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The excitation of a two-level active atom by a radiation field in the presence of a low-density perturber
bath is studied. In particular, the collisional enhancement of the absorption cross .section is investigated.
Features of the absorption-line profiles are predicted on physical grounds using a dressed-atom approach and
verified by detailed numerical calculations for attractive, repulsive, and Lennard-Jones-type interatomic
potentials. Complete spectra of the absorption cross section both as a function of detuning and as a function
of field strength are given, In th'e weak-field limit, the results are compared with those of traditional
pressure-broadening theory and to the recent experimental results of Carlsten et al. In the strong-field limit,
the results display a saturation behavior consistent with the predictions of Lisitsa and Yakovlenko.

I. INTRODUCTION

With the development of high-intensity laser
sources, there has been renewed interest in the
study of atomic collisions in the presence of radia-
tion fields. ' " Both collisionally aided radiative
excitation (or emission) (CARE), sometimes re-
ferred to as "optical collisions, '" ' and radiatively
aided inelastic collisions (RAIC), sometimes re-
ferred to as "radiative collisions, '~ '0 have been
examined by a number of authors. The discussion
in this paper is limited to CARE although RAIC can
be studied by the same methodology to be pre-
sented here.

To put the CARE problem into some perspective,
consider a two-level active atom with level separa-
tion (d, subjected to an applied radiation field of
frequency ~. The active atoms also undergo colli-
sions with structureless perturbers at some rate
I' and one mishes to calculate the absorption cross
section as a function of detuning ~ = +- (d, . The
field amplitude E in frequency units is given by y
= pE/2k, where g is the dipole-moment matrix
element of the transition.

If the detuning is greater than both the Doppler
width and power-broadened homogeneous width,
i.e. , ( 6 ~

&Doppler width 2y, the absorption cross
section is negligible in the absence of collisions
and can be enhanced by collisional processes.
Consequently, the study of CARE is restricted to
detunings ~A ~

&Doppler width =10'0 sec '. In situ-
ations where lasers with limited tunability are em-
ployed so that large

~
a

~
can not be avoided, CARE

may provide a means for increasing the absorption
of the sample.

The case of large field strengths y &
~
g

~

&10'
sec ' requires some additional discussion. Such
field strengths can be attained only with pulsed la-
sers. For pulse rise times longer than ( b, i

'
~ 10 ' sec the atomic excitation mould adiabatical-

~b,
~
&Doppler widths )t (la)

or

y &[a~ &Doppler width, and

radiation pulse rise time &
~
b,

~

' .
(1b)

For the remainder of this paper me assume that
condition (la) or (1b) is satisfied although the cal-
culations presented in Secs. III and IV isolate the
CARE contribution to the absorption even if these
conditions do not hold.

If conditions (1) are satisfied, the atomic dipole
oscillates with a period 7 s (s~ '& 10 "sec in a ref-
erence frame rotating at frequency ~,. Thus the
time scale of importance in the problem is 7'F10 '0

sec—any processes slower than that can not can-
cel the rapid oscillation of the dipole. It is as-
sumed that I' « ~b, i, i.e., the perturber density is
such that at most one collision occurs in the inter-
val T (typically, valid for pressures (1.0 atm).
The condition I «

~
6

~
is equivalent to taking the

CARE rate to be linear in the perturber density.
One can calculate the CARE contribution for a
single collision and than average over all'possible
collisions to obtain the CARE rat:e.

In the limit of weak fields IEq. (la)), the study
of CARE is essentially that of pressure-broadened
linear absorption. This area of research enjoys

ly follom the fieM in the absence of collisions, and
the atom would return to its ground state following'~
the pulse. Homever, collisions interfere with the
adiabatic following and give rise to some
net absorption following the radiation pulse. In
this limit, collisions are essential for absorption
to occur. On the other hand CARE is less import-
ant if the pulse rise time is faster than

~
L

~

'
since, in this, limit, there can be substantial ab-
sorption in the absence of collisions.

Thus, the conditions of interest for CARE are
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I

a long history, ""but there are few papers that
present detailed numerical calculations for the en-
tire range of detuning, although asymptotic formu-
las are available in various limits. "" For strong
fields, there have been some numerical studies of
radiatively aided inelastic collisions, ""6 but
most of these calculations have concentrated on ob-
taining analytical approximations for various limits
of detunings and field strengths. Moreover, most
strong-field CARE and BAIC calculations have
utilized somewhat unphysical potentials, i.e., of
the form -(c(/R".

It is our purpose to present a physical picture of
CARE for attractive, repulsive, and Lennard-
Jones-type interatomic potentials. General fea-
tures of the results are predicted on the basis of
simple physical arguments and detailed numerical
calculations are presented to verify the predictions.
This paper also forms the basis for future work
that will consider level schemes more complicated
than the two-level systems discussed below.

II. GENERAL CONSIDERATIONS

Consider a collision between a two-level active
atom and a ground-state perturber. The active
atom's energy levels are shifted during a collision
and this shift is shown schematically in Fig. 1 for
some specific collision impact parameter 5 and
relative velocity v. The shift of level 2 relative to
level 1 determines whether collisions increase or
decrease the 1-2 transition frequency relative to
its unperturbed value ~,. In the case shown, the
frequency shift is towards the red and one speaks
of an attractive (relative} potential. Conversely,
for a relative shift towards the blue, one speaks
of a repulsive potential. Collision energies are as-
sumed to be larger than the detuning t g ~, but not
sufficient to couple the levels in the absence of ap-
plied fields. (We have set@=1 and measure energy
in frequency units. )

If, for some t during the collision, the instantan-

eous transition frequency a&2(t} equals the fre-
quency of the applied field, there is an "instantan-
eous resonance" for this interaction. For the case
shown in Fig. 1, "instantaneous resonances" occur
for a range of red detunings, but not for any blue
detunings. As is described below, the presence of
instantaneous resonances can greatly enhance the
absorption' cross section, especially in the case of
large detunings.

The picture presented above is best used when
the applied radiation fields are weak. For the case
of strong external fields, a dressed-atom24 ap-
proach provides additional irisight. The dressed-
atom approach can be used for weak as well as
strong external fields. In this approach, the un-
perturbed Hamiltonian Ho is taken to consist of the
free atomic Hamiltonian+free-field Hamiltonian
+atom-field interaction. In the absence of spon-
taneous emission, and in the, rotating-wave approx-
imation, the two dressed states (eigenstates of Ho}
are the linear combinations of the two bare states
( I, n), ~

2, n —1), given by

1/2 1 ~ 1/2

ti) = 1+ —
( I, 21) + I - — (2, 21 —I),

1/2 1 . g 1/2

(II) = 1 —
& ( 1, n) — 1 + —

) 2, 12 —1),

where the bare states are labeled by both the field
and atomic variables with n being the number of
photons in the field and

g (d2 +4~2)1/2

is the Rabi frequency with X the fieM strength in
frequency units. The energies of these eigenstates
are

1 1E,=E +pyro-~&a ~Q,
j.E)I=.Eq+g(o —p g+ p 0;

the upper signs are used for positive 6 and the
lower signs for negative ~ so that

E (f) E„-E,=+ A. (4}

"o

E, (f)

FIG. 1. Variation of the atomic energy levels E&(t),
E2(t) of a two-level atom during a co11ision in the cl.as-
sical-fieM picture for an attractive potential. . For the
incident fieM frequency co shown, instantaneous reso-
nances occur at times t& and t2 during the collisiori. Note
that instantaneous resonances occur for a range of &
=co —coo&0 but not if 4&0.

In'the absence of collisions, the dressed states are
separated by 0, with Eg &E, for 4 &0 and Eg & E,
for g&0.

In contrast to the classical-field picture (Fig. 1}
in which the only effect of collisions is to shift the
energy levels, collisions both shift and couple the
dressed states. The amount of the shift of each
dressed state is determined by the proportion of
bare states it contains. For example, if state ~II)
is composed mostly of bare state t2, n —1) then it
will shift in the same way as state ~2) of Fig. 1.
On the other hand if ~II) consists of an almost
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FIG. 2. (a) Variation of the dressed-state energies of

a two-level atom during a collision with an attractive po-
tential and red detuning, & & 0, in the weak-fieM limit,
y« IAI. The level separation is 0= I4I; t& and t2 are
crossing points corresponding to the two points of in-
stantaneous resonance in Fig. 1. (b) Variation of the
dressed-state energies of a two-level atom during a col-
lision with an attractive potential and blue detuning, 4
& 0, in the weak-field limit. No crossing points occur.
(c) Variation of the dressed-state energies of a two-le-
vel atom during a collision in the high intensity limit,
y» Ih I. The level separation is 0= 2y. If 4& 0, E«
& E~ ' if 4 & 0 E& & Eg, No crossing is possible regard-
less of the sign of 4.

equal admiature of bare states [ I, n) and [2, n —1)
it will shift as the average of the shifts of the
states ~1) and ~2) of Fig. 1. The role of collisions
on the dressed states is best illucidated by examin-
ing the weak- and strong-fieM limits.

Weak fields —ll«(6(. In this limit, state )II) is
separated from state (I) by a Isee Eq. (2)] and the
dressed states are approximately equal to the bare.
ones. Consequently the collisional shift of the lev-
els is the same as for the two atomic states. The
instantaneous energy levels of the dressed states
during a collision are shown in Figs. 2(a) and 2(b)
for negative and posjtive A, respectively, assum-
ing an attractive potential. The "instantaneous
resonances" of the classical-field picture are
transformed into "crossing points" in the dressed-
atom approach. As is evident from Figs. 2(a) and
2(b) crossing points can occur for red detunings
but will never occur for blue ones.

Strong fields —ll »(a). In the strong-field limit,
the dressed states are separated by 2y and are

FIG. 3. Interatomic difference potentials. (1) Attrac-
tive&an der Waals potential, C c = —1.26 &&10~ A /sec.

2) Repulsive Van der Waals potential, C6 =]..26 &10
/sec. (3) Leonard- Jones potential, C~~ = ]..03 xyp«

A~/sec, C~&2 ——2.22 &&10 3 A~ /sec. The well depth is W„~
= —1.19 x10~2 sec ~ and occurs at II =8.7 A.

given by )I), ]II) =(I/W}((l, n) + (2, n —1)). Since
the relative populations of the bare states is the
same in each of the dressed states, the co11.isional
shift for the dressed states is identical ' as shown
in Fig. 2(c). Hence the relative shift of the dressed
states is zero and it is impossible to have a cross-
ing, regardless of the sign of 6, provided ~A ~ «X.

For intermediate-field strengths X =
~
d, ~, fea-

tures of both the weak- and strong-field cases are
present.

Since crossings can occur only for the weak-field
limit li &

~
g ~, it is of some interest to determine

the additional conditions needed to ensure a cross-
ing. A crossing occurs if the collisional level
shift equals & at some time during the collision
[or equivalently, if the applied frequency equals the
instantaneous separation &uc(t) of the two atomic
states]. Instead of using the time t, one can easily
as well parametrize the collisional shifts by the
internuclear separations which, in turn, depends
on t for a given collision. In Fig. 3 are shown the
collisional shifts as a function of internuclear sep-
aration for the cases of (1) attractive potential,
(2) repulsive potential, (2) Lennard-Jones-type28
potential.

Crossings occur if there is some R(t, ) during a
collision for which ~ equals the collisional shift.
Clearly, crossings do not occur in case (1) if z
&0, in case (2) if g & 0 and in case (2) if both b, & 0
and (g(& (WL, ( ([W„,( is the well depth of the
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Lennard-Jones potential). For all other values of
~, crossings occur for some range of impact pa-
rameters and relative velocities, although rather
high relative velocities would be needed to ensure
a crossing with repulsive potentials and g ~ ther-
mal energy. If both ~ &0 and g & 0 crossings oc-
cur in case (3), the b, &0 crossing occurs for a
smaller range of impact parameters.

We h e not yet indicated the manner in which
the pres nce or absence of crossings affects the
absorption cross section. In order to do so, it is
convenient to introduce the optical collision impact
parameter 5„"defined as the impact parameter
for which

The parameter 5, is the characteristic impact pa-
rameter for the weak-field case, producing a
change sufficient to significantly disturb. b the phase
of the atomic dipole. The collision time 7', =b,/v
and &u, = 1/7, . The collision interaction possesses
frequency components ar 6 cv, . The importance of
crossings then depends on whether 07,
=(b,'+4g~)' ~~, «1 (impact limit) or Qv, &1.

If Q7, «1, the collision possesses sufficient fre-
quency components to compensate for the detuning,
i.e., &u, /~ a~»I. In this case, the sign of the de-
tuning i.s relatively unimportant, indicating that
crossing points do not play a significant role in the
process. Another way to view this result is as
follows: Crossing points are points of stationary
phase for the dipole oscillator. Only if the oscilla-
tor's phase is rapidly varying in the absence of
collisions does the point of stationary phase pro-
duce the major contribution in the absorption pro-
cess. In the impact limit QT, «1, the phase is not
rapidly varying in the absence of collisions, and
crossings are irrelevant. In the weak-field limit
the absorption cross section varies as ~ 2 in the
impact region.

If QT, »1, the oscillator's phase is rapidly
varying in the absence of collisions. Collision-
induced crossings can greatly enhance the absorp-
tion cross section. In the weak-field limit, the
absorption cross section will vary as

~ z~ ~ (p &0)
if crossings occur and as some power of ~h ~

times e x[p- ~oar, )j(q&0} if no crossings oc-
cur. ~ ' This difference in dependence on g indi-
cates the importance of crossings when Qv, ~1. In
the strong-field case no crossings occur and the
cross section falls as exp[-P(yT, )' ] as a function
of the field strength. ' In the above o. and P are
constants.

In reference to the specific potentials of Fig. 3,
general conclusions can be reached:

(i) In the impact limit Q~, «1, absorption cross
sections go as ~ ' for all potentials.
(ii) If Q~, R 1 and )t &

~
d, ~, the absorption cross sec-

tion is approximately independent of
~
a

~
for a

fixed X and is an exponentially decreasing function
of y for a fixed ~.
(iii) If Qi, &1 and ] g~ &y, the cross sections fall
as

~
b,

~

' if a crossing occurs (b, & 0, attractive;
~ &0, repulsive; ~ &0, Lennard-Jones; g & 0 if
also (b, (& ~W~, ~, Lennard-Jones}, and as some
power of (6) times exp(-o. (d~, [') if no crossing
occurs. For attractive potentials the profile goes
as

~
6

~

~ for red detunings and exponentially for
blue ones. For repulsive potentials the profile
goes as ~ ~ for blue detunings and exponentially
for red ones. For Lennard-Jones-type potentials,
there are two regions. For ( 6 ~

&
~ W~, ( for both

blue and red detunings the profile has a power-law
dependence in

~
6

~
(the cross section is larger on

the red side since red crosssings occur for a lar-
ger range of impact parameters). For ~A(& (W„,(,
the blue side still goes as a power law in ~a ~, but
the red side falls off exponentially. Thus for- very
large ~b, ~, the absorption cross section on the blue
side will be larger than that on the red.

These feat'ures will be verified by the numerical
calculations of Secs. III and IV. One can conclude
that, if ~h~~, &1, the optimum external field
strength to use for CARE as )t =

~
~ ~, since higher

fields give an exponential falloff in the cross sec-
tion.

III. EQUATIONS OF MOTION

The Hamiltonian for a two-level active atom in-
teracting with a radiation field and a perturber
atom can be written as

H =H~ +Hs+H„„+V(t) =Ho+ V(t),

where (i) the free atomic Hamiltonian H„has two
eigenstates ~1), ~2), with eigenenergies E„E,;E,
—E, = &uo; (ii) H„= &cata is the quantized free-fieM
Hamiltonian describing a single-mode field with v
the photon energy; (iii) the active-atom-field inter-
action is given in the rotating-wave approximation
by H„„=g'(aR'+atB), where a and at are the usual
annihilation and creation operators, respectively,
for photons of frequency e, P' and R are the rais-
ing and lowering operators for the two atomic
states, and y' is the coupling constant, defined by

y =v ny' with n the number of photons; (iv) the ef-
fective interaction with the perturber V(t} is taken
to be time dependent since the internuclear motion
is not quantized, and is diagonal in the basis of
bare states ~1, n), ~2, n- 1) (eigenstates of H„+H„},
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v, (t) =(1,n I v(t) I1, n),

v, (t) =(2, n —1
I v(t) I 2, n —1),

(1,nf V(t) I2, n-1&=(2, n- 1 IV(t) fl, n&=0,

(6)

owing to the absence of inelastic collisions. This
is in general a good approximation for electronic
and vibrational transitions where the thermal ener-
gy is not high enough to excite the atom.

The calculation is carried out in a dressed-state
basis composed of the eigenstates, II), fii& of H3

=H„+H»+H„s given in Eq. (2). Defining

g=27 CII b~m 2bdb.
0

No average over the velocity will be attempted.
For a Hamiltonian that is an even function of

time, one can show" that

cf t)c+(-t) —c,(t)c3(- t)

= c„(0)c*,(o) —c,(o)c+(0), (»)
c,(t)c,(- t)+ c „(t)c„(-t) = c,'(0) +c,', (0)

In addition, unitarity is maintained,

v, (t) = v, (t) + v, (t); v„(t) = v, (t) —v, (t) (7) f c,(t)f' +
I c„(t)f'= 1 . (13)

writing

Ig&
= [ci(t)li&+c«(t) III&] expl t v3(t')dt'

I

r

2

and using the Schrodinger equation together with
Eqs. (2), (3), and (6), we obtain the equations for
the probability amplitudes

ic = [E,—(b, /2Q)v (t)]C, + }t/0 V (t)C«,

tc»= x/II v, (t)c, +[a „+(~/2n)v, (t)]c„.
(8)

In the dressed basis, V(t) is no longer diagonal; C,
and C„are coupled through off-diagonal matrix
elements which are nonzero only during a colli-
sion. This makes the dressed-state basis a favor-
able choice in numerical calculations, since we
can limit the integration within the short range of
a collision. If C, (t = -~ } = 1 and

I
a

I
&:(radiation

pulse rise time) &1 (as is implicitly assumed
throughout this work), C» goes to zero as t-+~ in
the absence of collisions. Thus, fc»(t=~) I' rep-
resents the contribution of CARE. Note that the
probabilities

I C, I',
I C» I' depend only on the differ-

ence potential.
To solve Eqs. (7), we assume that the atoms fol-

low straight-line trajectories and take two model
potentials, an attractive Van der Waals potential

Vv«w(t) —Cvnw/(b2 + ~ 2 t2)3

Since the integration of Eqs. (8) can be very time
consuming, Eqs. (12) and (13) can be used to re-
duce the range of integration to -~ &t ~0. The in-
tegration is conveniently done using a subroutine
called DVEBK in IMSL which uses a Runga-Kutta
method based on Verner's f ifth- and sixth-order
formulas. "

IV. RESULTS

A. Van der Vfaals potential

In the following, the Van der Waals constant CvD"

is taken to be —1.26&&10" A3J'sec and v =10' cm/
sec.

1. Yeuk-field cuse, X

The variation of the probability IC«(b, ~) I' as a
function of impact parameter 5 is represented in
Fig. 4(a) for red detuning and Fig. 4(b) for blue de-
tuning for values y =10' sec ', fa I=5&&10" sec '.
The probability IC«(b, ~) I' is an oscillating func-
tion of 5 with an envelope increasing with increas-
ing 5 on the red side and decreasing with increas-
ing 5 on the blue side. The oscillations start at
some finite 5 and get faster as 5 is decreased. The
results at this low detuning, Ia fv, =0.5, can be
compared with the impact approximation ( I a I7,
« I). In the impact approximation, the equations
are easily solved to yield the standard result of
impact pressure-broadening theory,

with C, &0 an effective Van der Waals constant,
and a Lennard-Jones potential Ic „(b, } I' =&(b) = (2}t'/z')(I - cosg) (14)

gLJ LJ
3 +3 (b2 + g 2t2)3 (b2 + «2 2)3 (10)

with CL,' &0. In Eqs. (9) and (10), b is the impact
parameter and the point of closest approach is
taken at /=0.

All relaxation rates are neglected in Eq. (8) owing
to conditions (1). As discussed in the Introduction,
it suffices to consider a single collision with im-
pact parameter Q and relative velocity e. The total
CARE cross section is given by

with

gVDW 3gCVDW
g

6 dt=
(b2 + V 2t2}3 8b5V

(15)

For the parameters chosen, &(b) oscillates at a
constant amplitude 0.16&10 ', irrespective of blue
or red detuning. The impact approximation under-
estimates the transition probability on the red side,
overestimates it on the blue side, but still pro-
vides a fair approximation at this detuning. For
detunings I a I3, & 1 the presence of crossings is
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FIG. 4. (a) The probability )CI)(b ~) ) as a function of im act arap p ™
=y.p8xyp «y) g»+= y.2 x. 6 & p ~ /sec, v = lp' cm/sec, & = —5 1o sec

llbl:d ~ ~ 5xlpif
~

~ (sa ~ ~ ~ pac p ~ er a s potential and
rs are e same as those in Fig. 4 (a).

seen to be relatively unimportant, as pr d' t d

ec. II.
The behavior of ~C»(b, ~) ~' for larger detunings

y 1012 sec -1 8 1
b, v, &I is shown in Figs. 5(a) and 5(b) f

sec ', X=10' sec '. Qn the red side, the
probability envelope is considerably greater than
the impact value 0.11&10 8. Crossings provide
stationary phase points to eliminate some of the
rapid oscillations owing to large

~
g~. The maxi-

mum contribution is centered about the largest 5
giving rise to a crossing in agreement with ealeu-
ations using a uniform approximation that con-

sider this region. On the blue side, the rapid
p ase variation due to detuning further diminishes
the probability from its impact value. On both
sides, the positions of maxima are shifted to
smaller impact parameters, since higher-fre-
quency components (consequently smaller b) are
needed to compensate for larger

~
a ~. In this range

o detuning, the crossing point on the red side
greatly enhances the cross section relative to that
on the blue, in agreement with the discussion of
Sec. II.

The oscillation of (C«(b, ~) (' has been interp-

reted as the phased cancellation or enhancement
of the transition amplitudes from thom e incoming and
outgoing crossings during the collision. This in-
terpretation is applicable only for large detunings
on the red side . It is not an appropriate interpre-
tation on the blue side where no crossings occur
nor for detunings

~
s

~

7', & 1 where crossing points
do not provide the major contributions to the ab-
sorption.

Equation (11) is integrated numerically from a
given impact parameter, b =5 A sa tsayy 0 in lnatyy

and the contribution from 0 to 50 is estimated. The
region of small 5 is particularly troublesome ow-
ing to the fast oscillations involved F t t

e contribution from small impact parameters is
re atively unimportant owing to the nature of the
envelope function and to the weighting factor g d5.

A line profile is shown in Fi 6 d
'

an is an agree-
ment with the qualitative discussion of Sec. II. For
small detunings,

~
b, ~7, «1, the cross section

alls off as 4 2 on both the red and the blue sides.
For large detunings,

~
g j~, »1 on the red side it

falls off as )
A(~~'s in agreement with the quasistatic

results of classical pressure-broadening theor-
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2. Intense-field case [6 j

ric allThere is no a i ionadd't' l difficulty in numerica y
(8( in the case of strong fields. sintegrating Eqs. ~ & in

S II there are no crossings idiscussed in ec.
r 7. & 1, the criteria for the impac

i are satisfied and one obtains the re suits of
impac

' ', , b r tion cross sectionsimpact limit; for XT, &1, a sorp i

x onentially small (in the fac-are expected to be e p
tor y~, in ob th the blue and red wings, owing o
absence of crossings.

n irm these conclusions.Th numerical results con irm ee
is an oscl-'l-For T & 1, the probability ~C»(b,

in 5 with constant amplitudes (im-
h th hhile for gT, »1, it asx.

teristic shapes shown

act theory is valid and one obtains a sym
absorption profile with a A ep

3. ~(~)f«X'c ~ j

IVA1 and IV'A 2 to obtainne can combine Secs.

shown in Fig. 7. For (a( «y, t ere are n
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5, =+Bx 10

Ot
oc( ocf

I—

10-10 This calculation

Tvorogov and Fomin

. Vainshtein et al.
to4-

ings an& the absorption cross section is approxi-
mately constant with (b, (. For (A(»y, one regains
the limiting condition of Sec. IVA1 with the cor-
respondirig line wings decreasing as (s (

s~' on the
red side and as a '~' exp(-acd~') on the blue side.
On the red side the profile passes through a maxi-
mum at (g(= y, indicating the transition from the
no-crossing (y & (b, () to the crossing (X & (b, ()
case. On the blue side, the falloff is monotonic

IO
2

F

Ot
o+

R

IQ 12 -I
X =tO sec

h, &0
O

'I

l
I

I
I

I

I I I

11 )O15

Ial [sec ']
FIG. 7. Absorption cross section o.(b) at a high inten-

sity, y =10 sec (F7~=1.08 p1), for the attractive Van
der Waals potential. Other parameters are the same as
in Figs. 5. Solid line, red detuning: dashed line, blue
detuning.

I

0
[ 10 sec ]

FIG. 6. Absorption cross section 0(&) for an attractive
Van der Waals potential in the weak-fieM limit with para-
meters as in Figs. 4—,this calculation; ——,Tvorogov
and Fomin (Ref. 21); ————,Vainshtein et al. (Ref. 32).

lO tOtO t012

[ sec ']

FIG. 8. Absorption cross section 0.(y) for the attrac-
tive Van der Waals potential with a fixed detuning ) 4 t

=3 &10 sec . Other parameters are the same as in
Fig. 5. Solid line, red detunimg; dashed line, blue de-
tuning.

owing to the monotonically increasing separation
of the dressed-state energies with increasing ~.

For a given y, maximum excitation is achieved
for a red detuning of jI=X.

4. 0(x) for fixed /5f

The difference potential shown in Fig. 3 is plotted
with C,"-' =-1.03X10"A'/sec, C~' =2.23&&10" A /
sec, which are given by Kielkopf et gE."for cesium

6'/2-VPx/2 transition perturbed by Xe.

Weak-field case, X« Ih I

Figure 9 shows (C„(b,~) (' as a function of b,
with (6(=3x10' sec ', g =10' sec '. At this de-
tuning, the impact approximation is very good. .

The absorption cross section as a function of X
for fixed (b, (

is shown in Fig. 8. The cross sec-
tion varies as X' in both the red and blue wings
provided either y7', « I or X «(a (. However, for
field strengths y» (6( and yT, &1 saturation oc-
curs and the cross sections fall off approximately
as exp(-pXs~e) consistent with the result of Lisitsa
and Yakovlenko. ' At these large-field strengths,
the dressed states never cross [Fig. 2(c)] and

their separation is dominated by y rather than (A (.
This saturation effect is not at all related to uni-
tarity, since it has been implicitly assumed that
the excited-state probability remains small in

comparison with unity. The saturation mechanism
is simply the one discussed in connection with Fig.
2(c) of Sec. II.

B. Lennard-Jones potential
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FIG. 10. 0(4) 'for a Lennard-Jones potential in the
weak-field limit, g =109 sec" (yv'~=1. 02 ~10 3«1). Other
parameters are the same as in Fig. 9. Solid line, red
detuning; dashed line, blue detuning.

0.00
6,00 8.00 10.00 12,00 14.00 16.00 18.00

IMPACT PARAMETER [Aj

FIG. 9. Probability as a function of impact para-
meter b for the Lennard-Jones potential. y =10 sec ~

(g7 = 1.02 &10 3« 1), b = 3 ~10~0 sec ~ (&7' =3.06 ~10 2

«1), v=10 cm/sec, CB = —1.03xlo A'/sec, C,&
=2.33

XQQ~3$&2/sec.

37]g 63pgLJ

8b'v 256'"v (16)

In addition to b =~, 8„, = 0 at b, = (-122-CL'/Cs')' '.
Since the minima of lC„(b, ~) l' are determined by

8,=2nm, n=0, 1,2, . . . , in the impact region, the
extra zero results in an additional peak with its
height determined by the maximum phase

l
9 L, l

in
the interval (b„~).

For larger red detunings, l C»(b, ~) l' follows a
typical crossing behavior [Figs. 4(a) and 5(a)] if

l h l
& lW„, l

and noncrossing behavior [Figs. 4(b)
and 5(b)] if l b, l

& lW~, l
in agreement with the dis-

cussion of Sec. II. There is always a crossing on
the blue side, regardless of detaining, and

lC»(b, ~) l' displays the type of crossing behavior

One can see oscillations with constant amplitude
(except for one additional peak at b =8.24 A) with
positions of maxima (and minima) and their heights
matched by the results of the impact approxima
tion. The extra peak is characteristic of Lennard-
Jones potentials. The impact phase for a Lennard-
Jones potential is

gLJ gLJ
g I

6 + 12
LJ J (b2+vsf2)3 +

(b2+vmt2)6

shown in Figs. 4(a) and 5(a).
The absorption profile is shown in Fig. 10 for y

=10 sec '. At detunings &10" sec ', the impact
approximation is valid and absorption falls as

For l&IT. &I, b« l&l&IWL, l there are
crossings for both red and blue detunings. Excita-
tion is greater for red than blue detunings, owing
to the larger range of impact parameters giving
rise to the crossings on the red side as discussed
in Sec. II. As lgl is further increased such that
l.d, I

& lWL, l, there is no longer a crossing for red
detunings and the red wing begins to fall off rapid-
ly. The change in dependence from power law to
exponential falloff with detuning on the red side is
the well known satellite feature of potentials pos-
sessing minima. For blue detuning, the la l

de-
pendence approaches lal '", typical for the far
wings of a power-law' potential going as g ". For
large lb, l, the blue wing eventually exceeds red
wing absorption. The line shape has the same qual-
itative features observed by Carlsten eg gE." in a
Sr-Ar system. The results differ quantitatively in
the specific l b, l dependence of the cross sections
as well as in the ratio of red to blue absorption for
a given ld, l. These discrepancies may be attrib-
uted to differences between the Ar-Sr and Cs-Xe
interatomic potential s.

2. a(A) f "Xc~1

A profile o(h) for y
=: IO" sec ' is shown in Fig.

11. Since yT, ~ 1, the presence or absence of
crossing greatly affects the magnitude of the ab-
sorption cross section. For lal«y, the dressed
states of Fig. 2(c) do not cross and the cross sec-
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FIG. 11. 0(h) at a high intensity, y =10 sec (Xv~
=1.02 8 1), for the Lennard-Jones potential. Other pa-
rameters are the same as in Fig. 9. Solid line, red de-
tuning; dashed line, blue detuning.

IO

Finally, the line shape as a function of y for
fixed detuning, (a~=10" sec ', is shown in Fig.
12. For X7, «~a~&, =1, the absorption goes as y .
There are crossings in both the red and blue wings
since (6) & (W~„(. As y increases, the red crossing
disappears at X = —,'(W„', —a')'~' and the blue wing
crossing disappears at y = ~. The corresponding
saturation of the spectrum is clearly seen in Fig.
12, with o(x) saturating at smaller y in the red
wing than the blue.

tions for both red and blue detunings are approxi-
mately independent of a. For (6 ~

a y and
( o,(

&
~ W~, ~, a crossing becomes possible on the red

wing (since the y chosen is less than ~W„, ~ ) and also
on the blue wing. For the parameters chosen, the
red wing increases slightly with increasing

~
a ~,

owing to the presence of the crossing, but then be-
gins to decrease exponentially as soon as

~
a

~

&
~ W„„~. The blue wing decreases monotonically

with increasing ( A (, asymptotically going as )a(
f g /-1.25

If a value )( & ~W„, ( is chosen, there is never a
crossing for red detunings and the red wing de-
creases monotonically. Figure 11 is consistent
with the qualitative discussion of Sec. II. For a
given y, the optimal detuning for maximum excita-
tion depends on the detailed nature of the potential.

3. o(x) for fixed lhl

IO I

I 0 lo

X [sec ']

l

IO

FIG. 12. 0(g) for the Lennard-Jones potential with I4 I

=10 sec+ (Ih Iq~ =1.02 Z 1). Other parameters are the
same as in Fig. 9. Solid line, red detuning; dashed line,
blue detuning. Saturation occurs at lower g for the red
wing than for the blue.

V. SUMMARY

A physical picture of collisionally aided radiative
excitation (or emission) (CARE) has been given using
a dressed-atom approach. This approach enabled
us to obtain general predictions for both the de-
tuning and field dependence of CARE. These pre-
dictions were compared with numerical solutions
of the problem and were found to successfully ex-
plain the CARE line shape. Moreover, the results
for a Lennard-Jones potential are qualitatively in

agreement with the experimental data of Carlsten
et al "

The numerical solutions, while costly, offer a
much wider range of validity than the asymptotic
formulas obtained by previous authors. Our meth-
ods can easily be extended to problems with arbi-
trary interatomic potentials and to other than

straight-line internuclear paths.
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