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Electron scattering from hydrogen: Collisions in which the total spin quantum numbers change
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In several recent experiments in which spin-polarized electrons were scattered from hydrogen atoms the
investigators isolated the spin-exchange effects which arise in the theory from the antisymmetrization of the
wave functions of the electrons. Noting the recent advances in techniques of producing and detecting
polarized eleCtrons, this paper considers the possibility of finding the terms in the effective transition
operator that are spin dependent. The spin-dependent parts of the first Born term in the transverse photon
arid the instantaneous photon are calculated. The 1s-ls, is-2s, and 1s-2p scattering amplitudes are
discussed specifically. A brief comparison is made of the magnitude of these effects and the accuracy of the
present experiments.

I. INTRODUCTION

The recent experiments by Alguard, Hughes,
Lubell, and Wainwright"' employing spin-polar-
ized electrons in electron-hydrogen-atom scatter-
ing has provided tests of our knowledge of spin-
exchange effects in a simple atomic system.
These experiments measured the interference
between direct and exchange scattering amplitudes
in electron impact ionization and elastic scattering
off atomic hydrogen over a considerable energy
range utilizing spin-polarized electrons and spin-
polarized hydrogen atoms. The effects that were
measured depend on spin through the exchange
terms provided by the Pauli exclusion principle;
the effective transition operator for these expt, ri-
ments is indeed spin independent. As such, these
spin-exchange effects keep invariant the spin quan-
tum number 8 of the scattering electron target
and the projection M~ along the axis of quantization.
In the near future, polarized electron scattering
experiments of this type will be improved by the
use of new methods of producing polarized elec-
tron beams, which are expected to increase beam
currents from the present 15 nA level to several
milliampe res.

In this context this paper considers interactions
in which S and M~ may change during the scatter-
ing. These effects are caused by interaction terms
that are spin dependent. We calculate the spin-
dependent corrections from one instantaneous pho-
ton exchange between the nucleus and the scattered
electron (Mott scattering), from one instantaneous
photon exchange between the two electrons, and
from one-transverse-photon exchange between the
two electrons.

Previous theoretical work on total spin-change
scattering has been done by Mittleman' and by
Burke and Mitchell. 4 Mittleman' considered a
spin-dependent term in the 1'Sp 2 S i excitation

of helium by unpolarized electrons and took as an
effective spin-dependent potential the spin-other-
orbit term that occurs in calculations of the fine-
structure energy levels of helium. Arguing that
other effects are small at high enough (&8 keV)
incident electron energy, he neglects the spin-spin
term as well as the relativistic wave function cor-
rection for helium. It is this relativistic wave
function correction which makes the electron-
helium scattering problem at somewhat lower
incident electron energy far more complicated
than the electron-hydrogen case studied here.

Burke and Mitchell4 have examined the role the
fundamental symmetries play in determining the
general form of the interaction in. s-s scatterings
in atoms where there is one electron in the outer
shell. In addition, they have calculated the transi-
tion amplitudes for an electron scattering off a
spin-orbit interaction of the form L S (f (r))
where L is the total orbital angular momentum
operator, S is the total spin operator, and f (r)
which is dependent on the radial distance of the
electrons from the nucleus must be determined
empirically. This effort is of principal interest
in problems where the target is a heavy atom and
thus the interaction is too complex to calculate
conveniently from first principles and some em-
pirical input is needed.

II. CALCULATION

The calculation is done using a set of techniques
known as time-ordered perturbation theory. There
are several books" ' that introduce quantum elec-
trodynamics from this point of view. An advantage
of the approach is that it is in form very similar
to Rayleigh-Schrodinger perturbation theory for
nonrelativistic quantum mechanics. The plan in
doing these calculations is first to write down the
relativistic perturbation amplitudes. A process
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known as "nonrelativistic reduction"' converts
these terms to sufficient accuracy into nonrela-
tivistic amplitudes that are convenient to evaluate.

The starting point of this calculation is an un-
perturbed Hamiltonian

M' " = (I ~
(-8'6;+ e'I&») 1l) (2a)

where'~" is the Dirac Hamiltonian for an elec-
tron in a Coulomb field, the target hydrogen atom,
and 8~'„ is the Dirac Hamiltonian for the scatter-
ing electron. We will ignore the exchange terms.
For near forward scattering, which is likely to be
the interaction of interest, the direct terms highly
dominate at incident electron energy a number of
times larger than the ionization energy of hydro-
gen vihere this first Born calculation should be
useful.

We obtain the spin-dependent part of the instan-
taneous photon terms by examining M '& where

Equation (2a) is the relativistic counterpart of the
ordinary first Born amplitude. The vectors ry a11d

r, give the position of the bound and the scattering
electrons and r»=

~ r, —r, ~
is the separation. The

wave functions I and I" are the initial and final
wave functions of Hp The charge of the electron is
-e.

For the calculation of the transverse photon
term we take as our perturbing Hamiltonian

(2b)

which in second order gives the interaction for
the exchange of a transverse photon (which is often
called a Breit photon) between the two electrons.
It is convenient to formulate this approach in
terms of second quantization, and we give refer-
ences for such a development. '

The contribution to the scattering amplitude
from the initial transverse photon interaction in
scattering where the initial and final states of the
atom are bound is given by M ' where we write'

e))~&=(—"i' "pg&s')e, ee''"IU&&U)e, 'ee ''"i&&Ge&))+&) 2).
2w)

The sum over U is taken over all the virtual inter-
mediate states of hydrogen. The symbol (1 2)
represents a term identical to the previous one
with electron 1 interchanged with 2 in the transi-
tion operator, and Gs(k) is given by

C,(e) =(Z, -E,-u)-'.

The wave functions I, U, F are eigenfunctions of H,
with EI, E~, and E~ the respective eigenvalues.
The Dirac matrices && are defined by the standard
representation. ' The quantity k is the wave num-
ber of the Breit photon which is exchanged between

the bound and free electron. The sum over r, the
polarization vector, is over two directions per-
pendicular to each other and %.

Since we are not concerned with extremely fast
incident electrons or bound electrons in an atom
of very large atomic number, we maymake a non-
relativistic reduction' of the matrix operator in

(2a) and (2) discarding terms of relative order
(lP/m2), (kz/2222), and (a'), where a is the fine-
structure constant. It should be noted that we are
interested in the spin-dependent transition oper-
ator. Obvious spin-independent relativistic cor-
rections are discarded. We write

2 12
, (q~ (r„r,) ~ c, (kxp, )e' ""~ "&

-o'2 ~ (K&& p2)e
"'"( 1+e' " ' ) -I g~ (r„r,)), (5a)

3

g p(g&(r„r2)~e '&[p, 7+ '2i a, ~ (kxn-] ~u)(u[[p2 m--2'2o2 (kxw)J

x e ' 2 ' 2
~

&I),(r, r2)) G „(k)+ (1 2), (5b)

where p, and p, are the momentum operators for
the corresponding electrons. The first term in
(5a) is the leading spin-independent transition
operator taken between wave functions g' which

have the spin-same-orbit interaction included as
a perturbation. The spin-orbit interaction gives
rise to a spin-dependent contribution. For scat-
tering between s states the spin-orbit correction
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vanishes. For this case we can replace g' by g
the nonrelativistic (Pauli approximation) wave
functions. In the general excitation problem we
need to include the spin-orbit wave function cor-
rection. A discussion is given in the Appendix.
The second part of (5a) is clearly a spin-dependent
contribution. Equation (5b) also has a spin-depen-
dent and a spin-independent contribution. The
spin-independent part is of order a' less than the .

leading Born approximation arid therefore we ne-
glect it.

In Eq. (5) the o, matrices are Pauli spin matri-
ces. G„(k) is a nonrelativistic approximation of
G~(k) with Er and Ee replaced by their nonrela-
tivistic counterparts W; and S'„, respectively.
Specifically, we write

The form factors E, and F, are given by

F (q)=&Or(r)le""it (r)&

the generalized oscillator strength, "and

F,(q) = ( yr (r, ) ~

e' '
.p, ~ rtr, (r,)) . (12)

(13)

and

The overall factors A(q) and B(q) are defined by

A. (q) = [e'/(8&'m'q) ][(&; —er —q) '+ (er —~, —q) 'j

Wr =k) '/2m+ sr =kr'/2m+ay (6)
B(q) = —,'[e/(2rrmq)]'. (14)

W„=k„'/2m+ e„,

where k, , k„, and k& are momenta of the free
electron, and the e are the nonrelativistic ener-
gies of the target atom.

We write for the wave functions gr and g,

g= Q(r, )8(r,)X (8)

where the P's are eigenfunctions of the target
atom, the X

's are two-particle spinors and the
6I's are free particle plane-wave states of the
form exp(i k, , r r)/(2rr)'~'.

Inserting (8) in (5a) and (5b), we integrate over
the spatial coordinate r, of the scattering electron
and in (5b) sum over the polarization vector Tr.

After some manipulation and discarding of the
spin-independent terms, we obtain the leading
part 3R~ of the spin-dependent part of M. %ith
q =%,. -%& we write for the transverse photon
term

q=(kg -kf)/lk) -kr I,

p= (k, +k, )/[k,. +k, [,
n= $,xkz)/lk, xk

(15)

with n which points out of the scattering plane the
quantization axis. We rewrite (9) and (10) using
our new coordinate system.

Equation (10) includes the spin-dependent part of
the scattering of the incident electron by the nu-
clear Coulomb field. The 5f; symbol connected
with this contribution stands for the overlap of
the initial and final spatial wave functions.

Examining the transverse photon (9) contribu-
tion, we find that the first two terms inside the
matrix element are spin-other-orbit interactions,
and the remaining part is the spin-spin interaction.
The instantaneous (10) term contains spin-other-
orbit contributions.

For convenience we redefine our coordinate
system with the directions suggested by the colli-
sion process"

5Risr ~ =A(q)(yy ~
i (r; $, x%r )E, —i o', ~ (qx F,)

--', (q'a ~ o -o ~ qo q)F, ~y& &

and for the instantaneous photon term

Skis'~ =B(q)(xr (i o, ~ (k, xkr )(5r, -F,)

(9)

It's"=A(q)(yr I [irr, nk, k, «

+ —,'q'(o, o, —o, qo,.q)]E,

io, (qxF, )ly-;),

Dig ~ =B(q)(ltr ~
io, nk, kr «(5q, -F,)

(16a)

+io, ~ (qx F,) ~X, )+5Rs' (10)

where

+io, ~ (qx F,) ( X, )+5a~s', (16b)

where the spin-dependent wave-function correction
5g~' is discussed in the Appendix. «=[I- (k, k,)2]"'.
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Sl'i, s=B(q)(x~ ~i (r, nk(ky a6f q

—i (2S+ o,) nk, kz xF, +i (2S+ a,) ~ (q x F,)

-[q'(o, a.) -~, q~. q)]E, IX~)+&".'

where 5 is the sum of spins of the two electrons.
If either X, or X& is a spin-zero state, the 5-de-
pendent terms are zero: In addition, the operator
S ~ A vanishes for X, or X& a 8=1, ~s=0 state

For 1s-1s and 1s-2s scattering we give the cor-
responding values of the form factor E,:

E,(q, 1s —1s) = 2'/[a4(q'+ 4/a', )'], (19)

In (16a) and (16b) are contained the spin-dependent
paris of the transition amplitude. Let us consider
some special cases. For s-to-s scattering the
vector q x F,vanishes. The spin-spinterms in(16a)
and (16b) cause spin-flip transitions ln which the
change of Ms [~s=Ms(f) -Ms(i)] is a2. In colli-
sions where the 5 function 5&, is one the spin-
other-orbit term can cause a 48=+1, d8f8=0
scattering. Scattering events where ~8 equals +1
are noi allowed as can be seen from examination
of (16a) and (16b) or from fundamental grounds
because of space reflection invariance. 4

Note for q much greater than [ ez —e, [, which
will be correct for other than a most restricted
region where the scattering angle is less than
2~ &y -6,

~ /k, , we may replace A(q) by -2B(q).
In this approximation we write for the sum of the
instantaneous and transverse contribution

III. CONCLUSION

Since scattering events in which S and M~ change
can not be produced by the spin-independent inter-
action, it would seem logical in order to detect the
spin-dependent pari of the transition operator to
employ perfectly polarized electron and atomic
beams and examine only those events that change
either of the total spin quantum numbers. Experi-
mental difficulties prevent us from obtaining any-
where near perfectly polarized beams. In the ex-
periment' mentioned earlier the beam polariza-
tions were 63/0 for the electrons and 50/0 for the
atoms. As a result, in an attempt to detect
changes in 8 and M~, one will have to perform
many di'fferent experiments and determine the
spin-dependent paris of the transition operator
in interference terms with the spin-independent
pari. A discussion of using partially polarized
beams io determine the spin-dependent transition
operator in 8-s excitations has been given by
Burke and Mitchell. '

In general we find that the spin-dependent cor-
rections are of order n' smaller than the spin-
independent pari. We compare this io the present
level of accuracy" of the experiment by Alguard
gt g/. ,

' which is 4 paris in 10'. With a GaAs
photoemission polarized electron source capable
of high intensity and optical polarization reversal,
differential scattering experiments sensitive to
the level of less than 1 pari in 104 in the parallel-
aniiparallel cross-section asymmetry appear
possible. Whether this advance will allow the
detection of terms in the transition operator which
can change the total spin quantum numbers re-
mains to be seen.

E,(q; 1s -2s) = 4M2 q'/(a~a [ q'+ 9/(4a', )] ']

(20)
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where a, is the Bohr radius.
The next special case we examine is s-p scat-

tering. It is convenient to write our p-wave func-
tions in the coordinate basis given by (15). The
form factors &, and F, in the form q~F, for 1s
-2p scattering where R is either p, q, or n are
given below"
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E,(q; 1s 2pg) (
2 9/4 2)3 (21)

APPENDIX: SPIN-DEPENDENT TRANSITION OPERATORS
ARISING FROM SPIN-ORBIT WAVE-FUNCTION

CORRECTIONS

i&2 qxR
qx F,~q; 1s-2p~) = —,

go gQ + gy 4gog
(22)

In general, for 3-pz excitations the expression
q&& F, does not vanish. As a consequence ~~=+1
transitions are allowed.

As was mentioned in Sec. II, the spin-same-
orbit corrections io the initial and final wave func-
tions can give a spin-dependent amplitude. We
consider the first term in Eq. (5a) as a sum of the
ordinary nonrelativistic Born approximation plus
the spin-orbit wave-function correction. After
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integrating over r„we obtain the amplitude

half'„", = (e'/2&V)l& ey (r, ) Ixl eI (r, )) &xI I xI &

perturbation H' is given by

H', = (e'/4m'r', )o, ~ l, , (A2)

where

+ & Q~ (rI)ltd IxgI H + H -so ax I QI (rI)l(I &

(Al)

where 1, is the angular momentum of the bound
electron. If the initial and final states are both
(f, =0) s states, there is no contribution from
this term. In the more general case the II,' „
pal't of EIl. (Al) SIIIlpllf les 'to

X= -y+e«'r,

gI + (eg -H+l g)

g~ =(e~ —H+ig) ',

Jks' =(e'/2s'q')& QI (r,) le'~ '&g, A

+xgge«'" Iy, (r, )&,

where' is given by

(A3)

II is the nonre1ativistic hydrogen Hamiltonian,
and q is an arbitrarily small positive constant
that reminds us to take the principal part. There
are additional relativistic spin-independent cor-
rections that are ignored here since these correc-
tions are negligible compared to the nonrelativis-
tic amplitude. To distinguish between these two
spin-independent contributions would require ex-
traordinarily precise absolute scattering experi-
ments which are unlikely. The spin-same-orbit

(A4)

The expression in (Al) can be evaluated using an
explicit representation of the Coulomb-Green's
function and related techniques. " The correspond-
ing wave-functiop corrections from a transverse
photon exchange appear to be somewhat smaller
since the terms corresponding to g, and gz
in this case are smal1er.
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