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We study three ways in which two-photon ionization, at high light intensities and near an intermediate-
state resonance, may -be described. We calculate the instantaneous ionization rate, the total ion count, and a
saturable rate constant. We find that the total ion count, which is the experimentally interesting quantity in
most cases, is very closely modelled by our saturable rate constant. The instantaneous ionization rate bears
no useful relation to the total ion count in many cases. In comparing these three descriptions of ionization we
have included the effects of detuning from resonance, finite light bandwidth, finite intermediate-state
lifetime, and light intensity; we have varied all of these parameters independently over several orders of
magnitude. Our conclusions are in good agreement with, and extend the findings of, Ackerhalt and Shore.

It is well known that the interaction of light with
individual atoms and molecules is, in the most
general case, poorly described by the Einstein
A and B coefficients.

However, in many realistic situations the phase
sensitivity of the Schréddinger and Maxwell equa-
tions, which in principle govern the light-matter
interaction process, can be safely ignored. In
these cases the Einstein coefficients for emission
and absorption are satisfactory as fundamental pa-
rameters of the interaction, and one writes so-
called “rate equations” for a radiative transition
as follows: ‘

:idT Ny =—Any +Ry5(n; = 1) , (1a)
a . _ ) (1b)
Et— ny =An, _Rw(nl -ny).

Here n, and n, are the numbers of atoms or mol-
ecules in energy levels 1 and 2, A is the decay rate
of level 2 due to spontaneous emission, and R, is
the stimulated transition rate between the levels
(i.e., Ry, =0,,®, where o,, is the absorption cross
section of the transition and & is the photon flux).
For simplicity we have taken level 1 to be the
ground level, and have assumed that the radiation
field is of such wavelength, polarization,..., etc.,
that transitions to levels other than 2 may be
ignored.

Of course, for the understanding of many ultra-
short laser-related optical phenomenal® it is insuf-
ficient to work with rate equations like Eqgs. (1),
even if allowance is made for the existence of
other energy levels, for collisions, for ionization,
for ensemble averages due to Doppler velocity dis-
tributions, and so on.

Recently, in connection with multiphoton ioniza-
tion experiments carried out with tunable, narrow-
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band, high-power lasers,? the question has arisen
whether rate equations provide a valid theoretical
description. Both analytic® and numerical? studies
of ionization have been made in model systems un-
der high-power excitation and a few studies® of
high-power processes® in specific atoms have been
completed. In many of these studies®™® it is pointed
out that the ionization rate (i.e., the negative time
derivative of the total number of atoms in bound
states) is not a simple numerical constant, but can
be strongly time dependent. This is supposed to
mean, among other things, that a simple rate-
equation treatment of the ionization process is not
valid.

In this note we investigate directly the question
of the possible validity of a simple rate-equation
treatment of high-power ionization.” To do this we
begin with the fully phase-preserving transition
operator or density matrix equations. We then take
three approaches to a solution of these equations:
(i) “Adiabatic” and approximate elimination of off-
diagonal coherence,®leading to a single ionization
rate constant. This rate is still dependent on reso-
nance detunings, laser power, atomic lifetimes,

“etc., of course, but is not time-dependent. (ii)

Direct numerical solution of the complete set of
equations, obtaining the rate of loss of bound state
population as a function of time as well as a func-
tion of all the parameters mentioned in (i) above.
(iii) Numerical integration of the rate found in (ii)
to obtain the total number of ions produced between
laser turn-onat ¢=0 and any later time £

As we show below, the first approach leads to the
“traditional” (except that it may be saturated) rate
constant. The third approach gives, strictly
speaking, not a rate but the ion count. It is closest
in definition to what is usually measured experi-
mentally. And the second approach obviously
gives, at every instant of time, the instantaneous
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222{2({2{{[{4('_/_ FIG. 1. Two-level atom
undergoing two-photon
A ionization. The two-level
I __L____ model is expected to be
k accurate if the detuning A
12) ;

of the laser from the inter-
mediate state |2) is
smaller than the detuning
Wo from any of the other
states of the real atom.

Y

ionization rate. What is perhaps surprising is
that over a broad spread of times and of ionization
parameters, the experimental ion count is very
closely approached in form, if not always in nu-
merical magnitude, by the traditional rate (multi-
plied by #). There is, practically speaking, no
significant correlation between ion count and in-
stantaneous rate in the high-power regime.

For our purposes the two-level ionization model,
studied many times in the past,® is adequate. The
complete dynamics, after elimination of the de-
grees of freedom associated with the two broad
continua in the problem (the electronic continuum
of the atom and the continuum of vacuum radiation
modes), is governed by four equations:

byz == [3 (A +W +Ry,) +iA]pyp = (3 )2(20,, — 1),

, (2a)

023 ="[% (A+W +R,,) - iA]p, + (%i)ﬂ(2022 -n),
(2b)
Gyp == (A +Ry.)055 = (38)2(pys = P21) (2¢)
n=—R,.0,, . (2d)

For the most part we follow the derivation

and notation of de Meijere and Eberly.® The
model is shown in Fig. 1. The Rabi frequency
is linear in the laser field strength and the one-
photon ionization rate from level 2 to the continu-
um, labeled R, is linear in laser intensity. The
model can be made to apply to more general situa-
tions than the one-photon-resonant two-photon ion-
ization shown in Fig. 1 simply by allowing £ and
R, to be proportional to higher powers of field
strength and intensity. The laser bandwidth full
width at half-maximum, denoted W, has been in-
serted without approximation according to the
phase fluctuation substitution rule discussed at
length by Wédkiewicz.® The spontaneous emission
rate connecting levels 2 and 1 is denoted 4, and
the detuning A = w,, - w is the amount by which the
laser frequency w falls short of the effective atom-

ic transition frequency w,,. Also, n=0,, +0,;,, SO
that » represents the fractional number of atoms
in either one of the two bound levels. The laser

is assumed to have constant amplitude, so both
and R,, are constant in time. Finally, for sim-
plicity only two bound levels are retained, so there
is no “direct” far off-resonance ionization channel
present,

The first approach to a solution involves solving
(2a) and (2b) and substituting the results into (2c).
The “solution” of (2a) and (2b) is understood in the
sense that the (presumably rapid) transients at
frequency I'(A) = |3 (A +W +R,,)+{A| are allowed to
die away and the slowly varying remainders are
kept?®

1
=1

P ==22 TGN AW iR,y oy (32)
. 1

P == AT AR, (2om =) (3D)

The same assuption about relatively rapid transi-
ents allows (2c) to be “solved”:

i 1
%% ==3 CZIR. (P12 = P21) - (3¢)
c
Then the substituion of (3a) and (3b) into (3c) gives

o o T i(A+W+R;,)
22 A+R,, A2+3:(A+W+R,,

B (205, — n) .

(4)

The “solution” for the rate entails the solu-
tion of (4) for o,, and its insertion into (2¢). After
dividing both sides by » we find

R, (4)

i = "—lz—— = e .
dt (lnn) RZc ZRIZ(A)"‘A +ch = Rmn(A)’ (5)

where Rlz(A) is given by

_ 9 A+W+R,,
Rlz(A)— 4 A2+} (A +W+R2c)2 .

6)

Note that from the definition of Rabi frequency:

2 =2d,,8/7, and intensity: I=(c/4n)[E%(#)],,
=(c/2m)&2, we can rewrite R,,(A) in more conven-
tional form

Rm(A):O]_z(A)Q- (7)

Here I=7iw® and 0,,(A) is the dipole absorption
cross section:

dnd3,wy 2

ic  A*+(3Ty,)*°
where I'), =A +W +R, is the total off-diagonal line-
width of the 1-2 transition. The expression for R,,
in (7) is a generalization of the R,, in (1) because
it is not linear in the intensity of the light: the
width I';, is intensity dependent.

0,(A)= (8)
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The completely saturated limit of (5) is clear.

When R, >A +R,, we find
Ricn= %ch‘ (9)

In other words, the stimulating field is so strong
that the fractional population in level 2 is 3, and
the net ionization rate is determined only by the
one-photon rate from 2 to be continuum. Incom-
plete saturation presents a much more complicated
picture, especially in the neighborhood of reso-
nance. This case may be analyzed by rationalizing
the denominator of R,, in (5). We find

9 A+W+R,,

4 A+R,,
Rion(A)= 2 2
. A2+(A +W+R22) L 22 AW R,
2 2  A+R,, .

(10)

Various limiting expressions that follow from (10)
when the laser power or bandwidth are large or
small or when the laser is on, or far off, reso-
nance have been explored by de Meijere and
Eberly.® They have exhibited R, , as a simultane-
ous function of A and W for several values of  and
R,., and we reproduce three of their rate surfaces
in Fig. 2.

The second approach to an ionization rate solu-
tion of Eqs. (2) is simply to integrate them numer-
ically, and display the results for 7#(¢) as a function
of the various parameters in the equations. Such
an integration istrivial in principle, and compli-
cated in practice only by the need to find the com-
plex roots of a quartic polynomial repeatedly for
many values of the ionization parameters. If we
let A;, j=1,...,4, be the roots of the determinant
of coefficients of Eqs. (2), then the solution for
n(t) is '

4
n(t)= E ae Mt (11)
=1

and the instantaneous rate at which ions appear
(bound state atoms disappear), given by —n(f):

) .
—a(t)= " rja et (12)
j=1

The initial conditions, 7n(0)=1, 0,,(0)=p,,(0)=p,,(0)
=0, determine the coefficients g; as functions of
A, W, &, R,,, and A. )

We have found the A’s and a’s numerically for a
wide range of values of W, 2, R,,, and A relative
to A. In Fig. 3 we show a typical series of results
for —7(¢) ve t. One sees very clearly the pro-
nounced Rabi oscillations that are characteristic
of coherent high-power laser-atom interactions.

(a)

L =0.A
Rp.=0.1A
max=0.0006

(b)

Q =A
Rpc=O.IA
max=0.03

103A
100A

FIG. 2. Ionization rate surfaces from de Meijere and
Eberly (Ref. 3). In each case the vertical height of the
surfaces gives point by point values of the ionization
rate Ry,, [Eq. (10)] as a function of both detuning A and
laser bandwidth W. Both detuning and bandwidth are
scaled in terms of the Einstein spontaneous emission
rate A appropriate to the intermediate state |2), and

. vary over several orders of magnitude. The Rabi fre-

quencies increase by a factor of 300 from (a) and (c).
The vertical scale of the three graphs is not the same.
The changes in scale are indicated by the maxima indi-
cated on the graphs. These maxima are the ionization
rates, in units of A, associated with the highest points
on the graphs, The half-tone regions are where a
single time-independent rate might naively be expected
to describe the ionization process (see de Meijere and
Eberly, Ref. 3).
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It is also clear that there is no consistent form for
the instantaneous ionization rate, considered as a
function of A, W, and time.

Finally, we show in Figs. 4—6 the time develop-
ment of the total ion count, i.e., 1-n(#), again
considered as a simultaneous function of A and W.
In Figs. 4-6 we have chosen the same values of
. and R,, as Fig. 2, values that correspond, respec-
tively, to unsaturated, intermediate, and highly
saturated excitation of the bound-bound transition
on resonance. The last graph in each of Figs. 4-6
reproduces the saturable rate of Fig. 2. ,That is,
it shows R,,, [given by (10)], for comparison with
the total ion count.

The conclusion that is suggested by . Figs. 4-6,
in comparison with Fig. 2, is that the “tradi-
tional” (but saturable) rate constant R, (A)
gives a surprisingly good picture of the ion-
ization process, measured by total ion count, after
a suitable time has elapsed. In strong contrast,
the instantaneous rate is practically useless for

FIG. 3. Ionization rate
surfaces similar to those
shown in Fig. 2. In this
case the instantaneous
ionization rate is shown as
a function of time for the
fixed values =104 and
Ry,=A. The pronounced
Rabi oscillations are con-
fined to the region of the
surface where the band-
width is not much larger
than the Rabi frequency.

MAX.=0.29

estimating 1~ n(¢). Note that R, ¢ is not actually
equal to 1 - n(¢), but is very nearly proportional

to it. In Fig. 5, for example, the ratio is

about 1.24, and the ratio is remarkably independent
of A and W over several orders of magnitude of
variation. To emphasize the closeness of function-
al agreement we show 1-#n(f) and R;,, superposed
in Fig. 7.

We do not have an explanation for the apparent
wide validity of R;,, as a quantitative measure of
ion count for low and high laser intensity, and near
to and far from resonance. Our finding does agree
qualitatively with an observation (Ackerhalt and
Shore, Ref. 4) that the instantaneous ionization rate
tends to oscillate with an average value very close
to that predicted by rate equations similar to (1a)
and (1b). However, our result is stronger because

- we have reduced our rate analysis to a single con-

stant R, ,, whereas the rate equations of Ackerhalt
and Shore [their Egs. (8) and (9)] are character-
ized by two decay constants.
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(b)

T=0.3
MAX. <0.0001

FIG. 4. Ionization rate
surfaces similar to those
shown in Fig, 2, In this
case the total ion count
1—-n(t) is shown as a func-
tion of time in graphs
(a)—(c); and in graph (d)
the corresponding “tradi-
tional” rate shown in Fig.
DETUN/NG AD\N\D""‘/ A 2 is reproduced for com~

AN parison. Thepoints A=A and
W=A are labeled on the

- - detuning and bandwidth
,iO.IA, Rac* O'UTI axes. The black dots on
the A and W axes label
values of A andW that are
one or more orders of
magnitude larger or smal-
ler than A. The range of
variation of both A and W
is over several orders of
magnitude in each graph.
The constant values of
Rabi frequency and one-
photon ionization rate are
shown in the figure.

(c)
T=20.0 @

TRADITIONAL
MAX.=0.0!11

(a) . (b)
T=1.0

T=0.1
MAX. <0.0001 -
~ —
DETUNING “D\N\DT“
LT 8k FIG. 5. Ionization rate

surfaces showing the total
' " ioncountl-#n(t) as a
function of time in (a)-(c);
and the “traditional” rate
(e) (d) of Fig. 2 in (d) for com-
parison. See Fig. 4 for
further details.

TRADITIONAL
RATE

T=10.0
MAX.=0.2499
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TRADITIONAL
RATE

The introduction of the concept of rate lineariza-
tion in the Laplace transform domain suggests a
rate-constant derivation procedure that is different
from the traditional “adiabatic” elimination of
off-diagonal coherence,®the procedure that was
employed above to derive R, ,. In the appendix we

FIG. 7. Superposition of the rate surfaces showing
the total ion count 1 —#(¢) and the traditional rate for
the case already shown in Figs. 5(c) and 5(d).

FIG. 6. Ionization rate
surfaces showing the total
ion count 1 -#= (%) as a func-
tion of time in (a)—(c);
and the “traditional” rate
of Fig. 2 in (d) for com-
parison. See Fig. 4 for
further details.

explain rate linearization in the Laplace domain
and use it to justify the significance of R, ,, but
only in a special case. Nevertheless, the use of
R;,, in analyzing multiphoton absorption and ioniza-
tion data appears to be strongly indicated. This is
particularly true in those cases where functional
behavior rather than an absolute rate is being mea-
sured. Two applications, to the near-resonant
power law of three-photon-resonant ionization in
cesium, and the laser-bandwidth-dependence of
two-photon absorption in sodium, *°willbe published
elsewhere. ’
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APPENDIX

One usually says that a rate constant provides
an accurate picture of a complicated process such
as is modeled by Egs. (2) if one of the eigenvalues
A; has a substantially smaller real part than any
of the others. Let A’ be the one with smallest real
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part. Then, after a time, the solution for n(¢) will
be well represented by

n(t)~a’e™ ™" (A1)

b

where a’ is that coefficient a; corresponding to x;
=)', The negative logarithmic derivative of n(t)
gives

—;—tlnn(t) A, (A2)
which is the analog of R, .

The question is: can one determine the proper-
ties of the smallest eigenvalue in any simple way?
To answer this question in a limited sense we
compute the Laplace transforms of Egs. (2). Let
the Laplace parameter be s. Then the transform
of 0,, may easily be shown to be

B2(s) =59%[(2s +T)/D(s)] , (A3)

where D(s) is the determinant of the coefficient
matrix of Egs. (2):

s+iT+iA 0 iQ  -3iQ
0 s+il-ia  -iQ 29
D(s) = L .
LiQ -3iQ s+T-w O
0 0 0 s
(A4)

Of course, in terms of the eigenvalues A; we also
have D(s) = (s +A,)(s +2,)(s +X ) (s +1,); and we can
obviously write

D(s)=A+Bs+Cs®*+Ds*+s*. (A5)

Now, if there is one very small root of D(s), it
should be sufficient, as far as that root goes, to
approximate D(s) by its linearized counterpart

[D(s)],, =A +Bs. (A8)
In other words, the linearized smallest root is
A.;in=—A/B. (A7)

This allows G,,(s) to be inverted trivially, From
the resulting o,,(#) and Eq. (2d) it follows that the
“linear” approximation to n(¢) is

[n(t)]“,, =e'(A/8)t. . (A8)

That is, the coefficient a,=a’ corresponding to Ay
=)’ is exactly one in this linearized limit. Thus it
is clear what the connection between 1 - x(¢) and A’
is in this case. Since )\’ is very small, by hypo-
thesis, we therefore have simply:

1-n(t)=1-[1-(A/B)t+-++]=(A/B)t, (A9)

so A/B is to be identified with R, .
The precise connection with our numerical obser-
vation that 1 - #x(f) = Rt is made by working out

the value of A/B and comparing it with R ione OnE
finds
A+WH+R,,
A+R,,
A _ @ R
-E = —Z- 2c*
2, (LY, & A+W+2R,,
A 2 2 A+R,,
(A10)

This is insignificantly different from R, , [Eq. (10)]
under the present assumption that A/B is small.
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FIG. 2. Ionization rate surfaces from de Meijere and
Eberly (Ref. 3). In each case the vertical height of the
surfaces gives point by point values of the ionization
rate Ry, [Eq. (10)] as a function of both detuning A and
laser bandwidth W. Both detuning and bandwidth are
scaled in terms of the Einstein spontaneous emission
rate A appropriate to the intermediate state |2), and
vary over several orders of magnitude. The Rabi fre-
quencies increase by a factor of 300 from (a) and (c).
The vertical scale of the three graphs is not the same.
The changes in scale are indicated by the maxima indi-
cated on the graphs. These maxima are the ionization
rates, in units of A, associated with the highest points
on the graphs, The half-tone regions are where a
single time-independent rate might naively be expected
to describe the ionization process (see de Meijere and
Eberly, Ref. 3).



