

Of course these must be positive numbers. This
means that if we had taken T too small there would
not be any solution to our problem.

In general no two of the time intervals are equal
even if c~ —c . However, if &~ and & are both
much less than 1 it is easy to show that t& and
(t4 —t, ) are equal to &v[1 +O(1/c1) J where c is eith-
er c or c& and the other four time intervals are
of order 1(I/c7').

It is now a. simple matter to work out W and Q1
using Eqs. (2.7) and (2.8).

W =C„p5 '(4T„~T }[—v'T t1 —v'Tz, (t4 —t,)]

P C (t t4) +C1(t4 t5) + (Ct»3 tf) +C)ttj

Tg ——Type C =—Cm,

(1
-a ( -45»)

1 —e

T = ,'T J(1+x)2—5 —(1—x)2].

As we stated above I'2 —t, and I', —t4 are deter-
mined by g( =0 so we find

1 1+x 1 —x
t —t =-—ln

Q» 2 2

and

1 1 1 1 1
t —t =+—ln ——+1 —e = ——14 n 2 x 2 X.

To determine ts- t2 and t6- I'5 we use the vanishing
T(1 —(}),) + (}), at t, and t, and we find

1 1]~1 1 1
I 3

—t2 ——ln —I —+ 1 +E~———1'=n, .2 &x I ™2

t, —t, =- —ln[—,'(1+x) +5„a(1-«)].
Q

+ [T»(t2 —t1) +—Tz(t5 —t2)]0»

+ [Tz(t5 —t4) +—T„(t5—t5)]Q„

+

Q( CvP() ~
—lT» (VT» —O'Tz, )t1

+ T„"(t,—t, ) + (t, —t, )—)—
»

——[4(T»- Tz) 4&»(&T» &Tz)-'J-

[4(T»- Tz) + ,'5„(—u T» gT z, )—]

t

In the limit that c and a ~become small compared to
the leading term in each of these expressions

is the same as found in Ref. 1. In the limit that e

and && vanish, the process reduces to that of Ref. 1
with the nonisothermal branches becoming adia-
batic branches which occur for vanishingly short
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times; i.e. , the temperature T changes discontin-
uously.

This rather lengthy section completes our solu-
tion to the optimization problem for the perform-
ance goal of maximum power output.

B. Maximum efficiency

We now turn to our second choice of an opera-
tional goal, maximizing the efficiency for fixed
cycling time and input energy. As in Ref. 1 we
must now maximize W- pQ, where W and Q, are
given by Eqs. (2.7) and (2.8) and p. is an ordinary
Lagrange multiplier which is determined so that
Q, equals the given input energy

The procedure for determing the optimal solution
is identical to that in Sec. IVA. The Hamiltonian
may be written in the form

It = [(1—4~)T + 42]c+ I 4&
-p e(T.~ T)]p(T~— T).—

(4.21}

This reduces' to the Hamiltonian in Eq. (4.2) if
p. =0. The equations for the costate variables are
easily derived.

The derivation of the optimal solution is compli-
cated by the p, term. In Appendix A we show that
p, =RW,JBQ„ i.e., p, is a measure of the sensi-
tivity of W „with respect to small changes in the
constraint, Q&

—const. From Fig. 1 of Ref. 1 we
see that p. can be both positive and negative and p,

vanishes for the maximum power output, as ex-
pected.

To simplify the subsequent discussion we shall
assume p, ~ 0, the results for p, & 0 will be men-
tioned where appropriate.

In the following we will limit our discussion to
the changes in the analysis brought about by the
presence of the extra constraint. We shall see
that the optimal trajectory now contains adiabatic
branches bebveen the 2s and 2z, branches.

l. Application of the maximum principle

As in Sec. IV A, we begin with Eqs. (4.5) and

(4.6). The second term in Eq. (4.6) is different
in the present case because of the p. term in Eq.
(4.21); however, this does not effect the analysis
leading to the results (4.10}.

Equation (4.11) is changed, we now find, setting
c =c* and Ts =T$, that AH&0 requires

the requirement g&
—

p, =1 which would in turn lead
to H* = 0 but we shall see, as in Sec. IV A, H* & 0.

Finally, let c=c* and p=p*,
p*A'~)(TA —Tz)

&H= —p, [Tg —T*—8(T„—T")(T —T*)]}

p*A'(T0-T )

+P 0(Tz —T*)(Ts—T*)}if Tz* ~T*.
(4.23)

From (4.22) p* =po requires g~& & p, * if Tg & T+ and
p~* & 0 if Tg &T*. By first considering TR in the
interval [T*,Tz] for Tg & T* we find Tg =Tz in
order that &B~ 0. It then follows that &H~ 0 for
T~ in the interval [TI„T*]since p, "& 0. In a simi-
lar fashion, when T~ & T*, &H ~ 0 provided Tg
=TL,. Thus in place of Eq. (4.12) we have

TH~
TB =

(4.24)

and for p OP, Tg&T &TI ~

This result is different from the similar result
in Sec. IVA because we cannot directly switch from
the high- to the low-temperature reservoir if
p. &0. We shall see that this introduces an adia-
batic branch in the optimal solution. If p, * & 0 the
adiabatic branch may be dispensed with —as we
saw for p, *=0. For p. &0 a more complicated re-
sult replaces (4.24).

2. p =po, Tg ——T& or T&, c =c& or -c:

p(t) =p(to) +c(t- to),

&i(t) =—+~p ~(Tz —T)

2. Optimal solutions

We now summarize the possible optimal con-
trols and trajectories. As we did in Sec. IV A, we
drop the * and take all subsequent expressions to
be optimal.

Case 1 is identical to that given in (4.13).

A

p+

p& if [4$ —p*~(T% T*)](TR——T*)& 0,

o if [4t*- u*e(TA T*)](T5--T*)&0, (4 22)

undetermined if [(~& —p. *g(Tg —T*)]

(Tg —T*)=0.

$2(t) =const, (4.26)

The last possibility is the singular case. It can
be eliminated as a poss&bility because it leads to

where n =c+po and the values of c and T~ are de-
termined by Eqs. (4.10) and (4.24), respectively.
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p=po, T„=T~ or T~, (l —g()T +$2 —0:

(4.26)

where T„ is a constant and we have used the same
notation as in Sec. IVA where r =h when R =H
and r =/ when 8 =L. The only difference between
these solutions and those of (4.16) arises from the
presence of A~,

t) t2 t2 t3
/

t4 ts ts t6

1 —p. , R =H
A.g—

R =I. (4.27)

We also see that c„ is a positive constant and c& is
a negative constant just as in Sec. IV A. From (,„
& p, it follows that p, & 1 and, finally, it is easy to
show that

H =poA„(T„—T„)2/Ts (4.28)

which may be compared with Eq. (4.17).
Since both branches occur in the optimal cycle,

the constancy of H and g2 imply that

FIG. 4. State variables for case B, maximum efficien-,
Cy ~

T& =~ ~zCTa(I —p)l + vTzl~ (4.29)

which reduces to (4.19) when p, =0.
Thus once again we have eight possibilities from

which to select the pieces of the optimal cycle.

3. Switchingg

The switchings are summarized in Table II. The
switchings are different from those shown in Table
I. For example, the choice of R in a switch from
1' to 2~ was determined in Sec. IVA by whether
g, was increasing or decreasing through zero. In
the case under study in this section a switching
from 1' to 2~ requires that g, rise through p, while
in a switching from 1' to 2z, required that g, fall
through zero.

A

P TH

P Tt

P TR

I I I I

t) t2 t2 t3

I I I
r

t„ ts t

TABLE II. Switchings.

bore

d
c,

~ Forbidden switching.
bAllowed switching: Ac= 0 and g&

——0.
'Allowed switching: Ac=0 and g&= p, .
"Allowed switching: ET+=0, (1 —g~)T+ $2=0.

-c
m

FIG. 5. Optimal controls for maximum efficiency.
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T (I- 4~) + t2

Note that the costate variables 1 —g, and g2 are
multiplied by 1 —p. in addition to having x replaced
by y. Also observe that when p. is set equal to
zero we get the result of Sec. IVA back.

For t& &t«t2 and t5 «t- t, the solution may be
obtained from Sec. IVA by replacing x by y and

1 —g, by (1 —p, )(1 —g, ). Similarly for tz&t~tp,
t~ & t « t4 and t4 & t « t,', the solution for Sec. IV 8
follows from Sec. IVA with x replaced by y, but
now 1 —

g& is not multiplied by a factor of 1 —p, .
The appearance of the primed times is due to the
existance of the bvo adiabatic branches for t2 & t
«t2 and t,'«t «t, . The expressions for 12 and T5
in Sec. IV A become &2 and 1'~, respectively, when

x is replaced by y. For the adiabatic branches we
have the following:
for t2 + t «« t2

~ I I I
I

t) t2 t2 t3

I
t~ t3 t~ tg

I

T(t) =T,e '"""2', P(t) =c„(t-t, ) +c„t„

pp 0) ~ ~N&

41(t) =1 —(1 —tz)e'"" '",

FIG. 6. Costate variables for maximum efficiency.

Similarly where in Sec. IVA a switching between
2'„and 2z, was allowed if 4c =0, provided g; = 0
at the switching time, we no longer can have such
a switching when p, & 0 because g& must vary con-
tinuously. If p, «0, the switching is allowed.

( 1 T 1/2

P ~0

then starting on the branch 3z, we have from
(4.26).

for 0«t «t&

T = ~T„(1+y), P(t) =c„t,

(4.30)

g, =1 —p(1- p, )(1+X), g2
——~T„(1+&) (1 —P). ,

4. Optimal controls and trajectory

Figures 4-6 summarize the optimal solution. As
before we begin on 30 branch for 0 « t « t&. The
cycle differs from that of Sec. IVA by the appear-
ance of two adiabatic branches. The first occurs
between the 20 and 21, branches and the second
between 2~ and 2&.

Fortunately the form of the optimal solution is
similar to the form of the solution in Sec. IVA.
If we replace x from (4.20) by

=—c„(t—t4) +c,(t4 —t, ) + c„(t,—t, ) +c„t„
Pp

——0&i c = —cna,

(t) 1 c~ (0 tP)

The duration of all the branches except the iso-
thermal branches is again determined by the
switching conditions. For example, t2 is deter-
mined by g, (t2) =0, so

t,'- t, =- (1/c„) ln(1 —)z)

while tp is determined by g, (t&) = p, , so

t, —t,'=- (1/c„) ln(1 —p. ).
For these two times to be finite and positive we
must have 1& p. &0. The remaining times can be
obtained from Sec. IVA by simply replacing x by
y, and t2 and t2 and t~ by t~ in the appropriate
places. The expressions for t& and t4 —t5 in terms
of 7', ts- t„and t6- t4 are identically the same as
the corresponding expressions in Sec. IVA.

The expressions for Q& may be obtained from
Sec. IVA by simply replacing Tz, by Tz/(1 —p, ) and
using the expressions for the times with x replac-
ed by y. The expression for S' is more compli-
cated.
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1/2~
W=C„p,

~

—&T„- '- (&T, t, —[T,(1- t )]'"(t4- t,)]v P(2 H

+'—"[T (t, -t,)+T,(t, t,'-)]

&m 1 1+ [Ti—, (t5 —t4) + Ts(te —ts) ] + —+ —
g (TH —Tg)

Q Q+ Q

1 1 T TT ~ 1 1 1 'T—+ ——T„+—+ 2P-", +— —e~ ——
~m ~Ts — — '

I ~1 —p, n„n 4 " 1 —p, 1 —p - 4 n, " n s 1 —pj i'
To complete our calculation, it is necessary to

solve for p, in terms of Q, . This can only be done
numerically, even in the limit of small && and e,
and we have not bothered to do this.

The optimal trajectory and controls reduce to
those of Sec. IVA in the limit p, =0. For p. &0,
the adiabatic branches do not occur. We will not
discuss this case.

V. SUMMARY AND CONCLUSIONS

We have shown in detail how to obtain optimal
operating configurations for a class of irreversi-
ble heat engines. The essential feature of this
work is to show how to incorporate processes
which generate power into thermodynamics. To
do this it has been necessary to explicitly incor-
porate irreversibility into our discussion. By lim-
iting ourselves to an idealized set of engines we
have succeeded in studying these processes analy-
tically.

We wish to stress that determining reasonable
standards of performance for energy conversion
processes cannot rely upon reversible processes.
A standard such as second-law efficiency is too
idealized to use. Most. power generating systems,
i.e., systems that perform finite work in finite
time, do not come near achieving second-law effi-
ciency and one has no idea what the margin for
improvement is. This work, along. with the works
mentioned in Ref. 1, hopefully will provide a first
step toward a better theory of thermodynamic pro-
cesses.
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APPENDIX A

We wish to show that dW ~„/dQ& ——p, , i.e., the
Lagrange multiplier is a measure of the variation
of %' ~„with respect to a small change in the con-
straint condition that Q, is a constant. '

Let

&,„(E)= fo(x, u) dt, (Al)

dW,„'Bfo dx Bf, dw—'—+—' —NdE o Bx dE gw dE
(A5)

U~i~g Eq. (A3), the canonical equations and B&/
8 w =0, we find

dS'm~„ I Rg dx Pg
dE p, gx dE gw dE

dx
~'dE ~ dEJ "'

The first term is just p, dQ, /dE = p, . integrating
the second term by parts yields

-"-;;---= -(~-'.*.); )' (",i -",'.) "'
The second term vanishes because of periodicity
and the last term vanishes because of Eq. (A4).
Thus we obtain the desired result.

The result for variational calculus follows by
simply dropping the equation of motion (A4).

Q, fg(x=, u) dt (A2)
0

where x are the state variables and u are the con-
trol variables. 8 is maximized subject to the con-
straint Q& Ewhere—E is a fixed positive number.

The Hamiltonian is of the form

8 =f0 —tl,g+gof (AB)
with

x=f (x, u). (A4)
We now wish to compute dW, gdE. For simpli-

city we will assume that each component of the
admissible controls can be parametrized by a vari-
able I) such that as w& runs from -~ to , . uj runs
through its admissible values from its minimum
to its maximum value. Then for any functional y,
By/Bu, =(By/Bu, )(Bu,/Bu, ). Then Eq. (3.10}im-
plies that BH/Bw =0 where BH/Buz —0 if the opti-
mal control u; occurs for u&F(u&,„,u~ ~) and Bu~/
Bzv; =0 if the optimal control occurs for I;=u;
or +g max'
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