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Collective atomic effects in resonance fluorescence: Dipole-dipole interaction
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The resonance fluorescence of a two-atom system interacting collectively with an intense driving field is
studied. The first-order dispersion forces, or dipole-dipole interaction, between the atoms is included as well.
The scattered-light spectrum is found to differ considerably from the single-atom spectrum even for very
intense driving fields, in direct contrast with the results obtained by Agarwal et al. , who studied the two-
atom system but neglected the dipole-dipole interaction. The effects qf collective scattering are calculated on
the fluorescence spectra of idealized beams of atoms moving with uniform velocity, for a number of difFerent
number densities (N ).

I. INTRODUCTION

In recent months, interest has arisen in multi-
atom effects in resonance fluorescence. Agarwal
et al. ' have calculated the fluorescence spectrum
and the intensity-correlation function for systems
of two and three identical atoms interacting col-
lectively with the radiation field, Kimble et al.
have studied the effects on the intensity-correla-
tion function of fluctuations in the number of
radiating atoms and of their finite transit time
in the field of view of the photodetector(s), and
Mollow' has studied the effects on the fluorescence
spectrum of collisions with foreign gas atoms.
In this article we consider again the case of col-
lective atomic scattering, which becomes im-
portant when high number densities (N) occur
in the atomic beam. We study the effect on the
scattering of a phenomenon which has hitherto
been neglected, namely, the first-order dis-
persion forces or )he dipole-dipole interaction.
We find that the inclusion of this interaction
changes the spectrum of the two-atom system
considerably from that of the single-atom sys-
tem, even for intense driving fields, 4 and, for an
idealized atomic beam consisting of a random
distribution of atoms moving with uniform ve-
locity, we calculate the net effect of collective
scattering on the fluorescence spectrum for
several densities (Ã). The integrated scattered
intensity, on the other hand, is found to be inde-
pendent of the dipole-dipole interaction, so that
the latter's inclusion does not alter the results
obtained by Agarwal et al. ' for the intensity-cor-
relation function of the collective two-atom sys-
tem.

We neglect in this article the fluctuation and
transit-time corrections of Kimble et al. , ' and
concentrate solely on the effects of collective
scattering. We reduce the problem to its bare

essentials by considering two, two-level atoms, '
separated by a distance A, under the influence of
an external driving field of frequency ~„at re-
sonance with the atomic transition. It is easily
verified that the separations A for which the
dipole-dipole interaction is appreciable are R
s c/&u, [see Eq. (4)], so that the dipole approxima-
tion or small sample model is used for the inter-
action of the field with the atomic system. Final-
ly, we-neglect single-atom radiative shifts, and
the contribution to the spectrum of the transient
response of the system compared to that of the
steady-state response, ' and confine our attention
to intense fields only. We are thus able to study
transitions of the system using the dressed-atom
description and master-equation approach of
Cohen-Tannoudji and Reynaud' (to be referred to
as CR) and obtain an analytical expression for the
fluorescence spectrum. '

It should be noted that the collective scattering
problem studied here is completely equivalent
to a study of the effects on the fluorescence spec-
trum of resonance broadening' by collisions of the
radiating atom with other atoms from the beam.
The idealization to uniform atomic beam velocities
corresponds to making the quasistatic approxima-
tion in pressure-broadening theory. ' To study a
real beam, whose atoms travel with nonuniform
velocities, more sophisticated applications of
pressure-broadening theory are required.

In Sec. II, we introduce our model and calculate
the energy levels and eigenstates of the dressed
two-atom system. In Sec. III, we study the evo-
lution of the density matrix elements and in Sec.
IV obtain an expression for the fluorescence
spectrum as a function of the dipole-dipole inter-
action. Finally, in Sec. V, we present curves
which illustrate the effects of collective atomic
scattering on the fluorescence spectra of atomic
beams having different number densities (lV).
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(2)

connecting the zero-order states, where 8 is the
angle between d~, and R, and the dimensionless
coefficient Q measures the relative strengths of
the atom-atom and atom-driving-field inter-
actions. The dipole-dipole matrix elements are
conveniently rewritten in terms of y, half the '

Einstein A. coefficient for a single atom,

2y A =4ldg, lm(usg31c' (3)

(4)oh& = ~3 (1 —3cos'8) (c/eQ)'hy .

II. DRESSED TWO-ATOM SYSTEM

We consider two atoms, a= l, 2, having lower
levels lg, ) and upper levels le. ) separated by
energy Aced„driven by an intense resonant single-
mode laser field in the state ln). In the absence
of any coupling between atoms and field, the en-
ergy level E„=nh~p is fourfold degenerate, cor-
responding to the zero-order states,

l g, g,n&,

le, g, n-l), lg,e,n-l), and le,e,n-2) of the
two-atom-plus-field system. ln the small sample
model, the interaction Hamiltonian K' between
the atoms and the driving field has nonvanishing
elements

&g,g+136'le, g.n —» =&g g~l&'I g,e.n —»
=(e,g, n —1lX'le,e,n —2&

= &g,e,n —11&'le,e, n —2&

=i(2vn+OA/V)'~ e d«=-ice, (1)

connecting the zero-order states, where e is the
polarization vector of the laser, d~, is the dipole
matrix element d„=(g, lD, le, ), V is the quantiza-
tion volume, and 2e is the Rabi nutation frequency.
The dipole-dipole interaction U between the atoms
has nopvanishing elements

(e,g, n —llUlg, e,n —1) = ld«l (1 —3cos 8)/8',

E,„=nb+,+ (-', o. +P)R,
where

p2 4+ 1 &2

I2n& =(p'+k~p) "[Igiga& 2i-(k~+ p)

x (le, g, n —1&+
l g,e, n —1))

—le,e, n —2)],
Es„=n8(do+ (2 o —P)AE p

I3n) =(P'-a~P) "'[lg,gan&-2i(a~ —P)

x(le, g, n —1)+ lg,e,n-l))
—le,e, n -2)],

E4„=8@(dp —Q@E )

l4n) = 2 '~'(le, g, n —1) —
l g,e,n - 1)) ~ (6)

For all values of Q, in the small sample model,
level l4n) is optically inactive. In the limit of
Q-0, it is easily verified that the energy levels
can be divided into an equally spaced triplet,

E,„=nk(u„ lln) =2 '~'(lg, g,n)+ le,e, n —2)),

+2n g@+p+ 2

l2n& =
2 (I g, g,n& ile, g-an —1&

- il g,e, n —1) —le,e, n —2)),

E,„=naacp —25',
l3n& =-', (l g, g~&+ ile, g, n —1&

+ i l g,e, n —1) —le,e, n —2),
and a singlet

E,„=nhcuo, l4n) =2 '~'( el, g, n —1) —lg,e,n —1)).
(6)

We assume the driving field to be sufficiently in-
tense that e»y, and that the variation of c with n
may be neglected.

To obtain the energy levels and eigenstates of
the dressed two-atom system, we diagonalize
the 4x4 matrix

nep

Sent)p QE

' —ZE QE 840p SE

0 —ie - ie nep

The resulting energy levels and eigenstates are
the following:

E,„=nk(o„ lln) =2 '~'(l g,g,n&+ le,e, n —2&),

I 2n +

— I /n +
lan+
I 3n&

yg glJ NI9

Iz n 1~-
I I n-I+
I 4n-I+
ISn-I+

FIG. 1. Schematic ener-
gy-level. diagram showing
the n and n-1 multiplets of
the dressed two-atom sys-
tem for e =1, together
with some of the possible
downward spontaneous
transitions. Transition (i)
contributes to the central.
frequency component of the
spectrum. Transitions
(ii) and (iii) correspond to
the sidebands at coo + (pat
+P)e.
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The ent. rgy-level diagram for two adjacent
multiplets is represented schematically in Fig. 1
for &=1. Considering only this diagram, it is
apparent that the possibility of fluorescence exists
at 13 different frequencies, &u„. = I '(E,„E,—„,).
The optical inactivity of level ~4n& reduces this
number to 7 for z 0; when n = 0, the lines at
frequencies ~» and &» disappear and the pair at
frequencies e» and co» merge into a single line,
as do the pair at frequencies &» and +», pro-
ducing a spectrum identical with the familiar
single-atom spectrum. These results will be de-
rived systematically in. Secs. HI and IV.

of CR.' For both atoms in the ground state on
entering the field, the populations at time t are
given by the expressions

p,', (&) ~.c; (&)

p.'.(&) = ~.c.',.(t)
p'„(t) Z„a,',„(t)

4 ' 2S=
& Il, + (,)

Il, exp[- yf (8+ o.'+ S)/P j

+3, Ii, exp[-yf(8+ +'-S)/p'j,4 —(y2+ 2S

IH. '
EVOLUTION OF THE DENSITY MATRIX ELEMENTS

The average time behavior of the system coupled
now to the remaining modes of the electromagnetic
field is determined by the equations of evolution
of the density matrix c(t), denoted by

&i~la(&) 1 j~ -P& =c~g.P) .
To these can be related the evolution of the mean
raising and lowering dipole-moment operators

where ]II,}are the vectors

64+ 12~ y 16Sy 2(y S+ o.

a 2$+ a'

II, = 1, II, ,= 4y S+ (8+ afag S)a/QP

(14)

O' = Z D,', = Z d, ~
in)(j n+ 1~

ij kjn
2

d;=(in~+ D, ) jn+ 1&,

and of their mean two-time correlation functions,
from which the spectrum is determined.

As in CR, ' we simplify the discussion by making
the secular approximation: We restrict our cal-
culations to driving fields sufficiently high that
e +&y, allowing us to neglect in the master equa-
tion coupling between the diagonal elements of o
(populations) and the off-diagonal elements. The
equations for the diagonal elements can then be
written in terms of the spontaneous rates of
transition r,z from ~jn) to ~in —1&,

4+S- (8+ n~+S)a/2P

(15)

and S =16+n +~o. . Thus, in the steady state,
the populations of the triplet sublevels are equal,
and, since 1

&&
= 1",&, satisfy the detailed balance

conditions"

I'„p,', (t) = r„p'„(f) . (16)

%'e next consider the evolution of the off-diago-
nal elements &r,",„(I)=- c~'q„(t), i = 1-3 [a,',„(t)= 0 due
to the inactivity of level ~4n&j, which are related
to the central component of the fluorescence spec-
trum. These elements are coupled to the matrix
elements a,'~„„(f)which have the same Bohr fre-
quency ~0 as a;;„(f), and are easily verified to
obey the equations

3

&'„(I)=—((o,+r, )a;,„(f)+ Q 1", a; „„(t). (17)

and the total spontaneous rates of transition I"~

from ~jn&,

The solutions to Eqs. (17) are readily found by
the method of CR' to be

6';(&) = Za;.~„(&)

('x,',„(I)= —r;o,',„(f)+ Z r„a~0, „„(t). (13)
1

The singlet level ~4n& is optically inactive, since
I";,= F„.=—0, and its population remains con-
stant —zero if both atoms are in the ground state
on entering the field. The equations of evolution
of the triplet populations are solved by the method

—yf(s+ a'+s) &
= exp(-i(ug) a,II„+a@„exp

+as s» expl
flu

y&(s+ & -s)&-
]„

(18)

where the constants (a,j can be obtained from
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initial conditions, and the vectors (II(}are de-
fined by Eqs. (15). We do not, however, require
the values of (a,}in order to calculate the fluores
cence spectrum, and therefore do not solve for
them.

The lateral components of the fluorescence
spectrum are related to the matrix elements
o('&'„(t) -=c;1„(t),i 4j T.o study their evolution using
the simple method of QB,' we must distinguish
between four ranges of n: a=0;y/e —l&2l & 3e/y;« l(2I ~y/»; and lnl ~ 3&ly

A. 0;.= 0

In the absence of the dipole-dipole interaction,
it is cagily verified that I"»=1",~-0, while the
matrix elements «2'~(o»„) and o»„(o3',„) have the
same Bohr frequency of &d, -2e(&d, +2m), and
therefore have coupled equations of evolution.
These are readily. shown to have the form

(12 )(t) = [i(~3+ 2&)+ 2(r(+ r2)]&2( «2 )(t)

+ (y/2ld2 l')[d22 &11) 11 &22&c'2121 &12 1)(t)

. 21 (13) 13 (12) 13ntl (31~1)(t)]q

'()&3( 3„1(t))= —[i((d(&v 2e) +-,'(r, + r3)]e'13„(3„„)(t)

+ (y/2ld" I') [d(2 &.1Ã3 &2»c:1"1&12»(t)
A+ +

11 (33) 33 (11) 132+1 (312+1)( )] &

with the solutions

= exp[-z(~, + 2~)t]

(1'&
x 81 (3)l 1

lexP(- —,'yt)
1&

o„„(t)= —[3(o„+—,'(r, + r, )]o,',„(t)

+ (y/2ld2. I')d((dp'go('g. „(t) (21)

and have the solutions

p,', (t) = Q c,',„(t)

'Ydk kAs~i=p;, (0)exp -i«&(, --2l r(+r1-,-,, I t. (22)

For very large values of the dipole-dipole in-
teraction, partial overlap of the spectral lines
again occurs, and makes impossible a simple
solution of the master equation. However, it can
be shown that the spectrum obtained in Sec. IVB
for y/e & l &2l & 3e/y is still correct in the region
(ul & 3e/y up to terms of order a 2. For that
reason, and because only a very small fraction
of the atones are separated by distances s~all
enough to produce such large values of lal at the
atomic densities considered (see Sec. V), we will
use the spectrum obtained in Sec. IV B for all
values of l(2l ~ y/e.

C. 0 & In I& y/z

For small but nonzero values of the dipole-
dipole energy, a simple solution to the master
equation of the type used in this article is not
possible due to partial overlap of the spectral
lines (cf. CR', Appendix). The results obtained
in Sec. IV for the spectrum of the collectively
radiating two-atom system will therefore be in-
valid for 0 &

l al s y/e. The error, however, is
found to lie only in the widths of the lateral com-
ponents of the spectrum, and within this region
of e an approximate solution will be assumed in
the calculations of Sec. V of the effects of collec-
tive atomic scattering on the fluorescence spectra
of atomic beams having different number densi-
ties (ti) .

lul & l~/y

+ (3, &, &
lexp(- ~2yt)—1~

where again the constants (a,},can be obtained
from initial conditions, but are not required.

(20)

B. y/c& In 1&2/3v. /y

For values of o. within this range, it is easil, y
verified that the spectral lines at &o(& (it j) are all
nonoverlapping. The equations of evolution of
the corresponding density matrix elements are
therefore uncoupled, can be written in the form

IV. FLUORESCENCE SPKCIUM AS A FUNCTION OF 0(

The fluorescence spectrum is given by the real
part of the Fourier transform of the correlation
function of the dipole-moment operator,
(D'(t)D (t')), t & t'. From the fluctuation-regress-
ion theorem, " it is well known that for t & t' thy
two-time average (D;, (t)D (t')) satisfies the same
equation of motion as the one-time average
{D;,(t)). Furthermore, it is easily verified' that
the quantities {D;,(t))/d, ', satisfy the same equa-
tions of motion as do the density matrix elements
[p;, (t)] ~. The equations of motion are thus solved



ll36 HELEN S. FREEDHOFF 19

for the correlation functions &D,'q(t)D (t')&, and the
real parts of their Fourier transforms added to
yield the fluorescence spectrum.

A. Qt'=0

In the steady state, the correlation functions
&D,';(t')D (t')& are given by the expressions'

&D.', (t )D-(t )&
= (y/2ld. .l')d;, d;, P.', (t ) . (23)

Using E(ls. (14), (15), (18), (20), and (23), we ob-
tain the following set of steady-state values for
the correlation functions &D,', (t)D (t')&:

&D.', (t)D (t')& =&D;,(t)D (t')&

= 2yexp[i(~. —2~) - :r](t—t-');

&D;,(t)D (t')& =&D;,(t)D (t')&

= r'
ye px[i (&,+ 2e) —kr] (t —t');

&D;,(t)D (t')& =&D;,(t)D (t')&

=&D;,(t)D-(t')& -=0;

&D:,(t)D (t')& =&D;(t)D (t')&

2 r exp(i(2)0 r) (t —t ') . —

The spectrum in the absence of dipole-dipole
interaction is then found to be identical with the
familiar triplet of the single-atom system, "

3
I(&d3 0)

(~ —(d, + 2~)' (+3r/2)'

in agreement with the high-field results for two-
atom systems obtained numerically by Agarwal
et al. '

B. y/(2& l(2 i& '/3C/y

From E(ls. (14), (15), (18), (22), and (23), we
obtain the following set of steady-state values for
the correlation functions:

&D'(t)D (t')& =0'

&D'„(„)(t)D (t')& =a
3 S(4,) exp[is) (t —t')]

x ((S —4) [4+S+ (o(/2P) (8+ (2+ S)]

x exp[- (y/P')(8+ o'+S)(t —t')]

+ (S+4) [4 —S + (o./2P) (8+ u' —S)]

x exp[- (r/P')(8+ n'-S)(t —t')]]' '

&D'„„, (t)D (t')& = 'r(1+ 0-(/2P)

x exp[i((o, ~-,'«+Pe)
'r(5+ o-(/-2P)](t t');-

&D;, „, (t)D (t')&=-'r(1- /2P)

x exp[i((u, a ", «+Pe-)

--.'r(5- /2P)](t -t');
&D'„(„)(t)D (t')& = kr(o('/2P')

x exp[i((u, + 2Pe)

3
(~ —(d, —2&)' (3+y/2)'

(~-~ )'+r')' (25)

—r(3 —8/P')] (t —t') (28)

The two-atom spectrum, including the effects of
dipole-dipole interaction, is given by the ex-
pression

1
i&(~ (d.+ .'«—+P~)'+-'r'(8+ ~/2-P)' (~ —~.—5« P~)'+ 'r'-(5+ o(/2-P)')

/ 1 1
25 &)* ( 2&3 ( (w — + ',»e —l»l&e)* + ,' 3'(5 —»-/25)* (» —-~, ——,' E + l3 )' + &»'( 5 —&2»/)')5-,

()(' 8 ) 1 1
25' 5'& (»-».+25&)'+r*(2-5/5')' (»- 25')'+&'*»(2-2/5*)')

j(p's ),
' ( —,)'+( /p')'(8+ '+ )' '

( —,)'+( /p')'(s+ '- )', '
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FIG. 2. Fluorescence
spectra of two-atom sys-
tems with dipole-dipole
interactian. energy el&,

O plotted for &=7y. The
spectrum is symmetric
with respect to e.
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This spectrum has, in general, eight components,
two centered at ~„and three sets of equally dis-
placed satellites, at frequencies &u, a (2o.+P)e,
&u, a (-,'n —P)e, and ~,+2Pe. Their widths and in-
tegrated intensities are easily read from Eq. (27).
The spectrum is plotted in Fig. 2, and for a ~ 1
is clearly very different from the single-atom
spectrum. The integrated fluorescence intensity
is, however, easily verified to be independent
of +, so that the results obtained by Agarwal
et al. ' for the intensity-correlation function of
the collective two-atom system are not altered
by the inclusion of the dipole-dipole interaction.

V. FLUORESCENCE SPECTRUM OF AN ATOMIC BEAM
OF NUMBER DENSITY (16

In the preceding sections, we demonstrated that
the fluorescence spectrum of a two-atom system
with small atomic separation is very different
from that of a one-atom system. In this section
we use these results to obtain the spectrum of an
idealized atomic beam of number density (Ã),
consisting of randomly distributed atoms moving
with uniform velocity. This calculation provides
a qualitative illustration of how the dipole-dipole
interaction would be expected to affect the spec-

o.(&, ~) = 2(& —3cos'~)(c/~Q)'(y/~) . (28)

Equation (2V) which gives the fluorescence spec-
trum of a pair of atoms as a function of a is valid
only for y/e s ~o.

~

~ fe/y. To estimate the spec-
trum produced by the atoms in the beam with
their varying separations, we first calculate the
separation Ro for which ~u(R„O)~ =y/c. For the
Na transition used in the experiments performed
to date, we obtain for A,

Ra=3' 'c/(go= l352 A. (29)

This separation is used to divide the pairs of
atoms into two groups: For all pai.rs separated
by A s Bo, ~

o.
~
a y/e, and the spectrum is given

by Eq. (2V) —exactly for
~ a ~

~ 3e/y, and with
errors of order n ' for ~o. ~

z ~e/y, as discussed
in Sec. HID. For all pairs separated by A &AD,

we approximate the spectrum by Eq. (25). Taking

trum of a real atomic beam. To obtain quanti-
tatively the spectrum of a real beam, in which
the atoms have a significant relative motion,
requires the use of more sophisticated methods
of pressure-broadening theory (our treatment is
equivalent to the quasistatic approximation).

The constant a which characterizes the strength
of the dipole-dipole interaction is a function of the
separation R between the atoms; from Eq. (4),
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FIG. 3. Fluorescence spectra of idealized atomic beams of number density (I)t), with e= Vy. The spectra are symme-
tric about &u —u = 0. Curves (i), (ii), and (iii) correspond to (Vj ~ 10~3 cm R, (N) = 10~4 cm ~, and (N)= 10~5 cm ~, in that
order.

the limit of c.-o in Eq. (27) gives the expression

5
3v (o) —(d), + 2e)'+ (5y/2)'liml(o), n) =—

5

((d —(o, —2e)'+ (5yj2)'

a(ft) = ev(N)ff' exp(- lv(N)ff') .

We then write for the spectrum of the atomic
beam

(31)

4
(~ —td, )'+ y*)' (30) 1(td) = (der) ' f d(( f 1(e, a)P(R) dR

47f 0

and the correct expression for the spectrum of
pairs corresponding to values of u in the range
0& ~c(~ ~ y/e should be somewhere between Eqs.
(25) and (30). Thus the error introduced by our
use of Eq. (25) involves primarily an underesti-
mate of the widths and overestimate of the peak
heights of the lateral components of the spectrum
at ~p+ 2E.

We assume an idealized beam in which the atoms
are randomly distributed with average number
density (N), and all move with the same velocity,
so that the separation between a pair remains
constant during the radiation process. A simple
calculation of the probability P(R) of finding a pair
of nearest-neighbor atoms separated by a distance
B gives the result

Rp
+14,0)(1—f P(R)dR) .

0
(32)

Equation (32) is plotted in Fig. 3 for a number of
values of (N). For (N) ~ 10" cm ', the spectrum
is essentially indistinguishable from the single-
atom spectrum. " As the density increases, how-
ever, the average separation of the atoms de-
creases, and the average dipole-dipole inter-
action increases in magnitude. The effects on the
spectrum are to diminish the intensity of the
central component, and to increase both the
widths and the intensities of the lateral peaks.
These lateral peaks are in fact each a superposi-
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tion of a number of satellite lines, and with in-
creasing atomic density become so broad as to be
difficult to distinguish at all. Thus the effects of
dipole-dipole interaction on the resonance fluores-

cence spectra in intense radiation fields cannot
be neglected for more dense atomic beams.
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Research Council of Canada.
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