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Resonant multiphoton ionization by finite bandwidth multimode radiation is investigated without the
restriction of either a “long” or a “short” correlation time of the field. By approximating the multimode
radiation by a stochastic model of a chaotic field, the stochastic atomic-density-matrix equation is reduced to
a tractable infinite set of differential equations. For a given bandwidth this set can be suitably truncated and
numerically integrated. For large-bandwidth fields it turns out that these truncated equations constitute a
systematic improvement of the method usually employed of decorrelating the atom-field variables. For zero-
bandwidth fields the well-known result is recovered in that the statistical averaging of the ionization
probability reduces to an average with respect to the Glauber P-distribution function of the chaotic field.
Detailed results of numerical calculations for two-photon ionization are presented which reveal a number of

new interesting features.

1. INTRODUCTION

Recently a number of authors have investigated
theoretically resonant multiphoton ionization
(RMPI) in intense multimode laser fields.!*” The
multimode laser field is usually approximated
by an ideal chaotic field (CF) which is known to be
a good model for a multimode laser with a large
number of uncorrelated modes.® But up to now
only the limiting cases of long and short correla-
tion time, i.e., small and large bandwidth, of the
CF have been considered, where “long” and
“short” corresponds to a comparison of the time
scale of the atom as determined by the induced
widths, shifts, and Rabi frequencies of the atom
with the time scale of the fluctuations in the CF.!-7
In the limit of long coherence time the laser can
be assumed to be monochromatic and the averaging
of the ionization probability (IP) with respect to
the fluctuations in the CF reduces to a simple
averaging with respect to the Glauber P-distribu-
tion function® of the CF.1-%1° The limit of short
correlation time has been treated by statistical
factorization assumptions,®” because the fluctua-
tions in the atomic populations are much slower
than those in the CF. However, as has been point-
ed out by Georges and Lambropoulos,*! theories
employing decorrelation assumptions are neces-
sarily weak-field theories. If the intensity is in-
creased, the correlation time becomes comparable
to the atomic time scale, and no rigorous solution
exists, however urgently it may be called for by
current experiments.® In this paper we attempt
a solution of the problem of RMPI by intense finite
bandwidth CF’s.

To this end, a certain stochastic model for the
CF is introduced. As a consequence, the atomic
density-matrix equations describing the resonant
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interaction with this field—originally a system

of stochastic differential equations—are reduced
to a tractable infinite set of differential equations.
For a given bandwidth of the field, this set can be
suitably truncated and hence numerically integrat-
ed. It turns out that for large-bandwidth fields,
these truncated equations constitute a systematic
improvement of the decorrelation results of
Agostini ef al.® When the bandwidth of the field

is small, their solutions are good approximations
only for interaction times not much larger than a
few inverse Rabi frequencies or ionization rates,
which, however, is just the time interval most
interesting in the RMPI process. In a series of
figures, we present the time evolution of the IP
and populations of the resonant bound states as a
function of the bandwidth. We also study the dis-
persion curves and the dependence of the IP on
the Rabi frequency and ionization rate from the
exited state.

II. AMODEL FOR RESONANT
ATOM-MULTIMODE-LASER INTERACTION

A multimode-laser field with a large number
of uncorrelated modes can be represented to a
good approximation by a nonmonochromatic CF.®
More specifically, we assume a model of chaotic
light®* where the amplitude of the electric field
E(¢)=x(t) +iy(¢) obeys the Langevin equations!?2°

dx

dy
.Et—=—bx+Fx(t)’ ?d't_=—by+Fy(t)’ (1)

F(¢) and F, are Gaussian random forces with
(F()F (")) =(F ()F (¢)) = bI,0(¢ - t')

and
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(F()F,(t')=0.

Therefore, E(t) obeys a normal Markov process.
The meaning of b and I, and the chaotic nature of
the light described by (1) can be established by
calculating the correlation functions. To do this,
we describe the stochastic process (1) by its
associated Fokker-Planck equation'? (8/8¢+L)P
=0 as this is the approach on which we will ex-
tensively rely in later sections. P is the distribu-
tion function and L is the Fokker-Planck operator
which for our model assumes the form

82 92
L=2b(—-:7(l-10)—I 2k ) (2)

%32 " T 4I 3¢,

Here we eliminated x and y in favor of the inten-
sity I and phase ¢ according to x+iy=vIei®, Now
we easily find with the help of the Green’s function
P, ¢,t|I', $',¢') of the Fokker-Planck equation
that the stationary two time correlation function

G, t") = ((E*()E@") ]

is given by*°
Gl 1)
=fdzd¢d1'd¢'(ﬁe‘°)°‘P(I,¢,tII’,¢’,t’)
X (VT%e ) P(I’, ¢, ¢")
= QIS bl -t

= !(G(l,l)(t’ tl))a s (3)

,—A+%i71(1) 0 Ve e _y()e-ie

QU, 9)= 0 —A+zin,() -V(De™® V(I)e™°
Ve™®  _v(De e iy,(1) 0
-Ve e  Ve*e 0 0 |

and A=0w— wyy. Wy, is the atomic transition fre-
quency and w is the mean frequency of the incident
chaotic light. The coupling between |0) and [1) is
determined by

v =1z Y
ieeej#1,0

with the atomic dipole matrix elements -ﬁij and

the polarization vector of the radiation field €.

("—’:oig) e (_—‘Ijl.é)
(woi+ @)+ [wo;+(a - 1)w]

(5)
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which is a typical property of CF’s.® Thus it
turns out that I, and b must be identified with

the mean intensity and bandwidth of the field,
respectively. The frequency spectrum has a
Lorentzian shape. By comparison, the same
correlation function for a single-mode laser with
a diffusing phase would be

G(a'a)(t, ¢ =Ige-azbl t-¢'l

(Ref. 23).

The resonant interaction of an atom with the
above chaotic light field is most simply described
in terms of a two-state atom with levels |0) and
[1) coupled to the continuum.'*-!" The nonreso-
nant levels can be treated by perturbation theory
leading to Stark shifts, ionization widths, and
higher-order corrections to the Rabi frequency.*
Of these nonresonant contributions, in the follow-
ing only the ionization rate from the upper state
]1) to the continuum is kept. Furthermore, we
assume the lower state ]0) to be resonantly coup-
led to |1) by the absorption of a photons while the
ionization from ,1) requires the absorption of 8
photons. Then we find for the slowly varying den-
sity-matrix elements®

Pw(t)

.d Poy (2)
i—+QU(), 6(1)) [ =0
( a > Pn(t)

Poo(t)

4)

with

7,(I) is given by
(=0,8)* * (=K ,8) z

,-...Z,-ﬂ"o (wy+ @)=+ [wy;+ (8- 1)00] :
(8)

y,(I) = 2I®

BothV and ¥, depend on I(¢) and are therefore
stochastic functions of time. In principle, the IP
{P(t)) can now be found by solving (4) for p,,(?)
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and p,,(¢) and averaging with respect to the field
fluctuations:

(P(£))=1 = oy, (1)) = oot . W)

The system of stochastic differential equations
(4) is very difficult to solve. Only in the limits of
large-bandwidth fields V(I(¢)), 7,(I(¢))<<b and,
trivially, monochromatic radiation (b=0) general
methods of solution have been given.!® Instead of
pursuing a direct integration of (4), we make use
of a theorem'® stating that the averaged popula-
tions {p,,(#)> and {py(t)) can be found by solving
the system of partial differential equations

pioll, ¢, 1)
(i3 +2) +e0, o)

pall, &,8) | _, (@)
pull, ¢,2)
Pooll, ¢, 2)
with the intial condition
i, &, 1) =$p;,(t=0))Pyo(I, ¢),
where L is the Fokker-Planck operator (2) and
Py, ¢)=(1/27,)e"" To

is the stationary solution LP,,=0 of the Fokker-
Planck equation. The statistical averages can then
be found from

Guen=["ar [“asp,u,0,0. (9)

This formulation is usually more easily acces-
sible to systematic analysis than the original
equations (4). The same approach has been used
previously in the context of interaction of a two-
level system with a single-mode laser with a
diffusing phase and has led in a simple way to
exact solutions.!®

III. RESONANT MULTIPHOTON IONIZATION BY
MONOCHROMATIC CHAOTIC FIELDS

If the bandwidth of the CF can be neglected, i.e.,
the multimode laser has a large number of modes
of the same frequency, the operator L drops out
of (8), and (8) becomes formally identical with the
usual density matrix equation depending only
pavametrically on I and ¢. The corresponding
solutions

=0, qa+p el 41— q-=p o i)t
P, ¢, 1) = | 2q + = 27 , (10a)

Ry 2, 2
pu O(I d)’ t) = ’ Zz_(;_)(et(ﬁ-a)t - et(ﬂ*q)t) (].Ob)

with

p=3[a+3n0],

q={3la+%iv,(D)]?
and

pos o, p,t=0)=1, p%°(, ¢,£=0)=0

haye been given by Beers and Armstrong!* in their
investigation of RMPI by monochromatic coherent
single-mode laser fields. In view of (9) we find
for the statistically averaged IP

=1~ ["at [ a0 Pott, 9ot 0,0

JV(I) 12}1/2

+085°U, ¢,8)].
(11)

This result is well known: for infinite correlation
time the statistical averaging reduces to an aver-
age with respect to the Glauber P-distribution
function® of the CF Py (I, ¢).1-%1°

In general, (11) can only be integrated numer-
ically. We readily verify, however, that many
of the analytical formulas that have so far been
published on RMPI by monochromatic CF’s are
special cases of (11). For example, for Q<y,,
%t>1, and o> B, we find->*%5

d f L1 Qe '

2 dxe™ =

i (P@t)= xe _—(W (12)
with = |2V({l,) | and 7, = 7,(I,) while for Q< y, and
Y,£<<1 (11) reduces to*®

Q'ylx“
2 Azt QP4°

& (pn= [ "avers (13)
2 and 7, denote the Rabi frequency and ionization
rate at I=I,. Both expressions yield the well-
known off-resonance factor (a+ 8)! which on-
resonance reduces to (@ - B)! and B!, respective-
ly. However, the range of validity of these analy-
tical expressions is so restricted that hardly more
than a qualitative insight can be gained from them
in the general case. Moreover, there is little
more numerical labor involved in evaluating (11)
directly. Results of such calculations will be
presented in Sec. V.

IV. RESONANT MULTIPHOTON IONIZATION BY
FINITE-BANDWIDTH FIELDS

For finite-bandwidth fields we solve the system
of partial differential equations (8) by expanding
pi;I, ¢,¢) in the complete biorthogonal set of
eigenfunctions ¢,, and P, of L'%2°

piIs ¢, 8)= ZP“(I,WD 7

with
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0370 = [ a1as 02,0, 9oL, 6,1). (14)

The functions ¢,, and P,, are solutions of LP,
=0y, Py, and L, =A@, . respectively. Ex-
plicitly, they are given by

Pooll, $)= P, 5~
with

PuD =T (G ey

/2 lal/27 lal
-, 10 o
+la|)') et LT )

(@=0,+1,...;7=0,1),

and (15)

Panls $) = @a,l)e™™°

TR N TN

- A+zAw)p01 + Z [z’l((pan’ %P,

&!& &l&&h

T, Y

m
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)05 — (‘Pana V)P, )03 +(@g s VIP,,)0oe]=0,

with
1 1/2
P (1).—_(__@'__) del/zplel
5 (n+ |a|)! "

where x=1I/I,. The eigenvalues are A .=b(2n
+|a|). LX(x)are Laguerre polynomials as de-
fined by Gradsteyn and Ryzhik. In view of ¢y ,=1,
we have

oi,E0=p3D). (16)
By inserting the ansatz (14) into (8) we are led to
an infinite system of differential equations for the
unknown coefficients p$7(¢):

A+2A-an>p;0n+ Z [%i(qo-an’ YI(I)P-am)pltgm +(¢4n’ V(I)POm)p _(-ctn’ V(I)Pom)pOO]

1m

AorI)pu + Z [Z((Pom 7’1(1)P0m)P +(¢0n’ V(I)P-am)p - ((Pom V(I)Pam)pglm =0,

(i 5 + ton) i - % ou, VP o 038" ~ (o VIDP o8]

The matrix elements are easily calculated with the help of

(n+a+1)”26",m—n”26

(n+|a])*'?s, ,—(n+1)*%5
(n+ a)“zém = (n+1)/28

(n+|a|+1)2%5,  —n''?5

(‘pan, ﬁPa +1m)=m {
((Pdn’ﬁpa-lm):‘/_l—o {

(@ans I Pom) =Ty {=[0e+ 1)+ [a|+1)]*/20

ny m=

For an atom initially in the ground state, these
equations must be solved subject to the initial con-
dition

pailj"(tzo)z 8100 70000050 - (19)

The usefulness of this expansion method depends
on the convergence of the series (14), since in
practical calculations only a few terms can be
kept. We first investigate the possibility of such
a truncation for large-bandwidth fields (2, v, <)
in the near-resonance region. For these, we
readily verify that the truncated set of differential
equations yield solutions which are approxima-
tions in the sense of a power series expansion in
Q/b<1 and 7,/b< 1. To lowest order, if only

nym+1 9
n,m=12
n,m=12

n,m*l b

1t9,

a=0

a<0,

a>0 (18)

as<0,

m "[n(n+ ,a l)]l/zén,m*l}'

the first term in expansion (14) is kept, it turns
out that (17) becomes identical with the decorrela-
tion results of Agostini et al.® If, in this approxi-
mation, we adiabatically eliminate the nondiagonal
elements, i.e., neglect the time derivatives (d/
dr) p;d®=0, (d/dt)pi°=0 according to Q, ¥, < b,
we find a rate equation for the populations of the
resonant states:

% {Poo? = = Wlpoe) + Wlpy,)
) (20)
'd—t<p”'>= =W+ B17,)0,) + Wlpoo) 5
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W=a!ls22 ab+[(a+ﬁ)l/2al]71

27 A%i{ab+[(a+p) /22! Ir, )P @

may be interpreted as the transition probability
per unit time |0)— [1) while B!v, gives the ioniza-
tion rate from |[1) to the continuum. The modifi-
cations as compared with the finite-bandwidth
single-mode case™? are the factorial enhance-
ment factors a! and B! for the transition prob-
abilities which are typical of CF’s.?® Note that
also the width of the Lorentzian in (21) due to.
ionization is increased by (@ + 8)!/a!. Similarly,
a second-order Stark shift, which has not been
included in (21) would have been increased by a
factor a+1. The solution for {(P(¢)) is found to be

(P(t»: 1 —% é—;ﬁ e'(A'B)‘.;.% A%Be%A*-B)t (22)

with
A= W+%ﬁ!71 and B= [W2+(%B!71)2]1/2'

Depending on W< 381y, or W>$81y,, a “bottle-
neck” for the ionization process occurs in the
first or second step and the atom ionizes with
the rate

sWBIv/(W+3B81v,), (23)

which closely parallels the corresponding result
for the nonmonochromatic single-mode field.”2s
The off-resonance factor (a+ B)! is correctly
reproduced by the rate equations for large de-
tuning A>Q, ¥, b

d(P) _
=5 =(a

1Q%, 1Q%ab
ol X 3 1=
1 T

+p)! . (24)
The factor proportional to b stems from the on-
resonance component of the Lorentzian spectrum
of the CF” and does not vanish for large detunings
due to the long tail of the Lorentzian.!' Since a
realistic laser spectrum has a cutoff,'® this is an
unphysical feature of models with Lorentzian fre-
quency spectra®™2® and restricts their application
to the resonance region.

When the bandwidth of the field is small (2,7,
2 b) in the near-resonance region, the truncated
expansion can be expected to converge only for
interaction times of the order of a few inverse
Rabi frequencies and ionization rates.'®* How-
ever, this condition is far less restricting than it
may seem since this time suffices to ionize most
of the atoms. The accuracy of the result so ob-
tained can be easily assessed for 5=0, where one
would expect the convergence to be worse, since
the exact solution [cf. Eq. (11)] is known in this
case. This is done in Sec. V, where the numeri-
cal solution of (17) for various values of b is

graphically represented together with the exact
solution for b=0.

V. NUMERICAL RESULTS AND DISCUSSION

In general, the truncated set of differential
equations (17) must be solved numerically. Re-
sults of such calculations are presented in Figs.
1-6 for (P(t)), {p,,(t)), and {p,(¢)) for the case
of two-photon ionization, i.e., a=8=1, In all of
these figures, the results for the single-mode
field with 5=0, i.e., a monochromatic coherent
radiation field with constant amplitude and phase,
are compared with those for the CF, whose amp-
litude is distributed according to a Gaussian func-
tion,? with 5=0, 0.5, 1, 2, and 5, respectively.
The case of zero-bandwidth field has been calcu-
lated both with nine terms (Figs. 1-4) or five
terms (Figs. 5 and 6) of the expansion method
and the exact expression (10) in order to assess
the accuracy of the former.

A. On-resonance time evolution

The nine figures 1(a)-3(c) show the on-reso-
nance time evolution (A=0). In all of them, the
letters (a), (b), and (c) stand for (P(£)), {o.,(£)),
and {p,,(#)), respectively, while the first figure
index denotes a specific value of the ionization
rate 7;. In particular, in the three sets of figures
1, 2, and 3 ¥, takes on the values 0.2, 2, and 5,
respectively. The Rabi frequency is kept constant
at =1 throughout. ’

In Fig. 1 the condition 2=1> 3y, =0.1 is satis-
fied. In the single-mode case well-resolved Rabi
oscillations appear in the population of the ground
and excited states [Figs. 1(b) and 1(c)]. The be-
havior of the ionization process for times 7,£<1
is well described by formula (18) of Beers and
Armstrong.'* The corresponding IP for mono-
chromatic CF’s is given by (13). As described
by these equations, the on-resonance IP is the
same for the single mode and CF for ¢<1/7,. This
behavior is clearly brought out in Fig. 1(a). For
large interaction times ¢<1/ 7%, however, the on-
resonance single-mode laser ionizes more effi-
ciently according to P(¢)=1 - exp(-37,£) as com-
pared with (P(¢))=37,¢/(1+%v,t) for the CF. This
different time behavior is explained by the CF
distribution function Py(I, ¢) favoring small inten-
sities which ionize on a slower time scale. The
difference becomes even more pronounced for the
bound-state populations where instead of Rabi
oscillations the atomic occupation numbers equal-
ize in times of the order 1/ and afterwards
slowly decay due to ionization [Figs. 1(b) and 1(c)].
If the bandwidth of the CF is increased, the on-
resonance IP decreases, thus smoothing the time
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FIG. 1. On-resonance (A=0) time evolution of (a) the
ionization probability (P(¢)), (b) the excited-state popu-
lation {py;(t)), and the ground-state population {pyo(t)),
with =1 and ¥;=0.2. The curve index running from
1-7 denotes results for 1, monochromatic single-mode
radiation (Ref, 14); 2, the CF with =0 as given by the
exact expression (11); and 3-7 the CF withb=0, 0.5, 1,
2, and 5, respectively, employing a nine-term expan-
sion.

evolution of the bound-state populations. This is
to be expected, since the intensity of the CF is
now distributed with a bandwidth b over the reso-
nance. The limit of large-bandwidth fields is well
described by the rate equations (20). It is inter-
esting to note that for large interaction times the
finite-bandwidth IP may exceed the corresponding
value for monochromatic light. Therefore, an
optimum bandwidth exists as a function of time

which is not a peculiarity of our approximation
scheme, as may be seen from the excellent agree-
ment of the approximate solution with the exact
one for =0 [Fig. 1(a)].

Increasing the rate v, to v, =2 (Fig. 2), we
reach the critical parameter regime Qz%yl
where no single rate approximation is available
for the IP in the single-mode laser field (case 3 of
Beers and Armstrong'?). Similar to Fig. 1(a),
the IP for the zero bandwidth CF is initially very
near the single-mode value, but later falls behind
the IP in the nonmonochromatic CF as we noted
before [Fig. 2(a)]. After the transient time ¢>1/9,
1/, the ground- and excited-state populations
take on values which on the average are much

0.2
| (b)
4 1
Lt
J . .
4 . 3
1] T T T
0 t 15
1
| (c)
J (3
2501
1 )
(4] —r— T T
0 t 15

FIG. 2. On-resonance time evolution of (a) (P (¢)), (b)
(py1(t)y, and {c) {pgo(?)) with =1 and ¥;=2. The meaning
of the curve index is explained in the caption for Fig. 1.
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s} t 15

FIG. 3. On-resonance time evolution of (a) (P (¢)), (b)
{p11(2)), and (c) {ppo(t)), with =1 and v;=5. The mean-
ing of the curve index is explained in the caption of Fig.
1.

larger than those in the single-mode field [Figs.
2(b) and 2(c)]. With increasing bandwidth the IP is
again reduced except for large interaction times,
where the most efficient ionization again occurs
for a small but nonzero bandwidth [Fig. 2(a)].
When 7, takes on the large value 7, =5 (Fig. 3),
the single-mode-laser IP is described by standard
perturbation theory [see Eq. (16) of Beers and
Armstrong'*]. The IP for the monochromatic
CF, as given by (12) for 7,¢> 1 and (P(f))«< 1,
is now always only slightly below the single-mode
value contrary to our earlier findings [Fig. 3(a)].
The number of atoms in the excited state, which
is rather small due to the large value of 7, is

strongly increased by the CF as compared with
the single-mode laser. A larger bandwidth again
results in a lowering of the IP and a rapid de-
crease of the population in the resonant excited
state. However, within the range of interaction
times covered by Fig. 3, the finite-bandwidth IP
no longer dominates the monochromatic CF value
[Fig. 3(a)].

From the above discussion it is obvious that in

0.5-“)
Q=1
'_ =1
1 4=5
P 1
A 2
0+S——————T 7T + —
0 t ! ! 15
0.05
4 (b)
1
<4
¢y 1
1 23
or——— T
0 t 15

(c)
1

oOr———— 77— 77777

0 t 15

FIG. 4. Off-resonance (A=5) time evolution of (a)
(P(t), () {py(t), and () {pyo(t)), with @=1 and v;=1.
The meaning of the curve index is explained in the cap-
tion of Fig. 1.
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(@)

FIG. 5. v, dependence of
(P(t)) with A=0, Q=1, ¢
=3, and £=9 in (a) and (b),
respectively, employing a
five-term expansion. The
meaning of the curve in-
dex is explained in the
caption of Fig. 1.

general the on-resonance IP cannot be described
by a single time-independent rate y, implying
(P(t))=1 - exp(~¥{). An analogous conclusion was
drawn by Beers and Armstrong'* in the context
of RMPI by monochromatic single-mode lasers,
who suggested that a transition probability per
unit time need not exist as a meaningful quantity.
As for the accuracy of the nine-term expansion,
which has been used in the calculation of Figs.
1-3, we find that in all three cases the zero-band-
width IP agrees with the exact values not only for
some inverse Rabi frequencies € and ionization
rates y,, as expected from the general discussion
in Sec. IV, but is remarkably accurate for the
whole time interval considered. For the bound-
state populations the deviations from the exact
value are larger, but they mainly occur after
most of the atoms are ionized.

B. Off-resonance time evolution

In Fig. 4 the time evolution of {P(£)), {p,,(¢)),

and {py,(£)) is given when the laser is tuned slightly .

off resonance with A=5, ©=1, and y,=1. Now,
the IP due to the monochromatic CF already ap-

proaches twice the single-mode value as predicted
by perturbation theory for nonresonant two-photon
ionization [Fig. 4(a)]. With increasing bandwidth,
the on-resonance components of the spectrum pop-
ulate the excited state more effectively and, there-
fore, the IP strongly grows. Contrary to our on-
resonance findings, Rabi oscillations appear in
the bound-state population [Figs. 4(b) and 4(c)].
For the parameter values in Fig. 4 their frequency
is approximately the same as in the single-mode
field, but they are smaller in amplitude and
become progressively damped for increasing
bandwidth. For large detuning, these oscillations
are the usual transient effects which are negligible
because of their large frequency and small ampli-
tude.

C. v, -dependence of the ionization probability

A comparison of Egs. (12) and (13) shows that
on resonance, the growing rate 7, leads to an
increase of the IP for Q> vy,, but to a decrease
for Q< y,. This dependence of {P(t)) on 7, is
shown for =1, =3, and £=9 in Figs. 5(a) and
5(b). There it can be seen that the ionization is

- (a)
Q-1

FIG. 6. Dispersion curve
of (P(t)) with &=1, v,=1,
t=3, and £=9 in (a) and (b),
respectively, employing a
five-term expansion. The
meaning of the curve index

" is explained in the caption
of Fig. 1. Curves 2 and 3
are indistinguishable. The
dispersion curve is sym-
metric about A=0.
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most efficient for 7, #1.5Q for single-mode laser
fields. For the CF, the maximum of the curve

is shifted to slightly larger values of ¥, [Fig. 5(a)].
The curve becomes rather flat for v, > and even
more so for finite bandwidth fields. Calculations
for large interaction times #=9 again indicate the
existence on an optimum bandwidth. Furthermore,
in this limit the maximum is shifted to y, > @ for
b=0 [Fig. 5(b)].

D. Dispersion curves

Figures 6(a) and 6(b) shows the dependence of
the IP on the detuning A of the laser for Q=1,
7.=1, t=3, and £=9. Here we clearly recover the
features already noted in Figs. 1-4. The disper-
sion curve of the IP in the single-mode laser field
is higher on-resonance for #=3 with more strongly
dropping wings than for the monochromatic CF.
Off-resonance, the zero-bandwidth CF yields
twice the IP of the single-mode field as predicted
by perturbation theory. A nonzero-bandwidth
field tends to blur the resonance [Fig. 6(a)]. For
large interaction times, when most of the atoms
are ionized, the finite-bandwidth field may ionize
more efficiently in the near-resonance region than
the monochromatic CF [Fig. 6(b)].

VI. CONCLUSIONS

The present investigation of resonant two-photon
ionization has revealed a number of interesting
points which can be summarized as follows: On
resonance the monochromatic CF and the single-
mode laser ionize equally efficiently so long as
the number of ionized atoms is small. As this
number increases the CF IP may fall behind if

the relevant parameters are suitably chosen. The
resonant finite-bandwidth field is usually less
effective in the ionization process than the limiting
case of the monochromatic CF, However, if we
consider long interaction times, there may exist
a nonzero optimum bandwidth, for which the ioni-
zation probability reaches a maximum and then
drops off sharply towards the limit of the mono-
chromatic CF. This complex time evolution of
the system may thus render the notion of an IP
per unit time a physically meaningless quantity.

For the monochromatic on-resonance CF the
average bound-state populations are higher than
those corresponding to the single mode field. As
the field is tuned slightly off resonance, Rabi
oscillations appear in the bound-state populations
which are absent on-resonance.

The resonant IP as a function of v, and © ex-
hibits a maximum for ¥, #1.5Q which is rather
independent of the bandwidth except for long inter-
action times where it is shifted to v, > Q for
monochromatic CF’s.

Clearly, the present work consitutes but a first
step towards a more complete investigation of
RMPI by finite bandwidth CF’s. A variety of new
effects is to be expected if the present model is
extended to include, e.g., nonresonant contribu-
tions to the ionization process.*1°
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