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Theory of electromagnetic beams
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A relatively simple method for calculating the properties of a paraxial beam of electromagnetic radiation

propagating in vacuum is presented. The central idea of the paper is that the vector potential field is assumed

to be plane-polarized. The nonvanishing component of the vector potential obeys a scalar wave equation. A
formal solution employing an expansion in powers of mal is obtained, where mo is the beam waist and l the

diffraction length. This gives the same result for the lowest-order components of the transverse and

longitudinal electric field of a Gaussian beam that was derived by Lax, Louisell, and McKnight using a
more complicated approach. We derive explicit expressions for the second-order transverse electric field and

the third-order longitudinal field corrections.

I. INTRODUCTION

The theory of laser beams' has proven to be very
successful in describing the character of radiation
fields associated with stable spherical resonators.
-There are, however, two difficulties with the usu-
al treatment. First, the solution is based on a
paraxial approximation to the scalar wave equa-
tion, and no procedure is given for obtaining
higher-order corrections. Secondly, the reader
is typically told that the disturbance which approx-
imately satisfies the scalar wave equation is the
transverse component of the electric field, 2 but,
the other two components are not worked out.
These difficulties have been overcome in a paper
by Lax, Louisell and McKnight. 3 Their theory
starts with the exact Maxwel1. equations and ex-
pands the electric field vector in powers of svo/l,
where too and l are the scaling parameters for the
beam waist and diffraction length, respectively.
A contribution of the present paper to the theory
of paraxial beams is that our procedure is con-
siderably more simple than the one just mentioned.
This relative simplicity stems from our proposal
that the electromagnetic vector Potential is linear-
ly polarized, so that the nonvanishing component
of A obeys a scalar wave equation. (Note that it is
entirely consistent to assume the vector potential
of a paraxial beam of radiation is confined to a
single direction, whereas clearly this is not the
case for the electric or magnetic fields. ) By con-
trast, since Lax, Louisell, and McKnight deal
with the electric field, it is necessary for them to
solve a vector wave equation for E.

It is shown that our approach easily reproduces
the results of Lax, I ouisell, and McKnight for the
zeroth- and first-order fields of a Gaussian mode
propagating in free space. Additionally, we are
able to evaluate the second-order term in the ex-
pansion for the vector potential, leading to second-

and third-order corrections for the electric field of
a Gaussian beam in vacuum. This result, which to
my knowledge is new, should be of use in applica
tions where there is a need to obtain accurate sol-
utions for the electromagnetic field of a strongly
focused laser beam.

The profitability of the present procedure is
probably restricted to the free field case. When
a current exists which depends on the electric
field, in general, the assumption that the vector
potential is plane polarized fails. There is then
no longer any obvious advantage to the method.

II. DEVELOPMENT OF FORMALISM

Consider an electromagnetic field which, using
complex notation, varies as e'"'. In the Lorentz
gauge the vector potential obeys the inhomogeneous
wave equation

V'A + O'A =- (4v/c)7, (1)

where k =2m/X. Since the scalar potential is given
in terms of the vector potential via the Lor entz
condition,

4 =(i/k}& A (2)

the fields B and E may be expressed in terms of
A alone. We have

B=VxA,
E =- V@—i/A

=- (i/k)V(V A) —ikA.

To describe a paraxial beam, we assume A is po-
larized in the transverse direction. Use a Car-
tesian coordinate system where A is along the x
axis and the beam propagates along the z axis.
Then Eq. (1}reduces in empty space to the scalar
relation

V'A+A'A =0,
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where we understand A =A„(and A„=A, =0). An-
ticipating that the waves are nearly plane, we take

A(r) =4(r)e "',
where 4 is a slowly varying function. Inserting
(6) into (5) gives

V 4- 2zk —=Q .BC

az

(8)

A Gaussian beam has a width parameter zap at the
wais t. Introduce the dimensionless transverse

. variables x =wp$ and y =wpq. There is also a
characteristic diffraction or spreading length /

=Sup, so that we lets =Eg. With these new vari-
ables Eq. (7) becomes

8 . 84' 284
l(B(Y+ Bq2

@ 2&
~~

+&

where we have defined

s =wp/I = 1/kwp,

(8)

Note that so long as the beam waist parameter zap

is large compared to X, then s is small compared
to unity. Thus it is natural to seek solutions of
Eq. (8) of the form

0 =4P+S'C2+S'%4+ ~ ~ ~ . (9)

It is seen the lowest-order functions 4p and 4'2 obey

We now consider the electric field of the beam.
Since A =Ae&, one obtains

BAI
E =-—V —

)
—ikAe

k Bxj

iB'A . )~. i B'A i s'A „= ———~—zkA ie)-— 0, —— -e .kBx ) k ByBx 2 k coax

In terms of the dimensionless variables (g, q, g)
this becomes

2BA „2 BA
E =- ik s —2-+A eq+ s e2

B/Bg

3BA.+ '
BgBg "-~'

Consequently, the transverse component of E involves
only even powers of s, while E, involves only odd

powers of s. Since A. =4e ' ', we get
2 2

E=—Eke s
B

p+4 e(+ s e2
B Bvl

. ae, B'e&. 1
a a agp 3t'

Using Eq. (9), one can write in powers of s:
-kyz 2I ~ +p

t' 2

E--zke Cp+s II%2+ 2 + e
Bg

-Q2 g2

Bg' Bvj ' '
Bg

(Ioa)
+ 2 ~ +P 4 ~ +2+ '

BgBq
+' BLAB@+'''

( B2 82 8 82+
I, B]2+, 2

—
2&BT. ~2=-

B~2
~ (10b)

Equation (10a) is the starting point of traditional
Gaussian beam theory. The fundamental mode
solution is well known to be

0'p ——exp[—i(P+ Qp')],

where

8'kP . 3 8 4'2+, "
Bg

"
Bg

p2+
+iB]B)+''' eP

III. SOME APPLICATIONS OF THE FORMALISM

(12)

Q =1/i+2&, iP =—lniQ,

and we have put p = $2+q2. For completeness, we
mention that when Q is decomposed into real and
imaginary parts one obtains

iQ = w', /w' +i E/2R,

where

w(z) =wp(1+4& )'i

is the spot-size parameter, and

ft(z) =z~ 1+(

is the radius of curvature of the wavefront that
intersects the axis at z.

To lowest order in s, the components of E in the
x-y plane are given by

Z„=-zkepe~"

,=-k Bkp g pg 2Qx
a

These expressions are in agreement with results
given by Lax, Louisell and McKnight. 3 It is of
interest that in the region of the beam waist, that
is for z2« l2, we have Q- —i and therefore the
longitudinal component of the field is nearly in
phase quadrature with the transverse component.
At large distances from the beam waist, that is
for z2»l2, we have Q I/2z and hence E,/E„
--x/z. In this case, as strongly expected, the
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direction of the field lines nearly corresponds to
those of spherical waves originating at the beam
wais t.

Finally, we wish to obtain the second-order
function 42. For the purpose of gaining physical
insight, let us for the moment consider a diverging
spherical wave propagating from the origin. Such
a wave has an exponential factor

exp[-ik(z'+r')'~'],

where r =x +y . Along ther axis, the binomia, l
expansion leads to the paraxial approximation for
a spherical wave

ex[p-i~(z+r'/2 r/8-s + ")].
We now judiciously expand this in the form

[1 +is2(la/8m 3)p4+ ~ ~ ~ ] exp[-ill —i(l /2z) p ]

in which E, s, and p have the same meaning as
before. Remembering that for z»l the condi-
tion Q l/2z holds, this line of reasoning suggests
that 42 may be written

BQ 2 BP
B( '

Bg
—=- 2Q, =- 2iQ

have been used, it is seen that C obeys

BC—=-i 4Q,
ag

yielding

C =2iQ+c,

where c is an arbitrary constant of integration.
Evidently the boundary conditions of the problem
are satisfied if one sets c=0, giving

4, =(2iQ+iQ'p')4, . (14)

If we include corrections up to third order, the
electric field components in the x-z plane then
become

E„=-ike '"[0',+s'(-4Q)'+iQ'p')0, + ~ ~ ~ ], (15a)

E,=-ice '[ s(2Q-))%'0+s~(8Q3p2$

42 —(C +iQ3p )40,
- 2iQ4p $ +4i Q$)40+ ~ ]. (18b)

where C depends on Q alone. The coefficient C is
determined by inserting this, function in Eq. (10b).
Using the fact that

$2+
2' =(8Q —16iQ3p -4Q4p )%0

in which the relations

A similar approach, using the paraxial approxima-
tion (13)as a guide, could presumably be used to ob-
tain the higher-order functions +4, 4„etc., as de-
sired.
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