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We study three ways in which two-photon ionization, at high light intensities and near an intermediate-
state resonance, may be described. We calculate the instantaneous ionization rate, the total ion count, and a
saturable rate constant. We find that the total ion count, which is the experimentally interesting quantity in
most cases, is very closely modhlled by our saturable rate constant. The instantaneous ionization rate bears
no useful relation to the total ion count in many cases. In comparing these three descriptions of ionization we
have included the effects of detuning from resonance, finite light bandwidth, finite intermediate-state
lifetime, and light intensity; we have varied all of these parameters independently over several orders of
magnitude. Our conclusions are in good agreement with, and extend the findings of, Ackerhalt and Shore.

It is mell known that the interaction of light with
individual atoms and molecules is, in the most
general case, poorly described by the Einstein
A and B coefficients.

However, in many realistic situations the phase
sensitivity of the Schrodinger and Maxwell equa-
tions, which in principle govern the light-matter
interaction process, can be safely ignored. In
these cases the Einstein coefficients for emission
and absorption are satisfactory as fundamental pa-
rameters of the interaction, and one writes so-
called "rate equations" for a radiative transition
as folLoms:

d—~ =-&~+&»(ni —Z).
dt

d—n =An -R»(n, —n2) ~

dt
(1b)

Here n, and n, are the numbers of atoms or mol-
ecules in energy levels 1 and 2, g is the decay rate
of level 2 due to spontaneous emission, and 8» is
the stimulated transition rate betmeen the levels
(i.e. , R» =o»4, where g» is the absorption cross
section of the transition and 4 is the photon flux).
For simplicity we have taken level 1 to be the
ground level, and have assumed that the radiation
fieM is of such wavelength, polarization, . . . , etc. ,
that transitions to levels other than 2 may be
ignored.

Of course, for the understanding of many ultra-
short laser-related optical phenomena' it is insuf-
ficient to work with rate equations like Eqs. (1),
even if allowance is made for the existence of
other energy levels, for collisions, for ionization,
for ensemble averages due to Doppler velocity dis-
tributions, and so on.

Recently, in connection mith multiphoton ioniza-
tion experiments carried out with tunable, narrom-

band, high-pomer lasers, 2 the question has arisen
whether rate equations provide a valid theoretical
description. Both analytic' and ngmerical4 studies
of ionization have been made in model systems un-
der high-power excitation and a few studies' of
high-power proeessese in specific atoms have been
completed. In many of these studies' ' it is pointed
out that the ionization rate (i.e., the negative time
derivative of the total number of atoms in bound
states'I is not a simple numerical constant, but cari
be strongly time dependent. This is supposed to
mean, among other things, that a simple rate-
equation treatment of the ionization process is not
valid.

In this note me investigate directly the question
of the possible validity of a simple rate-equation
treatment of high-pomer ionization. v To do this me
begin with the fully phase-preserving transition
operator or density matrix equations. Vfe then take
three approaches to a solution of these equations:
(i) "Adiabatic" and approximate elimination of off-
diagonal coherence, ' leading to a single ionization
rate constant. This rate is still dependent on reso-
nance detunings, laser power, atomic lifetimes,
etc., of course, but is not time-dependent. (ii)
Direct numerical solution of the complete set of
equations, obtaining the rate of loss of bound state
population as a function of time as mell as a func-
tion of all the parameters mentioned in (i) above.
(iii) Numerical integration of the rate found in (ii)
to obtain the total number of ions produced between
laser turn-onat t=o and any later time t.

As we show below, the first approach leads to the
"traditional" (except that it may be saturated) rate
constant. The third approach gives, strictly
speaking, not a rate but the ion count. It is closest
in definition to mhat is usually measured .experi-
mentally. And the second approach obviously
gives, at every instant of time, the instantaneous
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FIG. 1. Two-level atom
undergoing two-photon
ionization. The two-level
model is expected to be
accurate if the detuning 4
of the laser from the inter-
mediate state

~ 2) is
smaller than the detuning
from any of the other
states of the real atom.

ic transition frequency &». Also, n=o»+g», so
that pg represents the fractional number of atoms
in either one of the two bound levels. The laser
is assumed to have constant amplitude, so both Q
and A2, are constant in time. Finally, for sim-
plicity only two bound levels are retained, so there
is no "direct" far off-resonance ionization channel
present.

The first approach to a solution involves solving
(2a) and (2b) and substituting the results into (2c).
The "solution" of (2a) and (2b) is understood in the
sense that the (presumably rapid) transients at
frequency I'(6) -=(2 (A+W+R„)+id,[ are allowed to
die away and the slowly varying remainders are
kept'

ionization rate. What is perhaps surprising is
that over a broad spread of times and of ionization
parameters, the experimental ion count is very
closely approached in form, if not always in nu-
merical magnitude, by the traditional rate (multi-
plied by t). There is, practically speaking, no

significant correlation between ion count and in-
stantaneous rate in the high-power regime.

For our purposes the two-level ionization model,
studied many times in the past, ' is adequate. The
complete dynamics, after elimination of the de-
grees of freedom associated. with the two broad
continua in the problem (the electronic continuum
of the atom and the continuum of vacuum radiation
modes), is governed by four equations:

p» =-[-,'(A+W+R„}+id]p» —(2i)Q(2o22 —n),
(2a)

p„=—[-,
'

(A +W +R„)—iA] p»+ (2 i)Q(2o22 —n},
(2b}

d22 = - (A +R2, )o22 —(2 2)O(p» —p„),
n= -R„a'».

(2c)

(2d)

For the most part we follow the derivation
and notation of de Meijere and Eberly. ' The
model is shown in Fig. 1. The Rabi frequency 0
is linear in the laser field strength and the one-
photon ionization rate from level 2 to the continu-
um, labeled P„,is linear in laser intensity. The
model can be made to apply to more general situa-
tions than the one-photon-resonant two-photon ion-
ization shown in Fig. 1 simply by allowing 0 and8„to be proportional to higher powers of field
strength and intensity. The laser bandwidth full
width at half-maximum, denoted W', has been in-
serted without approximation according to the
phase fluctuation substitution rule discussed at
length by Wodkiewicz. ' The spontaneous emission
rate connecting levels 2 and 1 is denoted A, and
the detuning ~ = m» —v is the amount by which the
laser frequency ~ fall@ short of the effective atom-

1
—(/2)(A W R )

I, 1
~+(/2)(A+W+R )

The same assuption about relatively rapid transi-
ents allows (2c} to be "solved":

1
&22 -

2
fl

A R (p» - p2i) ~

2c
(3c)

—,(inn) =-R„,", „„=-R;..(~), (&)" 2R»~~~+W+Z„

where R»(a) is given by

Q A + W+R2~
4 6 + g (A +W+R2 )

(6)

Note that from the definition of Rabi frequency:
0=2d»h/5, and intensity: I=(c/4s)[E2(i)],

„

= (c/2v)P, we can rewrite R»(a) in more conven-
tional form

R„(S)=o„(a)4.
Here I=Ra&4 and o»(b, ) is the dipole absorption
cross section:

1
4md „-,I"„

a. ~+(-r )
~

where 1» =2+8'+A„is the total off-diagonal line-
width of the 1-2 transition. The expression for 8»
in (7) is a generalization of the R» in (1) because
it is not linear in the intensity of the light: the
width I'» is intensity dependent.

Then the substituion of (3a) and (3b) into (3c) gives

0 2 (A+W+R„)
22 A+R ~2+ & (A+W+R )2 22

(4)

The "solution" for the rate entails the solu-
tion of (4) for o22 and its insertion into (2c). After
dividing both sides by pg we find
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The completely saturated limit of (5) is clear.
When R»»A+R„we find

R;,„=-'R, . (9)
In other words, the stimulating field is so strong
that the fractional population in level 2 is —,', and
the net ionization rate is determined only by the
one-photon rate from 2 to be continuum. Incom-
plete saturation presents a much more complicated
picture, especially in the neighborhood of reso-
nance. This case may be analyzed by rationalizing
the denominator of 8» in (5). We find A' '

00

& ion(&) =

O' A+m+R, .
4 A+R„

A+W+B2, li Q A+W+B2

(10)

Various limiting expressions that fo]low from (10)
when the laser power or bandwidth are large or
small or when the laser is on, or far off, reso-
nance have been explored by de Meijere and
Eberly. ' They have exhibited R;,„asa simultane-
ous function of ~ and 5 for several values of Q and

R„,and we reproduce three of their rate surfaces
in Fig. 2.

The second approach to an ionization rate solu-
tion of Eqs. (2) is simply to integrate them numer-
ically, and display the results for n(t) as a function
of the various parameters in the equations. Such
an integration is trivial in principle, and compli-
Gated in practice only by the need to find the com-
plex roots of a quartic polynomial repeatedly for
many values of the ionization parameters. If we
let A, ~, j= 1, . . . , 4, be the roots of the determinant
of coefficients of Eqs. (2), then the solution for
n(t) is

100

1

10

)OOA (OOA

OA
A

.05

4

n(t) = Q a,e ~~',

and the instantaneous rate at which ions appear
(bound state atoms disappear), given by -n(t):

-n(t) = Q A~ ay e
/=1

(12)

The initial conditions, n(0) = 1, o»(0) = p»(0) = p»(0)
= 0, determine the coefficients a& as functions of

A, W, Q, R„,and~.
We have found the A. 's and a's numerically for a

wide range of values of S; 0, R~„and b, relative
to A. In Fig. '2 we show a typical series of results
for -n(t) vs t. One sees very clearly the pro-
nounced Habi oscillations that are characteristic
of coherent high-power laser-atom interactions.

(OOA

FIG. 2. Ionization rate surfaces from de Meijere and
Eberly {Ref.3). In each case the vertical height of the
surfaces gives point by point values of the ionization
rate R&, [Eq. (10)] as a function of both detuning 4 and
laser bandwidth %'. Both detuning and bandwidth are
scaled in terms of the Einstein spontaneous emission
rate A appropriate to the intermediate state ( 2), and

' vary over several orders of magnitude. The Rabi fre-
quencies increase by a factor of 300 from (a) and (c).
The vertical scale of the three graphs is not the same.
The changes in scale are indicated by the maxi. ma indi-
cated on the graphs. These maxima are the ionization
rates, in units of A, associated with the highest points
on the graphs. The half-tone regions are where a
single time-independent rate might naively be expected
to describe the ionization process (see de Meijere and
Eberly, Ref. 3).
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FIG. 4. Ionization rate
surfaces similar to those
shown in Fig. 2. In this
case the total ion count
1—n(t) is shown as a func-
tion of time in graphs
(a)-(c); and in graph (d)
the corresponding "tradi-
tional" rate shown in Fig.
2 is reproduced for com-
parison. The points 4—-4 and
4K=A are labeled on the
detuning and bandwidth
axes. The black dots on
theA and W axes label
values of & andW that are
one or more orders of
magnitude larger or smal-
ler than A. . The range of
variation of both 4 and 8'
is over several orders of
magnitude in each graph.
The constant values of
Rabi frequency and one-
photon ionization rate are
shown in the figure.

(a)

op&op&+
G ~

(c)
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TRA
RAT

FIG. 5. Ionization rate
surfaces showing the total
ion count 1-is(t) as a
function of time in (a)-(c);
and the "traditional" rate
of Fig. 2 in (d) for com-

- parison. See Fig. 4 for
further details.
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part. Then, after a time, the solution for n(t) will
be well represented by

n(f)-a'e ~', (A1)

Now, if there is one very small root of D(s), it
should be sufficient, as far as that root goes, to
approximate D(s }by its linearized counterpart

where a' is that coefficient a, corresponding to X,.
The negative logarithmic derivative of n{t)

gives
In other words, the linearized smallest root is

A/-B.

(Ae)

(A 7)

(AS)

where D{s) is the determinant of the coefficient
matrix of Eqs. (2):

D(s) =

s+ gI'+ i4

s+ -,'I' -ig -iA
——'iQ s+ I' —W'

--'i 02

which is the analog of B;,„.
The question is: can one determine the proper-

ties of the smallest eigenvalue in any simple ways
To answer this question in a limited sense we
compute the Laplace transforms of Egs. .(2). Let
the I aplace parameter be s. Then the transform
of o„may easily be shown to be

This allows o»(s) to be inverted trivially. From
the resulting o~, (f) and Etl. (M) it follows that the
"linear" approximation to n(t} is

[ (f)] e (A/8)t (A8)

That is, the coefficient a& = a' corresponding to A&
=~' is exactly one in this linearized limit. Thus it
is clear what the connection between 1- s(t) and ~'
is in this case. Since A. is very smaIl, by hypo-
thesis, we therefore have simply;

1- n(f)=1- [1-(A/B)t+ '''] =(A/B)t (A9)

A +TV+82,
2+82,

so A/B is to be identified with &,-.„.
The precise connection with our numerical obser-

vation that 1-n(t} = It;.„tis made by working out
the value of A/B and comparing it with B,,„.One
finds

(A4)

Of course, in terms of the eigenvalues A,,- we also
have D(s) = (s+A. ,)(s+A.,)(s+A. j(s+A.,); and we can
obviously write

~(I" p O' A+W+2B,.
~~2& 2 A+A„

(A10}

D(s) =A+ Bs+ Cs'+ Ds'+ s (A5)
This is insignificantly different from R,,„[Eq.(10}]
under the present assumption that g/B is small.
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