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An algebraic variational procedure has been developed for the calculation of the phase shift p of the radial
wave function for a particle undergoing single-channel scattering. The method is essentially an optimization
of Kohn's theory. with respect to the phase parameter 8 as involved in Kato's wave function. Specifically, the
basis set has been transformed linearly so as to permit distinction between avoidable (spurious) and
unavoidable (innate) singularities. On this basis, two new optimization procedures, which are termed the
minimum-basis-dependence (MBD) and minimum-error (ME) methods, - have been proposed. Various standard
variational theories have also been reformulated in a unified manner. Sample basis-set calculations of p have

been carried out for the Hazi-Taylor model potential in order to demonstrate the relative merits of the MBD
and ME methods.

I. INTRODUCTION

In the algebraic variational theories of scat-
tering, ' the trial radial wave function g, (r) of a
scattering particle is expanded in basis functions.
After Hulthen, '. Kohn, and I ippmann and
Schwinger' had developed such variational meth-
ods, Kato' extended them into a slightly more
general form involving a phase parameter 6.
His trial wave function is written as

g&e(x) =S,e(r)+~e Cse(e')+ Degas. ;(r),
"j.

where S&e(e) and C,e(r) are asymptotically

S,e(e}, k ' sin(kr-ls/2+8),

C,e(r)„-k "cos(kr —lv/2+ 8),

(2a)

(2b)

and where ii~(r)'s are square-integrable basis
functions. The coefficients ~& and Dz's are to
be determined by variation of the functional.

[A.e] =A.e+2g)gelHlgge},

namely, by imposing the conditions

(X& lH Itive& = 0 ~ (4)

«selHltie} =0, (6)

where 8 =E-H, H and E(= —,'k') being the scat-
tering Hamiltonian and the energy, respectively.
The Ae value thus obtained is a trial (zeroth-
order} Ae. The value [Ae] correct to the first
order is calculated by Eq. (3}. The procedures
for obtaining such [A.e] values have been a problem
of central importance since it is related directly
to the phase shift p and eventually to the cross
sections for scattering.

Schwartz' pointed out, through his accurate and
extensive calcul. ations, that Kohn's method

II. THEORETICAL FORMULATIONS

A. Basis transformation

For our purpose, it is more advantageous to
base the theory on Kohn's original trial function
(8=0) of the form:

N

$=S+AC+ QD;gg,
&"1

where 8 and C are the asymptotic functions, Eq.

(6)

(8=0}gives rise to anomalous singular solutions
at certain k's, none of which has anything to do
with a resonance phenomenon. Nesbest' showed
that Rubinow's method' (8= m/2), which is also
called the second Hulthen or inverse Kohn meth-
od, never gives this type of singularity at the k's
of the Kohn singularity, and thus proposed alter-
nate use of the two theories. The procedure was
named the anomaly-free (AF) method. The
optimized anomaly-free (OAF) method proposed
recently by Nesbet and Oberoi' has been aimed
at a removal of the discontinuity of ~ against k.
The minimum-norm (MN) method of Harris and
Michels" can be regarded, like the OAF theory,
as one of the methods which search an optimum
0 automatically.

In this paper, we will investigate the dependence
of A, upon 8 in single-channel scattering. It seems
likelythat the anomaly arises from the choice of
8 rather than from k. Such a singularity should
be avoidable depending on the 8 value chosen.
%e will clarify the situation through a specific
transformation of the basis functions (S, C, and

X, 's). In this light, we will propose two promis-
ing methods to evaluate an optimum [A.]. Merits
of our methods relative to the various other
theories will be demonstrated by some sample
calculations.
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(2), with 8 =0, and where A. is the corresponding
tangent of the phase shift p. For the sake of
simplicity, both the subscript l and the radial.
coordinate r will be dropped off hereafter.

Using the rel.ation

COS6} Sin8

where u=tan8. A. is related to ~& accordingly:

A, = (&@+AD)/(1 —+xz) . (10)

Hereafter, we will refer to Eqs. (8) and (9) as the
first and second Kohn conditions, respectively.

Equations (8) and (9) are simple simultaneous
equations in the unknown variables ~ and Dq's.
Thus,

Cy -sin& cos8 ' C

one can rewrite Eqs. (4) and (5) into

(xglalg& =0, i =1, 2, . .. , N

and

(c- ~sl&lk& =o

(8)

where

(c—uslals&

&x, lais&

(x lais&

(c ~sl+Ic& (c —+slalx, &
~ ~ ~ (c —&uslalx„)

&x, laic& &x, l&lx, &
"~ &x, lalx~&

(12)

&x.laic& &x.lalxg &x.lalx.&

The solutions of Eq. (11) should depend on 8 if
the basis set (X~} is not complete.

It may be extremel. y difficult to find an explicit
dependenceofXontu (and hence, on 8) through
the direct solutions of Eq. (11). Since we are now

discussing on the singularity of the inverse of E
IEq. (12)], it may be most beneficial to investigate
the property of detK. To accompl. ish this, we
introduce a new basis set (fg} by transforming
(S, C, Xq's} in such a manner that

&; = X, +I,'S +I,'C, z = j, 2, .. . , jV

where

and

M M

M M

M;=&slalx, & =&x, lais&,

ml =&clalxi& =&x~lalc&,

~-=&slals&, ~-=&slalc&,
~- =&clals&, ~- =&clalc&.

(16)

(18}

on the conditions

&slal~, &
=o

and

&clalg, &
= o.

The coefficients Pq
' 'ps

=-Mo~
Pc

and P& may be given by

(14b)

(15}

N

P=T'S +T'C+ QD( f).

Comparison of Eq. (19) with Eq. (6) brings about
the equalities:

(19)

We can always make detMO be nonzero by adding
some square-integrable functions to S and/or C.

By use of (tq}, the wave function is now re
written as

with
T'+ Q D(Pf = 1, (2Oa}
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(20b)

(21)

T'+ g D P'=x

The algebraic equation [Eq. (11)]is reduced to

(C —»d S IHIS&

&x, lHI»

A"=].-P'X 'M' A"=-P'X 'M'
(28)

A' = P'X M' A" =1 P'X M

and where P' and P' are the row vectors of (P»j
and (P,'-j, respectively. Notice that none of A"
to A" depends on e.

On the other hand, from the second Kohn condi-
tion [Eq. (9)j and the property of g» [Eq. (14)],
one obtains

where

with

&x.lHI»

(C —»dSIHIC& 0

(x, IHlc&

X

&xNIHIC&

-
&x, lHI~, &

~ ~ ~
&x, lHI~.&-

(22)

(C- »dSIHIT'S +T'C& =0,

Vse of Eqs. (27) and (29) gives

x =(p- n~)/(y»d-5),
7' = (M "e-M")/(ym —5),
T' = (M" -M "»d)/(y&u —5),

where

n =A"M". -A"M" P =A"M" -A."M"

y =A' M '-A"M' 5 =A' M -A"M'

(30)

(31a)

(3 lb)

(32)

(23}

(x.lHI~, &
~ ~ ~ &x.lHI~.&

From Eq. (26) we have

detEC, =(C —&uS IHIC& detX. (24)

B. Avoidable singularity

Note that X is independent of ~. The determinant
of X might vanish at certain energies, and the
singularities thus arising are unavoidable. On
the other hand, the singularity which originates
from a specified ~ should be perfectly avoidable.
We will consider this latter type of singularity
in greater detail below.

Clearly, ~ depends on ~ in a hyperbolic man-
ner. That is, for any given k, there exists one,
and onl.y one, spurious singularity on the ~ axis at

(u„= 5/y . (33)

Conversely, if one chooses co different from co„,
such a kind of singularity can be avoided. There-
fore, it never concerns a true resonance but is
merely a spurious resonance. The singularity
pointed out by Schwartz' is to take place when k
passes through the point at which 5 =0.

Generally, the A. obtained by Eq. (30) is not
accurate enough; it contains the first-order.
error. According to Kato, ' X»t involved in g»q
should be corrected by Eq. (3) to give [X»»]. The
[A.~] may be converted to the corresponding first-
order correction of X by the relationship analogous
to Eq. (10). The result is

In order to eliminate D, from Eq. (20), we
will introduce the first Kohn condition. Thus [x]= ((o —[A.~])/(1 —[A.»»](u), (34)

g &x; IHI~, &D» =-7"&x» IHI» —I"&x» IHlc&.

Therefore, when detX is not zero,

(25}
which is equivalent to a more general first-order
correction formula

D=-X MT -X MT (26) [A,] = (A. + 2(s IHly&)/(I —2&el&le&), (35)

Assets Asgyy

A"r'+A"r' = ~

where

(27a)

(27b)

where D, M', and M' are the column vectors
constructed of (D;j, (M,'j, and (M»j, respectively.
Insertion of Eq. (26) into Eq. (20) results in

[X]= [(p - 2M, ) —»».~]/[(y+ 2M, )~-5], (36)

where M, stands for detM, .

as long as P satisfies the Kohn conditions. Both
Eqs. (34) and (35) can be expressed in terms of
e as follows:
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III. PROPOSAL OF NEW OPTIMIZATION PROCEDURES

A. Minimum-basis4ependence method

f .= (X —&)'+ 4{Si&le&'+ 4&'«le ly&'.

Imposing the condition dI„E/d&o = 0, we have

[(u5 —yp)(n+Xy)+ 4X2M205]&@ME

(42)

When the basis set(g;] by itself approaches a
complete one, both the coefficients T' and T'
should come to zero. This is evident from the
following two points. Firstly, if the wave func-
tion is exact, neither ~ nor D s involved in it
will depend on (d, so that both T' and T' should
be constants, regardless of co. Secondly, T'
and T' should identically fulfill Eq. (29), which
forces them to depend on ~ unless T'=T'=0.
On the contrary, if the basis set chosen is in-
sufficient or if the &u in Eq. (9) is fixed at a
wrong point such as &u =5/y, then either T' or
T', or occasionally both of them, will inevitably
tend to depend on u, taking some values of
large magnitude.

The situations delineated above provide a good
reason for demanding the norm

fMBD =(& ) +(T ) (3V)

B. Minimum-error method

to take on a minimal value possible. There exists
a single point which minimizes 1„» on the e
axis. It is

= (A "llf "+A"M")/(A"M" +A"M")

(38)

Once we obtain &o„», the calculations of g and

[&] are made in a straightforward way. It is clear
that ~ obtained by this method does not experience
the avoidable singularity; if T' and T' are bound,
so will A. be [Eqs. (30)-(32)]. The present min-
imum-basis-dependence (MBD) method can
readily be extended to multichannel scatterings. "

=(n5 —yp)(&5+ p) —4Moy, (43)

Equation (43) as it stands is useless because
~ is unknown. %e are thus obliged to replace
X by Eq. (36). The resulting equation is cubic
in ~. Of the three ~ values obtained by solving
it, only the ~ which gives the smallest I« is
physically acceptable.

IV. COMPARISONS WITH OTHER THEORIES

A. Choices of u

TABLE I. u for various variational theories.

Method

Kohn

The radial wave functions as used in the Kohn, 4

Rubinow, ~ Hulthen, "minimum-norm (MN), "
and optimized anomaly-free (OAF)'o methods all
fulfill the Kohn condition. Therefore, their
functional forms as well as the resulting [A,] are
completely determinate, once their characteristic
{d values have been specified. In Table I, such
+'s pertinent to these various variational theories
are summarized, together with those for our
minimum-basis-dependence (MBD) and minimum-
error (ME) methods.

A few words seem to be in order regarding the
Hulthbn method. Nesbet and Shimamura' have
already shown that Hulthen's condition, {gg~p&
=0, ' does not necessarily hold in the vicinity
of the eigenvalues of the matrix {y,[H[g&& as long

Suppose that the exact wave function g is ex-
panded in a complete set of square-integrable
basis functions:

Rubinow

Hulthen
0+7+ ~(I+V)'-4«]' '

g =s+XC+ g d, y; .
&=1

Because

X =~+ 2g le ly&,

the origin of the error of [A.] will then be

2 g zg{g;]H]t/I& = (A, —A, ) —2(S]fj(ip& —2X(C)If(y&.
&=a+i

(39)

(40)

Extended Hulthen

MN

PAF &.b

ME

MBD

~(v-P)
V(V +P) —2~~

-y 6

~) +4~p] ~

27

Eq. (43)

Eq. (38)

(41)

The right-hand side of Eq. (41) will depend on
~ in a hyperbolic manner. Therefore, one might
seek for the ~ which minimizes

The correct sign should be taken so that the calculated
IM~D, Eq. (37), may be minimized.

This does not always give real ~ values. In such
cases, the original formulation of Nesbet (Ref. 10) should
be referred to.
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TABLE II. Phase shifts [p] calculated by various methods for the case where M=15 and a
=0.15. The entries are 10 times the deviations from the exact p values.

E = 0.198601 2 0.306 747 1 0.466 122 7 0.466 302 9 0.561486 6 0.757 047 1
Method pcxact = 0.25441 -0 336 81 0-717 52 1 500 66 1.902 52 1 482 82

Kohn
Rubinow
Hulthen
MN

OAF
ME
MBD

-599
-2917
-1990
-923
-230

-2095
-807

781
-835

-1110
-626

244
-940
-379

-904
47

1737
-297
-349
-150
-367

-1610
-156

-1820
-4887

5616
-1720
-3519

-502
-95

-447
-413
~ ~ ob

-465
-427

-52
-71
-53
-56

74
-53
-56

Hazi and Taylor, Ref. 14,
Real solution was not found.

as the first Kohn condition is imposed on g. For
such cases, Hulthen's method had better be ex-
tended to a form such that &u minimizes )(gg)P) (.
The v value is then given by

~ = &(r 0)/[w(r—+ P) —2n~]. (44)

We will refer to this method as the extended
Hulthen method. It is easy to prove that, as k
is varied, Eq. (44) is connected continuously with
the &u for the original Hulthdn method (Table I).
The extension enables to define Hulthbn's ~ for
any given k.

B. Numerical examples

( )
—,'x' (x&0)

~x'e '* (x&0)
(45)

We have performed sample calculations of the
phase shift p =tan 'A, by the various methods
mentioned in the foregoing sections. Their vari-
ational corrections [p] =tan '[&] are all given
through Eg. (35). In place of the effective poten-
tial V,«(r) = V (r) +I(l + I)/2y 2, the model potential
function of Hazi and Taylor'4 was used:

TABLE III. The basis-size dependences of the phase shifts at E =0.1986012 a.u. and a
=0.15. The entries for p and [p) are 10~ times the deviations from the exact p value (0.25441).

Method 10 15 20 30 40

ME

Kohn p 34 650 22 161
[p] -146 240 -9 982

Rubinow p 8 835 91492
[p) 8 330 16617

Hulthen p = [p] -165881 -45 555
MN p 54 455 23 182

[p] —,99 578 -8 957
I~ ' 0.9646(0) 0.1276(-1)

OAF p 82 123 28 957
[p] -28 123 -4 021

p 86 077 -4 731
[p] -20 084 -87 684

MBD p 27 793 20 167
[pl -158456 -12 150

IMBED

' 0.9607(-1) 0.1049(-2)

8 021
-599

-7 465
-2 917
-1990

5 464
-923

o.v2vv(-3)
11103
-230

-2 656
-2 095

6 364
-807

O.5V25(-4)

2804
-25

-663
-93
-81
636
-67

O.3422(-4)
5178

21
279
473

1585
-48

0.3826(-6)

-134
0

-8
0
0

-15
0

0.1041(-7)
-68

0
-5

0
-15

0
O.3V29(-8)

-1
0

-1
0
0

-1-
0

O.6O15(-11)
-1

0
0
0

-1
0

0.7905(—12)

The extended Hulthen method, Eq. (44).' I„= (slalom&'+ (clalg&'.
The figures given in parentheses indicate the multiplicative power of 10.
Equation (37).
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The square-integrable basis functions 1x;) used
were the Hermite functions. The size E of the
basis was varied between 5 and 40. As the as-
ymptotic functions S and C, the following func-
tions were adopted:

k '~' s inkx (x & 0)

ilk ~'e '*'sinkx (x&0)
(46a)

k '~' coskx (x & 0}

k ''e "'coskx (x&0)
(46b)

[A.] = -0.35956 —0.00732/((u —0.40305) . (48)

The constant term (-0.35956) for [A.] is much
nearer to the exact value (-0.35015) than is that
(-0.33122) for A.. The numerator (0.00732) for
[&] is about one-tenth that (0.07503) for &. The
latter result indicates that the dependence of [A.]

with the damping factor b being fixed at 0.15 in
atomic units (a.u. ).

First, we have examined the energy dependen-
ces of [p] for a potential for which a = 0.15 in

a.u. The energy ranges examined were limited
to those for which exact solutions are available. "
The results obtained for the size A = 15 are sum-
marized in Table II. Since there was no avoidable
singularity in the energy region of our present
test, no significant differences in the resulting

[p] values were encountered. The Rubinow and
OAF methods occasionally gave the best results
at given energies. The MN and MBD methods
provided nearly equally good results steadily
over the entire energy ranges examined.

In Table III, the basis-size dependences of both

p and [p] are shown for a case of E = 0.1986012
and a =0.15, both in a.u. The [p] values are suf-
ficiently close to the exact phase shift (0.25441}
whenÃ is larger than 15. With A' greater than

30, exact p values are obtainable by any of the
methods here examined. For the sake of com-
parison, the values of IM» adnI„=(S !Hg!)'

+ (C!H!((t)' calculated at varying 1U are also listed.
Both these I's converge to zero in a monotonous
manner. However, in case where E is in the
vicinity of the critical E at which det X=0, these
monotonous behaviors will break down. None-
theless, we may regard these I's as useful mea-
sures of the accuracy of the basis-set calcula-
tions.

The way that A. is corrected to [A.] is illustrated
in Fig. 1 for the case where E=0.3067471 a.u. ,
1V = 15, and a =0.15. Both A. and [A,] vary hyper-
bol. ically with co:

A, = -0.33122 —0.07503/((u —0.37129),

0.0

-0. 1

-0.2

-0.3 '-

I
v//i

Kohn 4 (

I I

OAF

I

I

MBD v

Kohn
I

ME Rubinow

-0.4

-5.0

OAF
~)

Hulthdn
, I

i„'/

, i,, l

0.0

/
ME Exact

Rubinow

10.0

FIG. 1. Schematic representation of the hyperbolic
curves of A, and [A] vs ~ for the case where E
= 0.3067471 a.u. , N =15, and a =0.15.
A=-0.33122—0.07503/(cu —0.37129) [A)

=-0.25956 —0.00732/(cu —0.40305); A, ,~„g
= tan p,„„,=-0.35015.

V. CONCLUDING REMARKS

We have examined the dependences of both A,

and [A, ] upon ur =tane in a systematic manner, to
clarify mutual relationships among various vari-
ational methods. This was accomplished by the
help of a basis-transformation scheme which
was introduced in order to distinguish avoidable
(spurious) singularities from unavoidable (innate)
ones.

In connection with the above, we have proposed
two new optimization procedures for the calcula-
tion of ~. They have been termed the minimum-
basis-dependence (MBD) and minimum-error (ME)
methods. Both the methods are free from avoid-
able singularities. The MBD method seems to be
more promising than any other existing varia-
tional theory for the following, reasons: (i) it
is capable of providing an optimum X through
simple linear equations without any cumbersome
diagonalization procedure; (ii) it permits a def-

on cu, and hence on the methods, should be rela-
tively small. The range of (d for divergence should

accordingly be narrow. er.
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inition of I„» as a useful masure of the suf-
ficiency of the basis functions used; and (iii} no
special device is required even in the vicinity of
the eigenvalues of the matrix (~, g[g&}.

In the succeeding paper, we mill extend the

MBD method to cover multichannel scatterings.
Further, the characteristics of the unavoidable
singularity, particularly in regard to its rela-
tionship with the true resonance, wiIl be dis-
cussed elsewhere.
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For review articles, see (a) ¹ F. Mott and H. S. W.
Massey, The Theory of Atomic CoEBsions, 3rd ed.
(Oxford l3niversity, New York, 1965); (b) B.L.
Moiseiwitsch, gariationa/ Principles (WQey, New
York, 1966); (c) Y. ¹ Demkov, Variational Principles
in the Theory of Collisions (Pergamon, New York,
1963); (d) D. G. Truhlar, J.Abdallah, Jr., and R. L.
Smith, Adv. Chem. Phys. 25, 211 (1974)-; (e) R. K.
Nesbet, Adv. Quantum Chem. 9 215 (1975).

2L. Hulthen, Fysiograf Sallskap. Lund Forth. 14, 257
(1944).

3L. Hulthen, Ark. Mat. Astron. Fys. 35A, No. 25 (1948).
4W. Kohn, Phys. Rev. 74, 1763 (1948).
~B. Lippmann and J. Schwinger, Phys. Rev. 79, 469

{195o).

'(a) T. Kato, Phys. Rev. 80, 475 (1950); (b) T. Kato,
Prog. Theor. Phys. 6, 394 (1951).

~C. Schwartz, Ann. Phys. (N. Y.) 16, 36 (1961); Phys.
Rev. 124, 1468 (1961).

8(a) R. K. Nesbet, Phys. Rev. 175, 134 (1968); (b) 179,
60 (1969).

S. I. Rubinow, Phys. Rev. 98, 183 (1955).
~OR. K. Nesbet and R. S. Oberoi, Phys. Rev. A 6, 1855

(19v2).
(a) F. E. Harris and H. H. Michels, Phys. Rev. Lett.

22, 1036 (1969); (b) F. E. Harris and H. H. Michels,
Methods Comput. Phys. 10, 143 (1971).
K. Takatsuka and T. Fueno, following paper, Phys.
Rev. A 19, 1018 (1979).

~3I. Shimamura, J. Phys. Soc. Jpn. 31, 852 (1971).
4A. U. Hazi and H. S. Taylor, Phys. Rev. A 1, 1109
(19vo).


