PHYSICAL REVIEW A

VOLUME 19, NUMBER 3

MARCH 1979

Optimal configuration of a class of irreversible heat engines. I

Morton H. Rubin
University of Maryland Baltimore County, Catonsville, Maryland 21228
(Received 16 August 1978)

We determine the optimal configuration for a class of heat engines with finite cycling times. The engines
studied are those for which irreversible process occur through the coupling of the engine to the environment,
while the working fluid in the engine is assumed to undergo reversible transformations. For the case in which
the only irreversible process is heat conduction, we derive the optimal configuration of these engines for two
different operating goals: maximum average power output and maximum efficiency. We suggest figures of
merit based on these optimal configurations which may be more useful than those based on reversible

processes.

1. INTRODUCTION

One of the most useful results of classical
thermodynamics is that the maximum work in a
thermal process with fixed constraints is ob-
tained when performing the process reversibly.!-
The power of this result lies in its universal
nature, reversible processes lead to upper bounds
on performance criteria for arbitrary processes.
For example, the Carnot efficiency proVides an
upper bound on the efficiency of all cyclic heat
engines operating between two fixed temperatures.

The universal nature of reversible processes
has led to their use as standards for thermal
processes.! However, it has been pointed out
by several authors that the use of reversible
processes as standards of performance is not
really desirable because strictly reversible pro-
cesses must be carried out infinitely slowly and,
consequently, no power can be generated by such
processes.t® As a practical matter infinitely
slowly means that the states of the working fluid
must change slowly compared to relaxation times
in the system and slowly enough so that frictional
effects are negligible. While it is not too difficult
to make adiabatic processes reversible to high
accuracy, since many relaxation times may elapse
in a time short compared to the duration of the
process, for processes that involve heat transfer
this is in general not the case. In order to make
a heat-transfer process occur rapidly, it is
necessary to have large temperature gradients
and, consequently, irreversibility becomes
important.

Since the production of power is important, it
seems that we should look for new standards with
which actual processes may be usefully compared.
The general problem of finding a new standard
for heat engines which have finite cycling times
has been discussed elsewhere.*-®® It is sufficient
for our purposes to mention that there is no uni-
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versal standard in the sense that reversible pro-
cesses provide universal standards because
irreversibility may occur in such a variety of
ways. However, for a process determined by

a set of operating constraints and goals, when
the irreversible processes are specified, it
becomes possible to define useful standards.
These standards depend on the particular opera-
tional goal of the engine.

In this paper we wish to prove that for a certain
type of heat engine, if linear heat conduction is
the source of irreversibility, there are processes
first studied by Curzon and Ahlborn,® which may
be used as a standard when the operational goal
is to maximize the power output per cycle or, in
a different operating mode, to maximize the
efficiency.

If the only irreversible process is heat conduc-
tion and if it may be assumed that the adiabatic
branches of the cycle occur during a negligibly
short fraction of the cycling time, our proof is
quite general. If we wish to take into account the
fact that the adiabatic branches do not occur in a
negligibly short time, the problem becomes more
difficult, and we must use the methods of optimal
control theory. This problem is sufficiently more
complicated that we have devoted a separate
paper to it.

The work presented here differs from earlier
work®?® in that the reservoir temperatures are
treated as controllable parameters and it is
shown that only the hottest and coldest reservoirs
are needed. Our point of view is somewhat dif-
ferent than that of Refs. 5 and 9 and more in the
spirit of Ref. 6.

The purpose of this paper is to find optimal
operating procedures for a class of simple heat
engines. The plan of the paper is as follows. In
Sec. I we define our model heat engine and list
our assumptions about its operation. In Sec. Il
we optimize the performance of the engine for
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two different operating goals, maximum average
power output and maximum efficiency, and we
suggest figures of merit for these cases in Sec. V.
In Sec.V, we summarize our results and draw
some conclusions.

II. MODEL HEAT ENGINE

Before specifying the subclass of heat engines
we will study, it is convenient to first define a
more general class of heat engines. We define an
endoreversible engine to be an engine such that
during its operation its working fluid undergoes
reversible transformations. This class of engines
includes all the reversible engines discussed in
thermodynamics textbooks. More importantly
for our work, the subclass of engines which are
coupled to the external world via irreversible
processes provide a useful starting point for the
study of finite-time processes.>®

We now define our model heat engine. The
engine will be a standard ideal heat engine com-
posed of a working fluid enclosed in a cylinder
whose walls may be adjusted to be insulating
adiabatic walls, or conducting diathermic walls.
The cylinder contains a piston which is used to
do work on the external world. We also assume
that there is a set of heat reservoirs available.

We now list our assumptions about the opera-
tion of the engine.

(i) The engine is endoreversible.

(ii) The diathermic walls have constant thermal
conductivity. ’

(iii) When the engine is in contact with a heat
reservoir of absolute temperature T, the heat
flux into the working fluid is given by a linear
law

G=p(Tx-T), (2.1)

where p is the thermal conductivity of the diather-
mic walls and T is the absolute temperature of
the working fluid. Our first assumption assures
us that, at each instant, the working fluid has a
uniform temperature.

(iv) Each thermal reservoir has a constant
temperature T, where T, <T,<T,.

(v) The work done by the engine in one cycle
is given by

T . ’ .
w= | PVat, 2.2)
fo (

where P and V are the pressure and volume of
the working fluid, V means the time derivative
of V, and 7 is the cycling time of the engine.

A few comments upon these assumptions are
necessary. The first assumption means that the
fluid only undergoes reversible transformations,

consequently, the entropy change of the fluid in
one period is zero; i.e.,

Tq
AS-:L-Tdt=0. - (2.3)

This constraint will be explicitly taken into ac-
count in our calculation. In the following paper
when the dynamics of the working fluid is taken
into account, this constraint is automatically
satisfied by the equations of motion and the fact
that the process is cyclic. Thus Eq. (2.3) is a
substitute for the dynamics of the working fluid.

The second assumption is overly restrictive.
It is a trivial matter to let the thermal conductiv-
ity of the walls be different when the engine is in
contact with different reservoirs so p—~p;. We
shall not bother with this. It is also not difficult
to show that if p, is allowed to vary so that
0 <py<p,, the optimal solution requires p, =p,.
This is in fact shown in the following paper.

The fourth assumption is necessary to avoid
the unphysical cases of infinite or absolute zero
temperatures.

The fifth assumption ensures us that there is
no friction present. If there was friction in the
coupling to the external world, e.g., sliding
friction between the piston and the cylinder wall,
then there would be lost work'®; i.e.,

PV=W+LW,
where W is the power generated by the engine
and LW is the rate of power dissipated. Note
that Eq. (2.2) is unaffected by the presence of a
constant external pressure such as atmospheric
pressure since such a contribution averages to
zero for cyclic process.

Finally we conclude this section by noting that
the heat input to the engine per cycle is

@.= [ dore-mat, (2.4)

where 0(x) is the Heaviside step function, 6(x)
=1if x>0, 6(x)=0 if x<O0. :

III. OPTIMAL PERFORMANCE OF A FRICTIONLESS,
ENDOREVERSIBLE ENGINE -

In this section we show that under assumptions
(i)-(v), the Curzon-Ahlborn process® leads to
the maximum average power output or, in a dif-
ferent configuration, the maximum efficiency.

A. Maximum average power

It is often desirable to choose as an operational
goal for an engine its maximum average power
output. In our case this means maximizing W
since the cycling period 7 is fixed.
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It is convenient to first rewrite Eq. (2.2) by
applying the first law of thermodynamics to the
working fluid:

g=U+PV, (3.1)
where U is the rate of change of the thermal

energy of the working fluid. Since the process is
cyclic Eq. (2.2) may be rewritten using (3.1) as

W=chjdt. (3.2)

Therefore we must maximize W subject to AS =0,
i.e., we maximize

L=W-2aS =f' [o(Tp=T)=AD(Tp=T)/T dt (3.3)

by varying 7 and Tj.

Note that only one thermodynamic variable
describing the working fluid appears in Eq. (3.3).
To understand why a second thermodynamic
variable is absent, we must first recall that the
temperature and any second independent vari-
able, say the volume, are dynamical variables,
i.e., they satisfy equations of motion. These
equations of motion ensure the consistency of the
equation of state of the working fluid with the
first law at each instant of time. In our problem
the equations of motion are replaced by the con-
straint given by Eq. (2.3) and, consequently, we
assume that the second thermodynamic variable
adjusts itself appropriately. This may require
nonphysical variations such a discontinuous jumps
in the state variables. The advantage of our non-
dynamical or quasistatic calculation is its sim-
plicity and its generality in the sense that we do
not have to specify the equation of state of the
fluid. In the following paper we solve the dynami-
cal problem when the working fluid is an ideal
gas.

We now turn to the problem of finding the opti-
mum solution to our problem. In order to take
account of assumption (iv), we replace T by a
new variational parameter i such that

Tp=3(Ty+T)+3(Ty—T,)tanhy, (3.4)

where ¥ is unconstrained. It is now a simple
matter to maximize L

6L=detp[5TR (1-%>+6T (—1+7\-§§)],
0

(3.5)
where
8T =3(Ty— T,)0%/cosh?). (3.6)
Setting 6L =0 we find that when p#0
T=x (3.7a)

or
Y=t (3.M0)
and
T=0Tp . 7 (3.8)

First we see that if for some part of the cycle
Eq. (3.7a) holds so that T'=2, then from (3.8)

T =Tg. During this part of the cycle there is no
contribution to W; furthermore if the second
variation of L is examined we find that this solu-
tion corresponds to a saddle point and so we dis-
card it.

Therefore, Eq. (3.7b) must hold which means
that T,=T, or T, that is, we only need the
hottest and coldest reservoirs. Thus we have two
solutions

Tp=Ty, T=T,=(\T)"* (3.9)
and
Te=T,, T=T,=(T 2. (3.10)
In order to show that these are true maxima,
we consider the variation of L up to second order.

v 2 NT
AL=5L+f0 dtp[éTRGT - (orr la ]

Evaluating this at T, =(A\T)*? we find

AL =j: dtp{éTR [1 - (%)1/2]
+7,2-;[6TR6T— (6T (%i)ﬂz}} .

The first-order variation with respect to T does
not vanish since the integrand attains it maximum
with respect to 7, on the boundaries of the T
interval. .

For Tp=Ty(T,), the allowed variations of Tp
are such those for which 6T;<0 (=0). Thus
AL <0 for all allowed variation of T and Ty if
VT,>VXx>VT, which is indeed the case as we
shall see.

It is clear that our solution as it stands consists
of two disjoint points in the allowed region of the
T-T plane. The discontinuity in 7' does not
disturb us since it is standard practice in thermo-
dynamics to imagine reservoirs are connected or
disconnected from systems instantaneously. How-
ever, a discontinuity in the temperature of the
working fluid is disturbing since we know that the
fluid temperature satisfies an equation of motion—
it is a dynamical variable. In order to overcome
this difficulty, we shall imagine that the two
isotherms are connected by adiabats. This means
that we take p=0 for two branches of the cycle.
These two branches do not contribute to the inte-
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grals for W or AS.

It is interesting to note that if we had treated p
as a variable where 0 < p < p, then varying with
respect to p implies that if Eqgs. (3.9) or (3.10)
hold and VT, >VXx>V T, then p=p,, otherwise p=0.

We now complete the solution to our problem.
We use Egs. (3.9) and (3.10) in Eq. (2.3) to solve
for 2,

VN=xVT g+ (1= x VT, , (3.11)
where
x=ty/(ty+t;) (3.12)

with ¢, (¢,) the length of time that the cylinder is
in contact with the high- (low-) temperature
reservoir during each cycle. Finally,

Winay =T (VT = VT, )?, (3.13)

Q=0T (VTR =VTVTy, (3.14)
and ‘

n:%“‘:“:l —(T,/Tyy", (3.15)
where |

Tr=tyt, Mty +ty) . (3.16)

Thus the cycle consists of two isothermal trans-
formations connected by two adiabatic transforma-
tions (p=0) which in this case are also isentropic.
If ¢, is the time required for the adiabatic trans-
formations, then ¢, +¢,+¢, =7,

The cycle derived above is the Curzon-Ahlborn
cycle discussed in Ref. 9, and in Ref. 5. In Fig. 1
we have sketched such an engine. The internal
engine operating between T, and T, is a Carnot

Tw
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T

FIG. 1. Sketch of the endoreversible engine for the
Curzon-Ahlborn cycle. ‘

engine so the efficiency is given by 1~ T,/T,
which is equal to Eq. (3.15) since T, =T ,)"2
and T,=(\T,)"2.

It is worth noting that the fact that we need use
only the hottest and coldest reservoirs and that
we do not need any other reservoirs is not a triv-
ial result. For contrast we note that there are
processes which require a continuum of reser-
voirs. For example, to charge a capacitor
through a fixed resistance in finite time with a
minimum of Joule heating requires a continuous
source of voltage.

If we make some assumption about /, we may
maximize Eq. (3.13) with respect to ¢, and £;.
Curzon and Ahlborn assume ¢, =(1 -y )(f,+%,) so
T =y({,+1,;) and maximize W_,, with respect to
t,, T being held fixed. They show that ¢, =7/2y,
consequently, :

Wonax =0T/ )YV Ty = VT, (3.17)

As we shall show in the following paper the as-
sumption of Curzon and Ahlborn does not lead to
an optimal solution of the dynamical equations
unless y~1, ie., {,< 7. This corresponds to
the magnitude of the rate of change of the volume
of the cylinder, |V|, becoming very large during
the adiabatic branches.

B. Maximum efficiency

It is often useful to run an engine at maximum
efficiency rather than use some other operating
goal such as we did in Sec. I A. The efficiency
is, as usual, defined by

n=w/Q,, (3.18)

where W is defined Eq. (3.2) and @, by (2.4). We
will maximize 71 for a fixed input energy subject
to Eq. (2.3) and assumptions (i)-(v). If we keep

@, fixed this problem is the same as maximizing

L=W=\AS— uQ, . (3.19)

It is simple to show that we again get a Curzon-
Ahlborn cycle with

T 1
=] — k&
- Mmax 1 Tﬂm, (3.20)
where
QR=p7'T,, (3.21)

with 7/ given by (3.16) and W =1,,.Q,.

Figure 2 is a sketch of a graph of the average
power output W/7 plotted against the average
power input, i.e., W/T=0,,Q,/7. It is evident
that the efficiency decreases with increasing
input energy, dn,,,/dQ,<0, so that the greatest
efficiency is attained at Q, — 0 where the slope of
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FIG. 2. Sketch of the graph of the average power out-
put as a function of the average power input for the max-
imum efficiency.

the curve is the Carnot efficiency. The average
power output increases with increasing input
energy until it reaches the maximum average
power output when the engine’s operating condi-
tions are those derived in Sec. I A. The efficien-
cy and the output both decrease as @, continues to
increase until W0 when 7, and T',, the internal
temperatures, become equal. The changes in @,
and W are generated by adjusting T, and T,. T,
decreases and T, increases with increasing @,
until eventually 7',=T,.

IV. FIGURES OF MERIT

Figure 2 illustrates two of the options available
for operating an engine, in this case, high effi-
ciency versus high power output. There are many
different optimum solutions depending on partic-
ular operating goals, for example, economic con-
siderations expand the range of operating goals
enormously. We now wish to suggest some fig-
ures of merit for engines which satisfy the as-
sumptions made in Sec. II.

First, suppose a cyclic heat engine is to be op-
erated so that it produces the maximum average
power output. Then a possible figure of merit
would be

€, =W/ Wy s (4.1)

where W is the work per cycle done by the engine
being considered and W, ,, is the work done by an
idealized engine of the type discussed in Sec. IITA
as determined by Eq. (3.17). We see that W,
depends on p, ¥, and T as well as the temperature
of the reservoirs. This dependence of W, on
the details of the engine and its operating charac-
teristics is the result of including an irreversible
process in our analysis. Of course, if we made
our model engine more realistic by allowing for
other irreversible processes the result would
become more complicated.

It is remarkable that the efficiency of the pro-
cess discussed in Sec. Il A only depends on the
reservoir temperature. It may be thought,
because of this, a better figure of merit would be

- the ratio of the true efficiency to the efficiency

given by Eq. (3.15). However, since this figure
of merit may be greater than or less than 1,
it does not seem as commendable as that of
Eq. (4.1).

Next suppose a cyclic heat engine is to be op-
erated at maximum efficiency. Then a figure of
merit may be defined by

€11 = na.ctual /nmax

where 7,..,,; is the measured efficiency of the
engine and 7 is given by Eq. (3.20) evaluated for
the actual energy input. Since 7,ciya; < Mmaxs

€, < 1. A definition similar to the definition of
€, where 7,,, is replaced by 7,,.. is called the
second-law efficiency® or the coefficient of
utﬂity '2 €n b €211d law = nactual/n(hmot ¢

V. CONCLUSIONS

We have obtained the optimal operating condi-
tions for an idealized class of heat engines. What
distinguishes these engines from those usually
studied in classical thermodynamics is that these
engines generate power. Although the processes
we derive are highly idealized, we can use them
to derive standards of performance which may be
more useful than those based on reversible
processes.’
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