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Calculation of proton-impact excitation of helium using the Glauber approximation
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Cross sections for the 1'S—+n 'S (n = 2,3,4) excitations of atomic helium under proton impact are
calculated with incident energy ranging from 25 to 1000 keV employing the Glauber approximation. A
properly orthogonalized set of He wave functions are used. The generalized oscillator strengths for 1'S~2'S
and 1'S—+3'S excitations are also calculated with these wave functions, and the results are compared with

the existing theoretical and experimental data. The full Glauber scattering amplitude is separated into single-

and double-scattering parts. The single-scattering amplitude is evaluated from a closed-form expression. A
numerical method is employed to calculate some integrals occuring in the double-scattering amplitude; At
incident energies above 500 keV, the single-scattering contribution is found to dominate the Glauber result.

The effect of the double-scattering term is appreciable at intermediate energies, where it substantially lowers

the cross sections from the corresponding single-scattering result. The Glauber result at intermediate energies

also underestimates most of the existing theoretical and experimental cross sections, which already show a
wide variation among themselves in absolute values. However, the functional dependence of the Glauber

cross sections op energy is similar to that depicted by other calculations and measurements. Furthermore,
the average ratio of the Glauber cross sections for 3'S and 4'S excitations at high energies show reasonable

agreement with those obtained from other theories, as also from the n ' law of cross sections.

I. INTRODUCTION

Direct collisional excitation of atomic helium
from its ground state under the incidence of ionic
projectiles is a topic of much theoretical and ex-
perimental interest. For proton-impact excita-
tion of ground-state He, a number of theoretical' "
as well as experimental" "studies of the collision
cross sections are available. The agreement be-
tween theory and experiment is more or less good
for the optically allowed transitions. """ But,
for optically forbidden transitions, ' ""the situa-
tion is far from satisfactory. Considering, for
example, the 'S excitations in p-He(1'S) collision,
the available data' "of cross sections, both theo-
retical and experimental, show a wide variation
among themselves in respect of absolute values.
Some new theoretical results may perhaps prove
worthwhile in clarifying this situation. The pres-
ent work is an attempt towards this direction.

Of the various approximate theoretical proce-
dures available for calculating the ion-atom colli-
sion cross sections, the first Born approximation
(FBA) is applicable at high incident energies of the
projectile, but fails towards intermediate-energy
regions. Furthermore, for optically forbidden
transitions, the FBA method becomes unsuitable
even at much higher energies than one would usual-
ly expect. "~ Some improvement may be obtained
using the second Born approximation (SBA), but
here the scattering amplitude involves an infinite
summation over all the target eigenstates. Sim-
plified forms of the SBA method have sometimes
been successful in studying He excitations"" at
intermediate energies. The two-state distortion

approximation" of Bates is another method and
may often predict the qualitative features of the
cross sections"" down to much lower energies
than the corresponding SBA method" can do. Some
many-state calculations" have also been per-
formed for ion-helium excitations, which are much
more rigorous than the two-state ones, but involve
lots of computational work. Besides these, a num-
ber of approximations have also been proposed,
which include the second-order effects in atomic
excitation processes. Thus the second-order diag-
onalization method' and the second-order potential
method' have been applied with varied success.
Among the notable exceptions, one can mention
the Glauber approximation" which, in spite of its
success in studying collisions involving atomic hy-
drogen targets at intermediate energies, has
found very few applications in ion-helium colli-
sions.

The Glauber approximation" (GA) is one of the
various eikonal-type methods which has been used
by many workers in recent years to study compo-
site atomic collision phenomena. ~ Extensive
studies have been made on e-H and p-H colli-
sions for which the GA scattering amplitude
is a five-dimensional integral. Such studies have
revealed the superiority of the GA over the FBA
method at intermediate regions of incident ener-
gy. " Great simplification in the Glauber calcula-
tion for hydrogen targets were later possible
through the works of Thomas and Gerjuoy. " They
expressed the (1s-ns)- and (1s-nP)-scattering am-
plitudes in closed forms. However, application
of the Glauber method to helium targets had to
face a lot of complications at the beginning. This
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was due to the fact that for He targets an eight-
dimensional integral occurs in the expression for
the GA scattering amplitude. Some numerical cal-
culations were performed for e-He collisions after
reducing the amplitude to three-dimensional"- '
and two-dimensional3'32 integrals. Finally,
Franco" proposed a method for reduction of the
amplitude integral to one-dimensional form and
later applied it to study electron scattering from
He targets. " However, an infinite integral over
the impact-parameter variable is finally left in
Franco's method" and the corresponding integrand
involves a combination of hypergeometric func-
tions. These functions diverge exponentially and
make numerical computations in the method" very
troublesome. " Thomas and Chan" later refined
and simplified this method to some extent by sep-
arating the total Glauber amplitude for He targets
into the so-called "single-scattering" and "double-
scattering" parts. They also reduced the single-
scattering terms into closed forms and expressed
the double-scattering term in the form of a one-
dimensional integral involving a modified version
of the Lommel function. As long as the argument
remains small, direct evaluation of the function
is easy. But, for increasing argument values,
calculations had to be done entirely in double pre-
cision. " However, for sufficiently large argu-
ments Thomas and Chan" could employ an asymp-
totic series for the modified Lommel function.
The method of Thomas and Chan" has since been
applied by a number of workers' to study e-He
collisions. Only in one calculation" has it been
applied to investigate the 2 P excitation of ground-
state He by proton impact. The extreme scarcity
of Glauber theoretical data on heavy-particle-
neutral-helium collisions has led us to use the
Glauber approximation for the present study.

Proton impact 1'S-n'S (n= 2, 3, 4) excitations
of ground-state He are investigated in the present
work using the Glauber method. Instead of using
a modified Lommel function for the evaluation of
the double-scattering part of the total Glauber am-
plitude, we have employed an alternative numeri-
cal procedure" for the evaluation of the relevant
integrals. This method" is applicable for a wide
range of values of the argument of the modified
Lommel function and can be handled with normal
computer precision.

For the wave functions of the pg'8 states of He,
we use the orthogonal set given by Winter and Lin"
(WL). To judge the accuracy of the WL wave fun'c-

tions as well as that of the FBA cross sections
predicted by them, we-also calculate in the pres-
ent paper the generalized. oscil.lator strengths
(GOS) of the transitions concerned. The GOS val-
ues of the 1'8-2'8 transition are compared with

the existing theoretical ' ' and experimental ' '
data, whereas the GOS values of the 1'8- 3'8
transition are compared with the available theo-
retical data. ~ ' For the transition 1'8-4'8 in
He, the GOS values with WL wave functions have
already been calculated and compared with other
theoretical results in the work of Sur eI; gl. '

g(r) = e '", u„(r) = e ' Q (-)' 'c,r' ' (4)

Here u, P, y, a, and c, are wave-function-param-
eters, and N, and N& are the normalization con-
stants. 4& is orthogonal to all the lower states.

A. Generalized oscillator strength

The generalized oscillator strength A(q) for the
transition of a helium atom from its ground state
(i) to any excited state (f) with a momentum trans-
fer q is defined as

where e«(= e& —e,) is the excitation energy from
the ground state and r is the position vector of
any bound electron.

III. THEORY

For impact excitation of a helium atom from an
initial state 4,(r„r,) to a final state ter„r,) under
the incidence of a structureless particle with
charge Z, and relative velocity v„ the scattering
amplitude E(g) in the center of mass (c.m. ) sys-
tem is given, according to the Glauber approxima-
tion, by

E(q) = 4'&(r„r,)I'(b, r„r,)2r

x 4,(r„r,)e"bd'5 dr, dr, , (6)

H. WAVE FUNCTION

For the ground state of the He atom, we take the
product form of wave function due to Green et
al.":

4, =—4(1 'S
~
r„r,) = N,u0(r, )u0(r, ),

where

u,(r) = e "+ae ~",

while the final-state wave functions of Winter and
Lin" are given in the form

+~ =-@n'S
~
r„r,)

= Nq [u„(r,)g(r, ) + u„(r,)g(r, ) ]

with
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where

(7)

I",(b) = 2N&'N, I'„(b)1,(b),
where

(17)

and 7!= -Z, /u, . Here K, and K& are, respectively,
the incident and final momenta in the c.m. system
and q(= K,. -K~) is the momentum transfer vector.
The vectors b and s& represent the respective pro-
jections of the position vectors of the incident par-
ticle and the jth bound electron (r&) onto the plane
perpendicular to the Glauber path integration (the
b plane).

Introducing polar cordinates on the b plane and
performing the corresponding azimuthal angle in-
tegration in Eq. (6), we obtain

and

A, 2= +0 J' Q„J'

r„(b)= Irr, (r)r„(r)1'(b, r) dr;

1»(b)=, u,(r)g(r) I"(b, r) dr,

(18)

(19)

I(b) = iii,. J br'I'( b, r„r,)

x 4,J,(qb) b db dr, dr, .
The composite two-particle I'(b, r„r,) can be
written in terms of single particle I'(b, r&) as"

I'(b, r„r,) = I'(b, r, ) + I (b, r, )

—I'(b, r, )I'(b, r,),
where

I'(b, rz)=1-(ib —ski/b) '".

(8)

(9)

(10)

where l, = o. + 2, l2= P+ 2, l, = c(+ y, 14 = P+ y.
Introducing the function

r,(l, I), I) = f:I'( b, r) dr,

we can write

I'„(b)= —Q rr (
—

) I',(I„r),b)
3

+ a —I"()(l4, )7, b)
4

(20)

(21)

On substitution from Eq. (9) in Eq. (8), we can ex-
press the Glauber scattering amplitude as

E(q) = E,(q)+ E,(q), (11)

where
(22)

E,(q) =iK,
Pp

E,(q) = -iK,
&0

with

db bJ (qb}1',(b), (12)

(13)

The expression (20} for I', can be reduced along
the lines of Ref. 35 to the form

where

l,(b)= 2(@~i 1(b, r, ) i4,.) I (14)

I',(b) = (III&
i
I'(b, r, )I'(b, r,) i

4'&) . (15)

Here E,(q) gives the single-scattering contribu-
tion to the total Glauber amplitude. ' '" The target
He atom may be considered to consist of two hy-
drogenic atoms, each being composed of an elec-
tron and a unit positive charge at the nucleus, and
thereby taking part in scattering as a single target.
The sum of such contributions is contained in

E,(q). The remaining part E,(q) of the total am-
plitude may then be interpreted as the double-scat-
tering amplitude.

On substitution for II'& and 4'& from Eqs. (1}and
(3) in Eqs. (14) and (15), we have, respectively,

I', (b) = 2N*N,.[A, I' (b)+ A.,l, (b)], (16)

(25)

where

I(X, q, q) = JI dbbJ, (qb)K, (a, q, b)
0

(26)

K (X, )7, b) = X (i!(.b) '"Ir,.„(i!(.b), (24)

the function R„„(iu) being a modified version of
the Lommel function introduced by Thomas and
Chan. "

Combining Eqs. (16), (21), (22}, and (23) and
substituting the resulting expression for 1,(b) in

Eq. (12), we obtain the single-scattering amplitude
as

E,(q) = 32iK,N~Npq''
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and d„=A„du = aA„ t, = 1, („=l„gu = l„d,~

= 2, 3, . . ., n+1. The integral in Eq. (26) can be
evaluated" to give

I(X, q, q) = ——1 (i@)I'(1 —iq)q"" '1. ""'
(27)&&,F,(1-iq, 1-iq;1; -x'/q'),

which, when substituted in Eq. (25}, gives the final
closed-form expression for the single-scattering
amplitude.

The present method of reduction of the amplitude
differs from that of Thomas and Chan" in an early
breaking of the full function 1'(b, r„r,} in terms of

the functions I'(b, r&) via Eq. (9). This results in
the expression (25) for the single-scattering am-
plitude where each term in the double summation
involves only one wave-function-dependent param-
eter (g»). The corresponding expression in
Thomas and Chan, "on the other hand, would have
involved a greater number of two-parameter
terms.

A. Evaluation of F~(q)

To evaluate F,(q), we combine Eqs. (17}, (21),
(22), and (23) and substitute the resulting expres-
sion for I',(b) in Eq. (13). Thus, we have

00
~

4 tf 8 8
F,(q) = -512iK,.NtNp'ri db b&0(qb) Q Q ht& s Ko(ht~7l) b)

s~ Ko(lp) )7~ b} (28)

wher hia= ca hma= h, ),
= ac~, h4), = a c)„4=~2= 4)

4= 4= l2 4 = &s= 4 and &2= &4= l4 ~

For the evaluation of the integral in Eq. (28),
we are to calculate the function Z0 and its various

. derivatives. This may be done by using Eq. (24}
for K„as expressed in terms of R„„(iu}and
making use of the recurrence relations" among

„(iu}. However, calculation of the functions
Z„„(iu}involves a lot of high precision numerical.
work. Thomas and Chan" have expressed Z„„(iu)
as a combination of two hypergeometric series
[Eq. (A6) of Ref. 35]. The expansion parameter
in each of these series is (2u)'. For small values
of the argument u, Z „(iu) can be calculated with-
out difficulty. But as the value of u increases, the
number of terms required for convergence of each
of the two hypergeometric series becomes very
large. Hence, for accurate numerical evaluation
of Z„~„(iu), the computations are to be performed
entirely in double precision. For sufficiently large
values of u, however, Thomas and Chan" have
used an asymptotic expansion for R„„(iu}in terms
of (2u) ~ [Eq. (A17) of Ref. 35].

An alternative numerical method for the evalua-
tion of K0 and its various derivatives have recently
been proposed by Sur et al.' and has the advantage
of requiring only normal precisipn during compu-
tation. To start with, we substitute the integral
representation [Eq. (A'l) of Ref. 35] of 82,„,o(iu):

k„.„,,(iu) = -2""'(iu)""
r&1-&qr

K,(X, q, b) =A~-'[M, (q, u)+ M,(q, u) ),
where

(31)

M(q u)= z (t)
j 7 t'+ u' '

Og

with a, = 0, b, = t,;a,= t„b,-~. The function J',(t)
in these two ranges can be represented, respec-
tively, by44

(32)

6

Z,(t) = P a,(tlt,)"+O(10-'), t- t, ;
A¹0

and

Z,(t)=t ' 'f(t) cos8(t), t, ~ t& (34)

where

(34a)

where u= Xb and A(q) = 2""-'1"(iq)/I'(1 -iq). The
integrand in Eq. (30}has a branch-point singularity
at t= 0, which makes it highly oscillatory in this
limit. However, as 1.ong as u&0, the integrand is
bounded as t-0. On the other hand, as t- , the
function Z~(t) gives rise to rapid oscillations of
the integrand. These highly oscillatory natures of
the integrand at both the limits of t make direct
numerical evaluation of the integral in Eq. (30) ex-
tremely troublesome.

In order to avoid the above difficulties, Sur eg

al.3' break up the range of integration in Eq. (30) into
two parts, such that

"0
dt t-2il1+1 0( t}

g+u (29)
A¹0

6
&(t) = t+ Q d„(t,l t)'+ o(10 ') (34b)

in Eq. (24) and obtain

xh, , b)=A(tl)x ' f dtt """
0

(30}

&¹0

with t, = 3 and a~, b~, and d~ being numerical con-
stants.
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On substitution for Z, from Eq. (33) in Eq. (32),
one obtains for M,

~,(q, u)= pa„
%up

"„, „.„„(«.)'"
t+u (35)

By a change of integration variable as y =(tlt, )',
, M, becomes

M, (q, u)=a(q) Pa„G, ,(q, ~), (36}

where

y0-i9

(y+ v)" (3't)

with B(7})= 2t,""and v=(u/t, )'. The integrals G~ „
obey the recurrence relations (A2) through (A5) of
the Appendix. Differentiation of M, can be per-
formed via the relation (A5). The resulting func-
tions G~ can all be generated from such a single
integral by making use of the relations (A2) through
(A4). For efficient calculation, this integral is
chosen to be the one with the largest value of each
of the parameters p and m, and is evaluated nu-
merically. The repeated use of the recurrence re-
lations for the generation of other functions G~

with lower values of p and m then do not cause any
loss of precision. This has been ensured by actual
computations. "

M, can be similarly written, after substitution
for 8, from Eq. (34) in Eq. (32) as

where
2i n+ I / 2 6

N,(z, s)=, „,f exp si g d~t'+ u'}'
kul

(42)

(q) =(K,«,) IF,(q.) F.(i) ~', (43)

The appearance of the exponential damping factor
in the integral in Eq. (41) makes it easily inte-
grable by the Gauss-Laguerre quadrature method.
Thus one gets rid of the numerical trouble due to
the infinite number of oscillations of J,(t) as t- ~.

After calculating M, and M, and their various
derivatives by the above method, Eq. (31) can be
used to obtain K,(X, q, t/) and its derivatives re-
quired for substitution in expression (28) for the
double-scattering amplitude E,(q). This method
is applicable for a wide range of values of u= A.b,
except for very small values. At such small val-
ues, the direct series for R„„(iu) [Eg. (A6) of Ref.
35] can be conveniently used to compute K, and
its various derivatives by the help of Eq. (24).

The above method of calculation of Kp and its
derivatives has already been tested properly by
Sur et al. in their work. " They used Eg. (24) to
check their calculated values at certain limiting
sets of values of the parameters A. , g, and b against
those obtained from the method of Thomas and
Chan" and found good agreement between the two
results. "

The Glauber differential cross sections in the
center of ~ass frame is given by

r~
~ (71 u) — ' dt t «+2&/ f(t2}

t +utp
(38)

whence the total cro'ss sections can be obtained as
usual.

This is conveniently put in the form

M,(q, u) =-.'[F,(q, u, 1)+F (q, u, 1)],
where

(39)

E,(q, u, s)=
r oo e'"

dt t 2«+1/ 2f-
(t'+ u')'"tp

(40)

dz e 'N, (z, s),
Mp

(41)

Derivatives of F, and hence of M, can be obtained
using the recurrence relation (A6) of the Appen-
dix. Direct numerical evaluation of Eg. (40) is
still not possible because of the exponential phase
terms in the integrand. One can, however, con-
veniently pass over to the complex t(x —z) plane
and rotate the path of integration on this plane par-
allel to the imaginary axis. This can be achieved
by introducing the transformations t= tp+iz and
choosing the contours of integration in the first
and fourth quadrants, respectively, on the t plane.
This results in the following expression for F,:

E,(q, u, s) = + zi exp[+ i(t, + d,)]

IV. RESULTS

A. GOS values

In F&g. 1, we have plotted against q' the present
GOS values using the WL wave functions for the
transitions 1'S-2'S and 1'S-O'S in He. The re-
sults are compared with the existing theoretical
results of Kim and Inokuti" and of Van den Bos.'
For the 2'S excitation, we have also included in

the same figure the experimental results of Vriens
et al. ' and of Silverman and Lassettre. ' For both
the 2'S and O'S excitations, the present results
are closer to the result of Kim and Inokuti ' in
comparison with that of Van den Bos.' Though
fluctuations in experimental points are significant,
the present 2'S results have, on the average, sat-
isfactory agreement with the experiments. This
demonstrates the reliability of the WL wave func-
tions. A similar inference has been drawn earlier
by Sur et al. ' from the calculation of the GOS val-
ues for the O'S excitation of He using the WL wave
functions.
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FIG. 1. Generalized oscillator strengths for the 2 S
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FIG. 3. Cross section for the 3 'S excitation of helium
by proton impact. Theory: , Glauber (full);———,Glauber (single) ———,Born Bell
et al. (Ref. 1);————,Baye and Heenen (Ref. 8);

~ ~, Roy and Mukherjee (Ref. 7). Experiment:
O, Van den Bos et al. (Ref. 16); X, Dodd and Hughes
(Ref. 12); ~, Denis et al. (Ref. 15);~, Scharmann and
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FIG. 4. Cross section for the 4 'S excitation of helium
by proton impact. Theory: , Glauber (full);———,Glauber (single); ———,Born; . Bell
et al. (Ref. 1); ———, Sur et al. (distortion approxima-
tion using WL wave function) (Ref. 11);—-, Sur et al.
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(Ref. 11);— —.—.- Oldham (Ref. 2);
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19).
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B. Excitation cross sections

For testing the present method of reduction of
the Glauber scattering amplitude, we have app1. ied
it to calculate the differential cross sections for
2'S excitation of He by electron impact using WL
wave functions. A comparison with the graphical
results of Yates and Tenney" shows that at 26.5
eV, the smallest incident energy considered by
these authors, the large-angle cross sections
agree within 5/p with our results. The agreement
is fairly good, especially when one considers the
difference in wave functions used by Yates and
Tenney" and by us. This also demonstrates the
validity and usefulness df the present procedure.

Our proton-impact results for 1'S-n'S (n= 2,
2, and 4) excitations'of He are displayed graphical-
ly in Figs. 2-4. The single-scattering (E,) and
double-scattering (E,) parts of the Glauber am-
plitude have been calculated separately and the
corresponding single-scattering cross sections
are included in these figures along with the total
Glauber cross sections. In Figs. 2 and 3, we also
include the FBA cross sections for proton impact
2'S and O'S excitations of He using the WL wave
functions.

1. 1 ~S-+2 ~S transition

In Fig. 2, we compare the present Glauber cross
sections with some of the existing theoretical cal-
cuIations i, s-xo The FBA~ and the four- and nine-
state' results of Van den Bos, 'and also the SBA
results of Holt et al. ' are not included in Fig. 2.
Whereas the coupled-state calculations' of Van den
Bos agree well with that of Begum et al. ,' the re-
sult of Holt et al. ' shows an energy dependence
similar to the present Born cross sections above
V5 keV keeping consistent1y higher by almost 20~/p

than the later result. No experimental data is
avaiI. able for this transition. The existing other
theoretical cross section results for the 2'S ex-
citation show an appreciable amount of variation
among themselves in absolute values, as may be
seen from Fig. 2.

The present Glauber cross sections approach
the corresponding FBA result using the WL wave
functions in the high-energy region, the two re-
sults coinciding with each other above 500 keV.
At such energies, single-scattering contributions
dominate the cross sections. The effect of the
double-scattering term (E,) in the Glauber ampli-
tude becomes appreciable at intermediate ener-
gies, where it substantially lowers the net Glauber
cr'oss sections fromm the. corresponding single-
scattering result. The total Glauber cross sec-
tions, although they underestimate most of the
existing theoretical results, give values la.rger

than the distorted-wave result of Joachain and Van
der Poorten. " The last result also exhibits an
energy dependence simi1ar to the present results.

2. 1 'S ~ 3 ~ S transition

Qur results for the Glauber cross sections are
displayed in Fig. 3 along with the available theo-
retical"' and experimental"" "results. The
discrepancies among various absolute measure-
ments widely exceed the estimated error limits of
the respective authors, especially in the intermed-
iate-energy region. At such energies, different
theoretical data show still greater spread among
themselves. The calculation-of Baye and Heenen'
employing the second-order diagonalization meth-
od, however, shows somewhat good absolute
agreement eith experiments at all energies. The
distortion calculation of Roy and Mukherjee' also
does so in the high- and low-energy regions.

The Glauber and Born curves for, O'S excitation
cross sections exhibit features similar to those
observed for 2'S excitation. Again, the effect of
the double-scattering term (E,) on the total Glauber
cross section is negligible at energies above 500
keV, where the two Glauber curves coincide also
with the FBA curve. The FBA result apparently
shows some better agreement with experiments in
Comparison with the Glauber results. However,
the Born cross sections fail to predict the energy
dependence of the-observed data, which the Glauber
results can give successfully.

3. 1 ~ S~ 4 ~ S transition
I

A good number of theoretical"4'" ~ as well a,s
experimental" """investigations have been
made for this transition, although the situation
concerning agreement bebveen theory and experi-
ment differs hardly from those of 2'S and 3'S
cases. Some of the available cross-section re-
sults are shown in Fig. 4 along with the present
Glauber results. We exclude from this figure the
FBA calculation of Van den Bos' who used a set
of improperly orthogonalized-eave functions in the
calculation. The resulting cross sections largely
overestimated the measured values even at the
highest energies considered. A number of other
previous Born calculations"" using very accurate
many-parameter wave functions can all show vari-
ous degrees of absolute agreement with the experi-
ments. But none of these calculations can exhibit
the energy dependence of the data correctly
throughout the energy regions considered. How-
ever, the functional dependence of the observed
cross sections on energy ar e'well predicted by
the second-order diagonalization method' and the
distortion method" down to an incident energy of
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20 keV.
As regards the present Glauber calculations,

the single-scattering cross sections, as earlier,
contribute predominantly at high energies. The
result compares closely with the distortion calcu-
lation of Sur et al."with WL wave functions at
intermediate energies and coincide with their cor-
responding SBA result above 150 keV. The total
Glauber cross sections'coincide with the distortion
ones above 300 keV and can also give the energy
dependence of the observed data down to much
lower energies.

V. DISCUSSION

From a study of the differential cross sections
(not presented here} corresponding to the various
total cross-section results presented above, it
has been observed that for intermediate proton en-
ergies, the relative contribution of the double-
scattering term (E,) in the Glauber amplitude is
appreciable at all scattering angles and increases
towards large angles. The overall effect of inclu-
sion of E, on the total Glauber cross sections has
always been to reduce the single-scattering re-
sult. However, this effect becomes negligible at
high energies, where the single-scattering term
(E,}alone can predict the effective total Glauber
cross sections. I

As regards the absolute matching among various
calculated and measured cross sections, the above
results perhaps indicate that no rigorous compari-
son is possible. At intermediate energies, both
theoretical and experimental data show wide varia-
tions in absolute values, an appreciable amount of
which persists even at the highest energies con-
sidered. This is not quite unexpected for the theo-
retics, l data in view of the variety of He wave func-
tions used in the different calculations. The cross
sections are very sensitive to the choice of wave
functions, especially for higher excitations. Even
the high-energy Born cross sections have earlier".
been found to vary by a factor of almost 2 due to
inaccuracies like nonorthogonality in the wave
functions. On the other hand, a variety of absolute
calibration techniques have been used in different
measurements. In any particular procedure, it
was impossible to pay attention to all the criteria

for valid and accurate data. "
Under such circumstances, the physically con-

sistent feature of various data which can be com-
pared meaningfully should be the functional depen-
dence of the cross sections on energy. This was
observed by Thomas" and later by Sur et al."
with regard to the 4'S excitation of He by proton
impact. In the present investigation also, except
for the case of Born cross sections, we find rea-
sonable agreement in energy dependence of the
cross sections in different sets of data. Our
Glauber results are in conformity with this agree-
ment, as may be seen from Figs. 2-4.

A further consistency check is possible for cal-
culations or measurements which make a system-
atic study of excited states with same total angular
momentum but of varying principal quantum num-
ber n. The energy dependence of the excitation
cross sections o(n) is found to be approximately
similar in various data for such states. In a com-
parison of the cross-section ratios v(n)/o(n+ l.)
obtained by various experimental groups, the sys-
tematic errors in absolute calibration should can-
cel out and hence give similar values. "'" To veri-
fy this we compare the ratio of cross sections for
O'S and 4'S states as obtained from the data of
Van den Bos et al. ,

"Dodd and Hughes, "Denis et
al. ,

"and Scharman and Schartner, "as also from
the calculations of Baye and Heenen' and ours.
The average values of the ratios o (3'S)/o(4'S) de-
termined for all energies above 50 keV are shown
in Table I. The agreement is found to be poor in
case of experimentally measured cross sections.
As observed by Thomas, "this is attributable to
the poor detection sensitivity for measuring the
O'S- 2'P line emission. The average cross-sec-
tion ratios predicted by the theoretical calcula-
tions, on the other hand, show excellent agree-
ment among themselves. Incidentally, the ratios
at different energies above 50 keV in the calcula-
tion of Baye and Heenen show a fluctuation ex-
ceeding +10~k about the average value shown in
Table I. The present Born and Glauber cross sec-
tions, however, behave, much more consistently,
the fluctuations barely exceeding +1~/0.

In view of the above agreement in average theo-
retical cr'oss-section ratios, it may be interesting

TABLE I. Average ratio of cross sections [0(3~$)/o(4~S)] at energies above 50 keV.

Theory Experiment

Baye and
Heenen (Ref. 8)

Present Present
Born Glauber 3 law

Van den
Bos et gI,. Dodd and
(Bef. 16). Hughes (Bef. 12)

Deni:s et al.
(Ref. 15)

Scharrnan and
Schartner (Ref. 18)

2.74 2.72 2.37 3.50 1.65 3.37 4.26
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to consider in addition the asymptotic high-energy
behavior of the cross sections. This was original-
ly done by Bethe" and subsequently by others" "
with reference to the Born approximation. For
collisional transitions of a single electron from
the ground state to nl states, the Born cross sec-
tions are found to be proportional to n, when the
other features of the collision remains unchanged.
The average theoretical cross-section ratios
o(S'S)/a(4'S) given in Table I are in reasonable
agreement with the value (2.S7) obtained from the
n ' law.

VI. CONCLUSION

For direct collisional excitation of ground-state
He by incident protons, a reliable physical feature
for comparison between theory and experiment is
the functional dependence of cross sections on en-
ergy rather than the absolute values of the cross
sections. Furthermore, for excited states of He

having same total angular momentum but varying
principal quantum number, the average ratio of
cross sections. at high energy predicted by differ-
ent theoretical data can show reasonable agreement
among themselves, as also with the n ' law of
cross sections. Due to possible inaccuracies in
measuring the absolute 3'S cross sections, this
may not be apparent from the experimental cross-
section ratios presented in Table I. However, as
one may observe from the work of Thomas, "the
cross-section patio furnishes a good consistency
check on measured data for still higher n states.

The present calculation for proton impact 2'S,
O'S, and 4'S excitations of ground-state He using
the Glauber approximation conforms to the above
observations. Though the Glauber results at inter-
mediate energies underestimate other absolute
theoretical and observed cross sections to some
extent, the energy dependence of the cross sections
are predicted well from intermediate- to high-en-
ergy regions. The Glauber method is also able to
give a good estimate of the cross-section ratio for
3'S and 4 S states in agreement with other theo-
ries.

APPENDIX

A. Recurrence relations for 6&~ (q, x)

The integral G~ „(1l,x) has been defined in Eq.
(S7) of text as

jg
G, (q, x) = dy,

o 3'+&
(Al)

where p& 0 and m&0. The integrand is bounded at
the lower limit as long as x&0.

Considering the integral G~, „,()7,x) on partial
integration we have

yP~ jg 9=1

p-l, m-1 i&
p i1i ( +X)m-1

m —1+ dgp-iq, (y+x)" '

The first term on the right-hand side vanishes at
the lower limit, while the integral in the second
term can be identified as G~ (q, x) whence we ob-
tain

1 1
G. . ..(n, x)= . () )„., +(m-))G, (g, x)),

The two integrals on the right-hand side are iden-
tifiable as G~ „,()7,x) and G~,, ()7,x}, respective-
ly, whence on transposition we have

G, ,(1l,x)=G„, „(1i,x)+xG „()7,x). (AS)

Alternatively, redefining the index p in Eq. (AS},
it can be written as

G~, „(q,x) =(1/x)[G~, ,()i, x) -G~ „(q,x)] . (A4)

(A2)

which is valid for p~ 1,m&1. Again, multiplying

the integral in Eq. (A1) by x [=(y+x) -y] gives

p-~n &1 ~4+1-cq

m 7) y (y+X)m-1 &
y (y+ X)m
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Finally, we can perform repeated differentiations
of G~ „(q,x) with respect to x as

(
d

G, „()7,x)= dyy' '" d— (y+x)"
0

where we have changed the orders of integration
and the repeated differentiations. It is straight-
forward to show that

(d/dx)'(y+x) "=(-1)'(m) (y+x)
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Hence we can write

(
d

G, (rt, x) = (-l)'(m), G~ „„(q,x) . (As)

For studying n S excitation the various G~ inte-
grals required are those for which p= 1,2, . . ., 6
and m=1, 2, .. ., m+1. The numerical integration
is performed only for G, „(r),x), whence all
others can be generated by repeated use of rela-
tions (A2) through (A4) in order

B. Recurrence relation for F, (q, x, s)

E gxs=
&o

dtt """'f(t)e"""

I'1 d
X —— +x dx

we have

where we have changed, as earlier, the order of
integration with the repeated differentiations.
Now, since

The integral E,(7),x, s) defined in Eq. (40) of text
may be repeatedly differentiated with respect to
x in the form

E,(r), x, s) = (-2) '(s),E,(q, x, s+ l) .1 d
(A6)
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