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For a pencil-shaped extended medium with Fresnel number equal to 1, we have quantum mechanically
derived a description of the initiation of superfluorescence in terms of Maxwell-Bloch equations with a
fluctuating source due to the zero-point fluctuations of the vacuum field. By the introduction of classical
behavior, these equations are extended to include nonlinear behavior due to decreasing atomic inversion. The
principal assumption in the derivation is that the main features of superfluorescence are governed by the
interaction of atoms with field modes inside two small solid angles around the pencil axis. The delay 7p,
defined as the time at which the mean-squared tipping angle of the collective Bloch vector attains the value
1, turns out to be given by 7, = (7x/4)[In(27 N)"/?], where 7 is the radiation time for collective decay and
N is the number of atoms. The corresponding effective initial tipping angle roughly equals 2/(N)"2. A
Fokker-Planck equation is derived to describe the statistics of the initial development of the tipping angle.
The variance A7, of the delay of the superfluorescence pulse satisfies approximately A7, = 2.3/InN. A
brief comparison with previous treatments of superfluorescence is given.

I. INTRODUCTION

Superfluorescence (SF) is the cooperative emis-
sion from a large number of initially inverted
atoms, without initial macroscopic dipole moment.

SF was predicted by Dicke! in 1954. Its first ob-
servation was made in optically pumped HF gas
by Skribanowitz et al.? in 1973. Since then several
observations of SF on different atomic and molecu-
lar transitions have been reported.®~° All obser-
vations pertain to samples with linear dimensions
that are large compared with the wavelength X, of
the emitted radiation.

Since Dicke’s proposal,! numerous papers have
been devoted to the theory of SF (Refs. 10-28).
These theories differ in the sort of approxima-
tions used. The well-known theory of Bonifacio
and Lugiato® gives a fully quantum-mechanical but
mean-field treatment of SF; it neglects the spatial
variation of the field envelope throughout the sam-
ple. To account fully for propagation effects,
MacGillivray and Feld®*:¥ introduced a semiclass-
ical theory in which the initiation of SF is de-
scribed by a fluctuating polarization source. Sev-
eral recent papers link together aspects of quan-
tum-mechanical and semiclassical theories.?*"32
Numerical calculations are usually based on Max-
well-Bloch equations with an effective initial tip-
ping angle of the collective Bloch vector,2*:27,3-34
However, there is no agreement on the value to be
assigned to that angle,t4r24/27,29-3¢

We report a quantum-mechanical derivation of
Maxwell-Bloch equations including a fluctuating
field source which accounts for the stochastic in-
itiation of SF. We consider a pencil-shaped active
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volume with cross section S> 22, length L, and
Fresnel number § =S/A,L=1. The atomic density
p is so large that the characteristic time for col-
lective decay along the pencil axis 7,~477,/(pAjL)
is much shorter than the natural lifetime 7, of a
single atom. In order to be able to ignore dipole-
dipole interaction between the atoms we require
p(ry/2m)® < 1. Atomic motion is disregarded (T%*
=) but the atoms occupy random positions. Only
two-level atoms are considered.

Our principal assumption is that the initiation,
propagation, and collective growth of SF is gov-
erned by the interaction of atoms with field modes
inside two small solid angles (=\Z2/S) around the
pencil axis. This treatment in terms of two end-
fire modes is made possible by our explicit as-
sumption of Fresnel number =1, i.e., the dif-
fraction angle A,/VS equals the geometric angle
VvS/L. The reason for singling out the end-fire
modes is, of course, the largest logarithm of gain
along the pencil axis (see Refs. 11,25, 28).

We further assume that the gain of field modes
outside the specified solid angles can be ignored.
The interaction with these modes manifests itself
in lateral spontaneous emission and scattering of
light via the atom’s induced dipole moment. The
incoherence of the lateral emission is guaranteed
by the random positions of the atoms. In our
treatment of SF it appears as damping of the upper
level occupation and of the dipole moment of the
atoms. The division into end-fire modes and other
modes corresponds to phenomena on different
time scales: the collective phenomena on a time
scale 7. and the incoherent phenomena on a time
scale 7,. Since T, < T, the latter are of minor
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importance.

In the Heisenberg picture, our analysis depicts
SF as follows: The operator electric field acting
on an atom consists of free-field running waves
constituting the vacuum field Em, the dipole
radiation field E’di due to all other atoms (dipoles),
and the atom’s own radiation reaction field E’RR
End-fire modes couple to the collective operator
Bloch vector of the atomic system. The end-fire
modes of the vacuum field Em may be considered
as a fluctuating field source that causes the col-
lective Bloch vector to start jittering in a sort of
Brownian motion about its upright position. The
dipole field E’dw is responsible for the drift motion
of the Bloch vector: the tipping angle grows ex-
ponentially with time. Propagation effects and, in
the nonlinear regime, the decrease of inversion,
eventually determine the shape of the SF emission.
Its delay 7, depends on the properties of the fluc-
tuating field source, i.e., on the zero-point fluc-
tuations of the vacuum waves in the specified sol-
id angles. Finally, the radiation reaction field
Ean merely accounts for incoherent energy loss
on the time scale 7.

The delay 7, is usually expressed in terms of
the effective initial tipping angle. We find this
angle to be about equal to 2/VN, where N is the
number of atoms in the active volume. We also
discuss the statistics of the time delays with the
aid of a Fokker-Planck equation for the probability
density of the tipping angle.

The organization of this paper is as follows: In
Sec. II, we discuss equations of motion with sub-
sections covering radiation reaction, collective
atomic operators, and equations of motion for
slowly varying envelope amplitudes (SVEA). In
Sec. IIlwe discuss Maxwell-Bloch equations, with
subsections covering initial development of SF,
properties of the fluctuating source, and classical
and statistical behavior. Section IV covers initial
motion of the tipping angle, its subsections deal-
ing with the response to the Langevin force, mean-
squared tipping angle, and statistics of the SF
pulse. Finally, in Sec. V, we discuss connections
with other work and conclusions.

II. EQUATIONS OF MOTION

We consider N two-level atoms in a pencil-
shaped volume V=SL (density p=N/V). The posi-
tion of atom j is denoted by F(j=1,...,N). The
positions are random, but atomic motion is dis-
regarded (7% =«). At the initial time £=0 all atoms
are inverted and the radiation field is empty apart
from the zero-point energy. The two-level atoms
are described by the (Schrddinger) operators

Rj= ‘e>n<g‘: R;= |g>j1<e|’
R3=%[Ie>jj<e| - |g>jj<g|] ’ ‘ (1)

where |e), and |g), denote the excited- and ground-
state vectors of the jth atom, respectively. These
operators satisfy the angular momentum commu-
tation relations for spin 3 value.

The interaction Hamiltonian in the electric di-
pole approximation is given by*®

H=h‘woz R3 +Z ﬁwhahah—z p,ﬁ(r) (2)

jel jal

Where wo is the two-level transition frequency and
u, uR, + u*R is the electric dipole operator of
the jth atom. The electric field E consists of the
sum of £ and E¢*), where the positive frequency
part is

E(n( F):

iy 8eitrg,, (3)
A

the negative frequency part E=(E“’)" and
&, =(2n7ick/ V)1 %, . (4)

Here U is the quantization volume, 7\=(l?, o) where
K is the wave vector and o denotes the state of
polarization, w,=ck, E;,, is the polarization vector,
a, the annihilation operator, and af the creation
operator of the field in the state A. These opera-
tors satisfy [a,,,al]=6,,,. In(2) we have disre-
garded the self-energy and contact interaction
term 27 [ |P|2dV, where P=2,[L,8(f -F,). Con-
sistently, we do not consider Lamb shifts.

To obtain a close though formal analogy between
the quantum-mechanical and the classical equa-
tions of motion we use the Heisenberg picture.
Moreover, we make the rotating wave approxima-
tion (RWA). This deserves some comment. The
RWA is not suited®® to deal with the dipole-dipole
interaction between the atoms. The dipole-dipole
dephasing time T, is of the order of7,/[ p(A/27)?].
Since we have assumed p(\,/27)* <1 the dipole-
dipole interaction can be ignored in our treatment
of SF. The RWA is then also a valid assumption.

In the RWA, the Heisenberg equations of motion
read

dR3 . .
> ——[R (HE-B¢ XT,,t)
-R;(0*EAE,, 0], (5)
dR; . - 2i TGy
Sli= miwgRYD) - RDEEF, 0, (6)
at 7
day 1 %S
Td"t—= —'lwhal(t)"'%z e jg).Rj(t) ’ (7)
J

where the coupling constant g, = i é’)‘. The equa-
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tions of motion for R; and a{ follow from (6) and
(7) by Hermitian conjugation.

Averages of an operator @(#) in the Heisenberg
picture with respect to the radiation field reser-
voir (Re), atomic system (A4), and total system
(7) are given by (Q)g,= (vac|Q|vac), @),={|Q|I),
and (Q),= (vac,I|Q|vac,I). We have assumed here
that at #=0 the radiation field is in the vacuum
state |vac), i.e., the radiation field reservoir Re
is at zero temperature. The state [I ) stands for
all atoms inverted.

A. Radiation reaction

At t=0, the only field acting on the atoms is the
vacuum field Em. Its positive frequency part is
given by

E\(r;x):(irj’ )= 1«2 a)'(())é;gi;';rith (8)
A

and corresponds to the free-field solution of (7).
At later times the field acting on atom j consists
of three parts,

E(F,, =B (F,, 0+ Eu (5, 0+ Egn(F,0.  (9)

Here Edip is the electric field due to all other
atoms, also called the Lorentz field. Its positive
frequency part is given by

- - i - e
B, -1 % st 6o
#j 2

t
X f dat’ e ttRY(4) | (10)
V]

The source field ERR, also called operator radia-
tion reaction field,*® satisfies

- - i - t
ESXT,, t)=-;z_z g{e)‘f dt’' et IRY ) (11)
2 0

Although the total electric field E commutes at
all times with R}, Rj, and R, the fields E ,,,
E4,, and E; . separately do not. To deal with
these fields we must choose once and for all the
ordering of atomic and field operators in (5) and
(6). Whether in spontaneous emission of a two-
level atom, the decay time T, of the upper level
occupation and the decay time T, of the dipole mo-
ment should be attributed to vacuum field fluctua-
tions or to quantum-electrodynamic radiation re-
action depends on that ordering.3**® There is no
ordering which attributes 7, entirely to the vacuum
fluctuations.®” In normal ordering both 7, and T,
can be consideredtobe due entirely to radiation re-
action.®” In that case there is a close but formal
analogy between the quantum-electrodynamic
treatment of radiative damping and Lorentz’s

classical analysis.®® We choose normal ordering

in the following so that af appears to the left and
a, to the right of atomic opera_tgrs. :

The radiation reaction field E;; does not add to
the creation of spatial coherence between the
atoms. We calculate the effect of Ean before in-
troducing collective atomic operators. Approxi-
mating R}(#') in (11) by the free-atom evolution

R;(t')=R;(t)e"‘“’0("'” , (12)

we find

S AN
=R’ 1 2 J-t i(wg=wy)7 7. > 13)
- J(t) 72 z)‘: |g)»| o e T)- (

Clearly the imaginary part of the expression in
large parenthesis diverges. This corresponds in
Lorentz’s classical analysis with the divergence
of the electron’s Coulomb self-energy for vanish-
ing electron radius (see Ref. 39). Neglecting this
contribution, since it yields the Lamb shift, we

* find for ¢>1/w, (Ref. 38)

(-i/mB-ESAT,, H=3vR}D), (14)

where the decay rate
2
7=FZ ]g,t‘zﬁ(wh—wo) (15)
A

corresponds to the natural lifetime via T3=7y. Us-
ing

Z €g€3= 6“'—}’515‘, (i,j=x,y,2), (16)
o .

where fe}:k/k, we find as usual
y=1%|L|%/n. (1)

From (5), (6), (14), and the equal-time commuta-
tion rules of the atomic operators, we finally ob-
tain

3 .

—#: YRS+ %)+% [R}-LI'E(*)(F,, )
- ESF,0R;], (18)
9B e (iwg+ RG -Z RGBT, ),  (19)
dt r

where now E =Evac+ﬁdip' Note that normal order
is employed in (18) and (19).

Having thus incorporated the radiation reaction
we could proceed by incorporating ﬁm in a sim-
ilar way. In many papers on SF, essentially such
a procedure is followed.'**%!%:1%1% However, to
keep the calculations tractable retardation effects



are then left out of account (see Ressayre and
Tallet®). We proceed in a different manner and
derive operator valued Maxwell-Bloch equations
which fully describe the propagation effects.

B. Collective atomic operators

The gain of waves traveling through the active
medium is largest for end-fire modes of propaga-
tion. We assume that, since F=1, a plane-wave
treatment of the two end-fire modes is sufficient
to describe the gross features of the SF pulse.

We ignore other modes. The end-fire modes only
couple to certain collective atomic operators. We
divide the pencil into slices of thickness d, oriented
perpendicular to the pencil axis. The center posi-
tion of a slice is indicated by the discrete variable
x. Since pS(Ay/2m) ~27,/7, and T > T, we may
choose d so that each slice contains many atoms
but is still thin compared with A,/27. We intro-
duce the collective atomic operators

1
®p¥)=5- 2 By¥D, (20)
S jetiy,

where N, is the mean number of atoms in a slice
and {j}, denotes the collection of atoms with (fixed)
positions F,, where x —d/2<x;<x+d/2. The col-
lective atomic operators (R;(t) satisfy

@ (fwo+ v/ 2)R; - —

= Z R3"1 ﬁ(-l—)(rj, t)

SIE(H,;
(21)

So far the positions of the atoms have remained
fixed. In the spirit of the plane-wave end-fire
mode assumption we require the collective opera-
tors to be essentially independent of the particular

N

- -> i - b 24
E (T, ¢ 72 &ré, f dt’ "ttt
p

1€},

The necessity of such equiphase plane averaging
for cases where the mean interatomic distance is
much larger than \,/2r was stressed by Kram-
ers*’; see also Reiche.*

By the particular procedure used to derive (22)—
(24), the operator character of the atomic vari-
ables is strictly preserved. If, by ensemble av-
eraging (in x),*? continuous collective operators
had been introduced, the operation of the resulting
operators on the Hilbert space of 2¥ atomic states

> a-(t'){Sdf

19 SUPERFLUORESCENCE: QUANTUM-MECHANICAL DERIVATION... 1195

random positions of the atoms in a slice. Accord-
ingly, we introduce a slice averaged electric field
in (21) by integrating over F, ; in a slice and dividing
by Sd. Since p(A,/27)°* <1, we may, at the same
time, extend, with neghglble error, the summa-
tion in the dipole field (Eq. 10) to all atoms. Then
we find

2. - ——
%_ ~ 0+ v/2)8; -2 G B, 1), (22)

where now E(x,)=E ,(x,0+E_,(x, 8,

E(*)(x )= ZZ F(ky, k,)ay(0)€,etkx*"iont (23)
and the matter field is given by

E:a)t t)“ZNsZ E Flky,k, )g*ex

t
X f dar’ eikx(x-x')-iw)‘(t-t')(ﬂ;'(tl) . (24)

0

The diffraction function is-
F(k,, k,):é f dy dz etkyy*ikes (25)
S

and finds its origin in the averaging over the atom-
ic positions in a slice. Approximately, it equals
one for wave vectors K (% = k,) inside the solid an-
gles AQ =~)2/S around the x axis and vanishes out-
side these angles. Also lk | ~k; in the following
we neglect the difference between |&,| and ,
thereby 1gnor1ng diffraction losses. The new elec-
tric field E(x, t) corresponds to the Maxwell field
in the plane-wave end-fire modes.

The field E_,,(x, 1) equals the equiphase plane
average of the microscopic matter field at an
“aufpunkt” ¥=(x,y,z) (f+T, for all 1), i.e.,

dx, ffdyldz e{k (""'l)} (26)

x=d/2

I

would not be well defined.3? A continuum descrip-
tion of SF requires quantization after the introduc-
tion of the continuum variables.

The equation of motion for Gia(t) is found to be
given by

83
A0 6 D 0T B, 0

—I*Ey, K] . (27)
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Equations (22)—(24) and (27) describe the coupling
of the end-fire modes and the collective atomic
operators. ’

The damping rate 37 of ®&; and ® can now be
understood as (Rayleigh) scattering, via the in-
duced dipole moments, of end-fire mode light out
of the specified solid angles. The damping rate y
of & is due to lateral spontaneous emission. The
random positions of the atoms ensure the incoher-
ence of the lateral scattering and emission.

C. Equations of motion for slowly varying envelope
amplitudes

The end-fire modes of propagation of va given
by (23), start to drive the atomic system at ¢=0.
The resulting dipole moment with components ®x(2)
and R(t) induces the matter field E_,,, as given by
(24). Due to the frequency selection by the atomic
transition, the Fourier spectrum of atomic and
field variables vanishes outside a narrow range
of frequencies around w,. Ignoring the coupling
between left (L; towards negative x values) and
right (R) traveling end-fxre modes, we can thus
introduce

(R;(t)= (Rk(x, t)eikox-iwot + (R;,(x, t)e'ikox-iwot s (28)
where ®R% and ®7 are slowly varying envelope am-
plitudes (SVEA), both in # and x. Using (22) we
find Rz(x, ?) to satisfy

<ait+2'y> Gol, )= 268 AL x, )+ Fw, 1), (29)
where
AR, D=5 Z > 2 lewl?
< kEAQR
X ftdt’ expli(k = ko) [x —x' = c(t -]}
X Rrlx’, t') (30)
and
F$)(x, 1)
=-722_(Riz > 8toail0) expli(k — ko)(x —cd)] .
o keaqg
(31)

The “Rabi frequency” & {)x,#)= —ii-ES) (v, 1)/,
where E_,,  is the (R) SVEA of the matter field.
The operator F{)(x,?) represents the Langevin
force due to the (R) end-fire modes in the zero-

point fluctuations. We evaluate (30). Let the quan-
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tization volume U approach infinity. The main
contribution to the resulting % integral arises
from k=~Fk, The sum 25, |&z,|? is calculated using
(16) and kK e AQ,, where AQ can be calculated by
integrating the diffraction function (25) with re-
spect to &, and k,. The value of AQ depends some-
what on the specific shape of the cross section.
We take AQ=(27)%;2S™. Putting*®

j dk ei'* %% = 275(a) , (32)
0
we finally obtain

AP t)-T—'—Z GR(xe’,t = (x =x")/c), (33)

S xrsx

where N/Ns=L/d is the number of slices and 7,
is the radiation damping time of the collective
system,

-l Ag -1 .
T.R:JmNTN' (34)
The ratio
I=(|uy|2+ |, | /(3] (35)

measures the amount of anisotropy in the two-lev-
el atomic transition. For instance, for a dipole
moment along a transverse direction J=3%, while
for circular polarization around a transverse di-
rection J=%. The ratio A?/47S is the fraction of
solid angle into which the SF emission goes.

When x and x’ in (33) are considered as contin-
uous variables, and A}’ and ®;, are consistently

‘considered as ¢ numbers, the SVEA A )(x, ?) sat-

isfies the Maxwell equation

(L c__> AS x, =R, ) (36)

1
TL/c)
with the no-backscattering boundary condition
A$X0,)=0. We use (36) for operators too, but
its solution is then to be understood in the form
of Eq. (33).

The equations of motion for (L) SVEA of atomic
and field variables are given by (29), (31), and
(36) with R~ L and ¢ —x/c~t+x/c. The (R) and
(L) SVEA’s are coupled by the equations of mo-
tion for ®*(x, #) =®%(¢). We find from (27),

(38;+ 7) (®R¥x, ) +3)
= =[®Ri(x, DAL (x, )+ Ri(x, DAY, 1)

+H.c.]+Glx,1). (37)

The Langevin force G(x, ¢) depends linearly on both
the (L) and (R) SVEA of ®&* and ®". Its explicit ex-
pression will not be given since we shall not need
it.
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Nonvanishing reservoir averages of correlation
functions of the Langevin forces determine the sta-
tistics of the initiation of SF. The origin of these
forces does not lie in the material itself, but in
the zero-point fluctuations. Material fluctuating
sources will and can be left out of account in this
treatment of SF from extended and rarefied
(p(xo/2m)® «< 1) systems.

III. MAXWELL-BLOCH EQUATIONS

In the following we will only be interested in

correlation functions of the type

g¥=(GNRR)Y,, £7=(RDARL ) (38)
with the same arguments (x, #) in the atomic vari-
ables, and where p and ¢ are non-negative inte-
gers. The antinormal order in (38) is chosen con-
sistent with the fact that only atoms in the excited
state detect (“feel”) the zero-point fluctuations;
at t=0, g%=0and g%=0 for all p and ¢. Since
the atomic system never develops a macroscopic
dipole moment g¢, g%, g%, and g% vanish. The
second-order correlation functions gi(x, #) and
g%(x,t) measure the development of the mean-
squared tipping angle of the collective Bloch vec-
tor corresponding to (R) and (L) end-fire modes,
respectively. The higher-order correlation func-
tions determine the statistics of the SF pulses.
The restriction to correlation functions of the
type (38) is not a serious limitation (see Note
added in proof ). All correlation functions of
®% .. and &3 ; can be expressed in terms of
g% 1 through the equal time commutation rules
for atomic operators.

With the above restriction in mind we derive in
Sec. IITA Maxwell-Bloch equations with a fluctuat-
ing source to describe the initial stages of SF.
The corresponding regime of times is determined
by the range of validity of the assumption ®3(x, ¢)
=®%x,0). This regime presumably includes many
collective radiation times but is certainly much
smaller than the natural lifetime 7,. Section IIIB
discusses the properties of the fluctuating source.
Together IITA and III B contain all ingredients
needed in Sec. IV for the evaluation of the initial
motion of the tipping angle. In IIIC we discuss the
transition to classical behavior in view of its use
in the nonlinear regime.

A. Initial development of SF

We assume ®*(x, t)= ®%(x,0). The (R) and (L)
SVEA’s of atomic and field variables are then de-
coupled. We consider only (R) components and
omit the subscript R for the moment. The equa-
tion of motion for ®(x,#) contains an intrinsic op-
erator character due to the presence of the drift
term 2®%(x, 0)A“)(x, #). To obtain a (formal) clas-

sical description we consider the expectation val-
ues ®y,=(a |®"|B), ALY and FYY), where |a) and
lﬁ) are representatives of a complete set of 2¥
normalized atomic system eigenfunctions. For
[a) # [I ) but else arbitrary, the equations of mo-
tion for ®7, and A} are sourceless [®(x,0) and
@3,{0) commute, ®&},(x,0)=0] and show no explicit
operator character {®}(x,0)=3]. Since initially ®j,
=0, we have ®; (x, t)=0as longas the approxima-
tion ®*(x, #) = ®*(x, 0) is valid. Also ®&:,,(x,#)=0.
The correlation function g?? attains the particu-
larly simple form

&%= (R AR}z, - (39)

For the II diagonal elements we obtain

9 .- - + +

a—t(RII: "'2/2'(Ru+A§1)+ F@, (40)
LN YRS - ‘

(Bt+ ¢ 8x>A" =rz/o S (41)

where now the Langevin force is given by
Fx,1)

=;l,—Z D &0 l0) expli(k — ko)x —cf)] . (42)

o =
kEAﬂR

The variables ®;, and A!} are still operators on
the radiation field reservoir Re, but Eqgs. (40) and
(41) show no explicit operator character anymore.
However, that character does express itself via
the Langevin force F*). For instance

(F(+)(x, t)F(-)(xl, tl)>Re
attains a finite value while
<F(-)(x9 t)F(+)(x,7 tl)>Ro

vanishes. This is consistent with the fact that the
zero-point fluctuations only affect the excited state
of an atom. To calculate the correlation function
g% we only need antinormally ordered correlation
functions of the Langevin force. On a formal basis
we may thus treat the operators ®;, and A{}’ as

if they are (complex valued) ¢ numbers » and §,
and consider F* as a classical fluctuating force
f. Reservoir average (*** )z, and classical en-
semble average (***) are then to be identified.

B. Properties of the fluctuating field source

The Langevin force f (x,#), corresponding to
F{Xx, ) defined by (42), is a function of T=¢-x/c
only; the subscript R has been reintroduced now.
The properties of f(x,?) can be summarized as
follows:

SRl fLTIF R fHTD)=0 (49
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for p#gq,
(FRT) FLTIRT ) R

|4 P
=20 JT (FRlm)rsrh,)y, (44)

P =1

where the sum is over all possible permutations
of times, and

(FRDFHLTN=(1/NT)8(T - 7). (45)

The first and second property, (43) and (44), can
be verified immediately using the generalized
Wick’s theorem for Boson operators.* These
properties state that the Langevin force f, con-
stitutes a two-dimensional Gaussian process. Us-
ing (a,(0)a}, (0))g,= 5,, we find

(FROVHTD

=;—::5 3 Y gl ?expl-iclk — k)T -7].

teaq, ©
(46)

Since our only interest is in variations of
(fT)FX(7")) over intervals of time |7 -7’| > 7,
where 7,~1/w, is the correlation time of the
reservoir, we may use (32) with a=c(7’ - 7); (see
Ref. 44, p. 426.) Then the third property of f,
described by (45), immediately follows.

The properties of f, are obtained from (43)~(45)
by replacing R~ L and putting 7=¢+x/c. The
forces f, and f, are fluctuating Gaussian field
sources which cause the collective Bloch vectors
7, and 7, to start jittering, in a sort of Brownian
motion, about their upright position. The corre-
lation time of the forces is taken to be infinitely
short as described by (45).

C. Classical and statistical behavior

For increasing tipping angles it is reasonable to
assume that the operator character of both atomic
and field variables gets less and less important.
We therefore assume that after some time a clas-
sical regime emerges where all operators are ¢
numbers and are identified as follows: 7, p
=(‘R},.R)u; ’V’E.Rz((ﬁz,k)lt? QL.R=(A(L+,)R)II’ QI.R

=(AL)y, and n=2R},. The equations of motion
for these variables read

on

57= Y+ 1) —4Re(r Q% + 7,08, (47)
7
—B%R;:' —%YTL,R+nQL,R+fL.R’ (48)

9 9 1
(-a—ziC'a) QL'R=—-——-—TR(L/C) YR (49)

The + and - signs in (49) correspond to (R) and
(L) waves, respectively. Note that the Langevin
force G(x, ¢) is never important since initially G,,
=0. Equations (47)-(49) are Maxwell-Bloch equa-
tions including the classical Gaussian noise source
of Sec. III B which accounts for the stochastic in-
itiation of SF. These equations are identical in
form to those of MacGillivray and Feld. How-
ever, our noise source f is a field source, not a
polarization source as in their work, and has dif-
ferent properties.

In our classical picture the result of each in-
dividual SF experiment corresponds to a single
and unique path of development of the SF pulse de-
termined by one representative out of all possible
noise source functions f(7). The ensemble aver-
ages to be calculated in Sec. IV then must be
understood as averages over many repeated ex-
periments. In the classical regime the amplitude
of the matter field is already large compared with
the vacuum field and mainly determines the further
built up of SF. The behavior of SF becomes clas-
sical at a time of the order of a few 7, and long
before nonlinear behavior due to decreasing in-
version sets in. The classical description in terms
of the Maxwell-Bloch equations (47)—(49) finds its
specific use in the nonlinear regime where the as-
sumption ®&¥(x, £) = ®*(x, 0) as used in Sec. IIA is
no longer valid.

IV. INITIAL MOTION OF THE TIPPING ANGLE

In this section we investigate consequences of
the theory presented in Secs. I-III for the initial
motion of the tipping angle of the collective Bloch
vector. We use the atomic variables 7, p and 7§ ;,
formally introduced in IDA, with due regard to
proper ordering of the corresponding operators.
However, as far as the main purpose of this sec-
tion is concerned, i.e., the study of the statistical
behavior of the SF pulses, we may ignore the op-
erator character and consider them to be classical
variables as was done in IIIC. In particular, we
discuss the response of the collective atomic
variable v, . to the fluctuating Langevin field
source f; . in Sec. IVA, the evolution of the mean-
squared tipping angle of the collective Bloch vec-
tor in IV B, and the statistical behavior of the SF
pulse with special emphasis on the statistics of
the time delays in IVC.

The tipping angle 0 is introduced as follows:
Formally disregarding incoherent damping, the
left traveling waves, and the fluctuating force,
we find from (47) and (48), omitting the subscript
R, '

dyr*+nP=1. (50)
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Expressing v in its amplitude and phase via »
= |r| expip, Eq. (50) is satisfied by

2|7|=sind, n=cosé. (51)

If Q= |Q| expi¢p and ¢ is independent of ¢, we have
according to (48), the relation

t
e(x,t)=6(x,0)+f 2|Q(x, )| ar’. (52)

Equations (51) and (52) illustrate that 6 may be
interpreted as the tipping angle of the collective
Bloch vector 27. In the following we discuss the
initial development of the tipping angle. Then »
=1, 6=2|r|, and incoherent damping may be left
out of account.

A. Response to the Langevin force

In dimensionless coordinates T=(¢-x/c)/T, and
X=x/L, the equations of motion read :

81’ A A

sr= 9+ A1), (53)
o

ﬁ"' 7, (54)

where Q=Q7, and f=f7,. The initial condition
will be given on the light “cone” for right traveling
waves

r(X,T=0)=0, (55)
Consistent with the derivation of (54) (see Sec.
III) the backscattered field is neglected:

A x=0,7)=0. (56)

Equations (53)—(56) are solved by constructing the
Green’s functions »( X, T; T') and Q/(X, T; T'),
satisfying

e o

-a—T£=nG+ (T -1, (57)
9

e )

and the boundary conditions
roX, T<T';T)=0, QX=0,T;T")=0. (59)

Integration of (57) with respect to T from 7’ -0
to T+ 0 yields

rdX, T=T"'+0;T)=1, (60)
since the “field” sic does not change in the passage
of the 6-function pulse. No backscattering implies

rlX=0,T>T";T')=1. : (61)

This relation also follows from integration of (57)
at X=0 from 7' -0 to T, using (59). For T>T’,
7, satisfies

8270
aTeX

=7g. (62)

This equation together with the symmetric boun-
dary conditions (60) and (61) is solved by change of
variables to 2[X(7 - 77)]*/2 (cf. Burnham and
Chiao®®). By linear superposition we obtain

X, D= [ ar LV ET=TV A1),  (69)

where I, is the modified Bessel function of order
0 and the subscript R has been reintroduced.

Initial condition (55) corresponds to (swept) ex-
citation of the atomic system by a right traveling
short electromagnetic pulse. For the SVEA of
left traveling components the initial conditions are
not given on the corresponding light “cone.” Dif-
ferent initial conditions are also met for uniform
(lateral) excitation. The resulting problems can
be solved using the Green’s function technique and
Riemann’s integration method.*® However, if the
escape time L/c is short compared with 7, the
results are essentially described by equations of
the form (63).

B. Mean-squared tipping angle

Starting from its upright position the collective
Bloch vector 7, moves down on the Bloch sphere.
According to (63), (45), and 6%=4r.r%, its mean-
squared tipping angle increases as

4 T
@x, =5 | a1 132/FT). (64)

Its phase ¢ , remains completely random:

(rz(X, T))=0, manifesting the absence of a pref-
erential direction of motion down from the top of
the Bloch sphere. We note once again that the
ensemble average corresponds to an average of
many repeated experiments. The initial develop-

ment of (6%) is determined by diffusion,

47\
A (Xr'r;) , (r<ty). (65)
For 7> T,, the gain due to the atomic inversion
makes the increase of (6%) at the end face x=L
purely exponential,

(6302 =(2aN) 2exp[2T/T )t 3] . (66)

We define the delay of the SF pulse as the time
needed for (6%) to become equal to one at the end
face. From (66) we now arrive at a major quan-
titative result of our quantum-mechanical and
fully retarded treatment of SF: the delay

7p = FE(IVZTN ). (67)

In contrast, mean-field quantum-mechanical treat-
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ments of SF yield a linear dependence of 7, on
InN (cf. Refs. 19, 25).

If we introduce an effective initial tipping angle
0, to simulate the effect of the fluctuating force f,
on (62), we obtain

Ooee, o(X, T)= O 2VXT) . (68)

At the end face and for 7> 7 the effective tipping
angle increases as

0 = 0o(4m) 2t ¥(7/7 ) * exp[2T/T) 2] . (69)

The increase is slower than exponential because
the effective initial tipping angle can be considered
to simulate a noise source acting for a finite time
only. In order to get equal delays from (66) and
(69), we thus need a value of 6,, which is some-
what larger than 2/V N, namely,

= [(4/N) In(2nN) /8] 2, 0)

With the present interpretation of the effective
tipping angle, (70) represents the value of 6, to
be used in numerical calculations on the basis of
the Maxwell-Bloch equations.

The above obtained exponential increase of the
tipping angle ceases to be valid for large tipping
angles. ‘In the effective initial tipping angle de-
scription, and ignoring chirp by taking ¢ , to be
constant, nonlinearity due to decreasing inversion
can be easily included. We find the Sine-Gordon
equation

eff,R

9 .
a—;’a’—'T'-ﬁ siné ., », (71)

with the initial and boundary conditions
ooﬂ,R(X’ T=O)= eofl.R(X= 0’ T)= 90' (72)

Such a set of equations has been studied by Burn-
ham and Chiao.* The effective tipping angle

B4¢¢, » €xhibits oscillatory behavior as a function
of X and T, called “ringing”. This is due to ex-
change of energy between the atomic system and
the field.

C. Statistics of the SF pulse
We define the probability density function
P¥a,a*,x,t) of the random variable 7, by

P a,a*,x,t)= (8(a - 7rg)0(a* - 7¥%)). (73)

The superscript a refers to the chosen antinormal
order of the corresponding atomic operators ®j
and ®}. Ensemble averages of the form (5r%%)
can be expressed as moments of the distribution
function,

('rﬁzr’,';")=fa’a*“Pg"(a,a*,x,t)dza , (74)

where the two-dimensional integral is over the
complex o plane. A convenient representation of
the probability density is obtained by expressing
the d functions in Fourier transforms. We obtain

P%)(aaa*’x’t)
-
= [ @gerrenwrarc (g et 0, (1)

with the characteristic function
CHlE, £%,x,1) = (e¥TR ™ k). (76)

By definition the characteristic function can be ex-
pressed in a linked average®’

Cplt, £*,x, 1) = exp[{erre R _ 1), ].  (77)

The term in square brackets is expressed in terms
of linked averages of the form

(FRT) T FRTD T

by expansion into a power series in £ and £* and
use of (63). All of these averages except

(FRDFHT D= (FLD T

vanish due to the Gaussian properties (43) and (44)
of f.. The characteristic function is thus given by

CHlE, &%, x, 1) = exp(= | £|*rgr®)) . (78)
Using ('75) we obtain the two-dimensional Gaussian
distribution

P a,a*,x,1)= exp(-;l(: IT/>(7RTR>) (79)
R" R

The Gaussian properties of the fluctuating Langevin
force f, ensure that the stochastic variation of the
collective Bloch vector 7, is a Fokker-Planck pro-
cess in two dimensions on the Bloch sphere. The
corresponding Fokker-Planck equation with di-
mensionless coordinates X (fixed) and 7' reads

aP-i"—I“‘(zf_) (80)

aT aaaa*’

where we have used (rzr§)=1(6%) and (64). Intro-
ducing, by analogy with »,=36, exp(z¢ =) ampli-
tude and phase of @ through o= én exp(ix), we find
that the probability p,dn?dy for 6% to be in between
7% and n*+dn® and ¢, to be in between X and X + dy,
is given by

dx exp(~n?/(6%)) . »
271_'—(52—)———'—(177 . (81)

This again illustrates that, starting from its up-
right position, there is no preferential direction
of motion for the collective Bloch vector on the
Bloch sphere. Moreover, it shows that the values
n? that 62, can take are exponentially distributed
with mean value (6%). Using (81) one can calculate

prdn®dx=
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all higher-order correlation functions (6%). As
expected for a two-dimensional Gaussian distribu-
tion (6})=2(62)%

It should be emphasized that the Fokker-Planck
description given here is restricted to small
tipping angles. Once decreasing inversion makes
the equations of motion nonlinear, a complete de-
scription of the stochastic behavior of the SF pulse
requires the introduction of correlation functions
of the type (R%)A®*)ARL)Y), (cf. Ref. 20).

Finally, we consider briefly the statistics of
the time delays of the SF pulse, i.e., the fluctua-
tions of the delay observed over many repeated
experiments. A discussion of the statistical prop-
erties of these pulses in terms of only time delays
assumes that the pulses have exactly the same
shape, but varying positions on the time axis.
Such pulses are furnished by extending (66) to

0,=(6,/2n) exp[27/T /%], (82)

where in accordance with (81) the random variable
6, has a probability density

pOD) = (67)™ exp[-67/¢67)] (83)
with (62)=2n/N. The statistics of the time delays
75(6,) =37, [In(6,/2m)]* (84)

is thus interpreted in terms of the stochastic be-
havior of the “initial” tipping angle 6,/27 as de-
scribed by (83). The mean delay () is given by

(Tp)= fdefp(ef)r,,(el)%—g(y%%), (85)

where y=y5+1n(27N) and y,=0.57721++* (Ref. 48)
is Euler’s constant. The mean delay differs only
slightly from the delay (67) of the “mean” pulse.
The mean-squared delay satisfies

Tiy=(Tp)%+ (%)2 [$7%p%+85(3)y+ %w“] , (86)

where the Riemann ¢ function £(3)=1.20205-- .48
The variance A7,= [(73)/(T,)* = 1]*/2 varies rough-
ly (error<10% for 10°<N<10%) as 2.3/InN. Sim-
ilar inverse logarithmic behavior has been de-
rived by Degiorgio'® from an “intuitive” model,
but the proportionality constant was 1.3 instead of
2.3. The difference is due to the fact that Degior-
gio used the linear dependence of 7, on Inf, as ob-
tained from a mean-field treatment of SF.

V. CONNECTIONS WITH OTHER
WORK AND CONCLUSIONS

Most fully quantum-mechanical treatments of
SF have started from master equations in some
sort of Markov approximation,213:15:16,19 oy _
ever, in general this amounts to leaving retarda-

tion out of account. Recently, this aspect has
been discussed at length by Ressayre and Tallet.?®

The semiclassical treatment of SF given by
MacGillivray and Feld® is substantiated by our
work. However, their fluctuating source differs
from ours. The effective initial tipping angle de-
rived by MacGillivray and Feld® equals
(V2aN)/qL)™/*, where aL=Tj/Ty is the am-
plitude gain at line center. In our opinion T}, be-
ing much larger than 7, in order to have ideal con-
ditions for SF, should not be involved in the initia-
tion of SF. Bonifacio and Lugiato® have justified
the 2/VN effective initial tipping angle from a fully
quantum-mechanical treatment.

The time delay of the SF pulse derived by us
satisfies T,=(7,/4)[InV21N ]%. Eberly and
Rehler' as well as Banfi and Bonifacio® obtain
Tp =T InVuN, where u ~\%/S. This would corre-
spond to an effective initial tipping angle ~1/V uN.
The origin of these incorrectly determined delays
appears to lie in the implicit assumption that all
spontaneous emission goes into the specified solid
angles (see also Ref. 29).

Our principal assumption has been that, for F=1,
SF is described properly by the interaction of
atoms with plane-wave end-fire modes. Consis-
tently, field inhomogeneities in a cross section
of the pencil are neglected. The problem of the
so-called ray formation was first tackled by Ernst
and Stehle'! by using a Wigner-Weisskopf type of
approach. Bonifacio‘and Lugiato® have dealt with
an all-mode quantum-mechanical treatment of SF.
The spirit of their work is that the resulting Max-
well-Bloch equations for the end-fire modes con-
tain extra loss terms. The magnitude of these
losses is subject to discussion,?+31s32:49

We have also neglected the coupling between the
two opposite running end-fire modes. One mode
acts as a diffraction grating for the other, which
thus introduces an internal reflectivity into the
problem. The effect of this coupling is unknown
in detail. It may, however, affect the above men-
tioned losses. i

Inhomogeneous broadening has been ignored in
our treatment: T}=«. Ressayre and Tallet®® and
Bonifacio and Lugiato® have included inhomogen-
eous broadening in their description of SF under
the assumption that atomic frequencies and posi-
tions are uncorrelated.

In conclusion, for a medium with density p sat-
isfying

Ao/ (272L) < p(Ao/2m)® <1,

a pencil-shaped active volume with a Fresnel num-
ber =1 and with the above assumptions, we have
quantum mechanically derived a description of the
initiation of SF in terms of Maxwell-Bloch equa-
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tions with a fluctuating field source. By the ad hoc
introduction of classical behavior these equations
are extended to include the description of nonlinear
behavior due to decreasing atomic inversion. The
initial development of SF is discussed in terms of
both the behavior of the mean-squared tipping an-
gle and the statistics of the tipping angle. The
quantum-classical correspondence suggested in
this paper is related to the quantum-c-number
correspondence introduced by Glauber®® and
Sudarshan® for the free-field case, and extended
to the case of interacting fields and multitimes
by Haken and Weidlich®? and by Lax.*7+53

The need still exists, and this may be the most
difficult problem in the theory of SF, for an qll
mode and fully retarded quantum-mechanical de-
scription of the initiation of SF from an arbitrarily

shaped but extended active volume, Also, the
transition to “classical” behavior of the SF pulse
and the limits of validity of the present approach
for higher density, especially with regard to the
role of the dipole-dipole interaction, deserves
further discussion.

Note added in proof. In the meantime, Glauber
and Haake have published a quantum-mechanical
theory of SF using normally ordered correlation
functions [R. Glauber and F. Haake, Phys. Lett.
A 68, 29 (1978)]. They arrive at essentially the
same results for the average behavior of the in-
itial growth of SF. The interpretation that the
quantum-mechanical average corresponds to an
average over many repeated experiments, not to
the result of one individual experiment (see our
Secs. III and IV), is not given in their paper.
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