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An algebraic variational procedure has been developed for the calculation of the phase shift p of the radial
wave function for a particle undergoing single-channel scattering. The method is essentially an optimization
of Kohn’s theory with respect to the phase parameter 0 as involved in Kato’s wave function. Specifically, the
basis set has been transformed linearly so as to permit distinction between avoidable (spurious) and
unavoidable (innate) singularities. On this basis, two new optimization procedures, which are termed the
minimum-basis-dependence (MBD) and minimum-error (ME) methods, have been proposed. Various standard
variational theories have also been reformulated in a unified manner. Sample basis-set calculations of p have
been carried out for the Hazi-Taylor model potential in order to demonstrate the relative merits of the MBD

and ME methods.

L. INTRODUCTION

In the algebraic variational theories of scat-
tering,! the trial radial wave function ¥;(r) of a
scattering particle is expanded in basis functions.
After Hulthén,?'® Kohn,* and Lippmann and
Schwinger® had developed such variational meth-
ods, Kato® extended them into a slightly more
general form involving a phase parameter 6.

His trial wave function is written as

X
Y10 () =Szo(’i’)+7\ecw(7’)+zDeiXi(T), 1)
i=1
where S;4(7) and C;4(7) are asymptotically
S16()yse~k Vsin(kr = in/2+6), (2a)
Cro(r)yow~k 2 cos(kr =Iu/2+6), (2b)

and where x;(7)’s are square-integrable basis
functions. The coefficients Ay and Dy’s are to
be determined by variation of the functional

o] =2o+2(P1al Hl316) 3)
namely, by imposing the conditions

lBlie) =0, i=1,2,...,N (4)
and

(CislA|Y16) =0, (5)

where H=E-H, H and E(=+%?) being the scat-
tering Hamiltonian and the energy, respectively.
The A4 value thus obtained is a trial (zeroth-
order) Ay. The value [Ag] correct to the first
order is calculated by Eq. (3). The procedures
for obtaining such [A4] values have been a problem
of central importance since it is related directly
to the phase shift p and eventually to the cross
sections for scattering.

Schwartz” pointed out, through his accurate and
extensive calculations, that Kohn’s method

(6=0) gives rise to anomalous singular solutions
at certain £’s, none of which has anything to do
with a resonance phenomenon. Nesbest® showed
that Rubinow’s method® (6 =7/2), which is also
called the second Hulthén or inverse Kohn meth-
od, never gives this type of singularity at the 2’s
of the Kohn singularity, and thus proposed alter-
nate use of the two theories. The procedure was
named the anomaly-free (AF) method. The
optimized anomaly-free (OAF) method proposed
recently by Nesbet and Oberoi'® has been aimed
at a removal of the discontinuity of A against %.
The minimum-norm (MN) method of Harris and
Michels'! can be regarded, like the OAF theory,
as one of the methods which search an optimum
0 automatically.

In this paper, we will investigate the dependence
of A upon 6 in single-channel scattering. It seems
likely that the anomaly arises from the choice of
0 rather than from k. Such a singularity should
be avoidable depending on the 6 value chosen.
We will clarify the situation through a specific
transformation of the basis functions (S, C, and
X;’s). In this light, we will propose two promis-
ing methods to evaluate an optimum [A]. Merits
of our methods relative to the various other
theories will be demonstrated by some sample
calculations,

II. THEORETICAL FORMULATIONS
A. Basis transformation

For our purpose, it is more advantageous to
base the theory on Kohn’s original trial function
(6=0) of the form:

N
$=S+1C+ ) Dix;, (6)
i=1

where S and C are the asymptotic functions, Eq.
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(2), with 6=0, and where A is the corresponding

tangent of the phase shift p. For the sake of

simplicity, both the subscript ! and the radial

coordinate » will be dropped off hereafter.
Using the relation

where w=tané. A is related to A4 accordingly:
A=(w+Ag)/(1 = whg). (10)

Hereafter, we will refer to Egs. (8) and (9) as the

first and second Kohn conditions, respectively.
Equations (8) and (9) are simple simultaneous

equations in the unknown variables A and D;’s.

Sg | _| cosf siné S , ) Thus,
Cy -sinf cosd (o A (C—wSIﬁIS)
D, <Xllﬁ ‘S>

one can rewrite Eqgs. (4) and (5) into K =— . s (11)

Quldly=0, i=1,2,...,N (8) . .
and Dy | (xvlH[S)

(C-wS|Alp) =0, : (9) where

J
~ . ) e
(C=wS|AIC) (C-wS|Hx) -+ (C-wS|A|xy)
K= (X].lino} <X1IHlX1> cee <X1|HIXN> (12)
nldlCy  (urlAlxy (w1 L)
-
I
The solutions of Eq. (11) should depend on 6 if M= M*® M*° (16)
the basis set {x;} is not complete. —o- e e |
It may be extremely difficult to find an explicit

dependence of A on w (and hence, on 6) through where
the direct solutions of Eq. (11). Since we are now s_alB _ ~
discussing on the singularity of the inverse of K Mi=¢ II{IXi> = lﬁils) ’ L))
[Eq. (12)], it may be most beneficial to investigate M§=(C|H|xy) =(x:|H|C),
the property of detK. To accomplish this, we and
introduce a new basis set {g,} by transforming R
{S, C, xi’s} in such a manner that M==S|Alsy, Mm*<=¢S|d|cy, (18)

Li=xi+PiS+P{C, i=1,2,...,N (13)
on the conditions
Slley=0 (14a)
and
(ClA|g) =0. _ (14b)
The coefficients P; and P§{ may be given by
Pl | (15)
P M
with

M =(C|AlSy, M°=(C|H|C).

We can always make det M, be nonzero by adding
some square-integrable functions to S and/or C.

By use of {£;}, the wave function is now re-
written as

N
$=T°S +T°C+ )  Dil;. (19)
$=1
Comparison of Eq. (19) with Eq. (6) brings about
the equalities:

T°+3 DPi=1, (202)
i



~

T°+7y  DiP§=)\. (20b)
i

The algebraic equation [Eq. (11)] is reduced to

T, [(C - wsldls)y ]
D, (x,1S)
K | , |=-T" . ’ (21)
Dy | L (Xylﬁ IS) J
where
[ (C-usldlglo
(X1lﬁlc) {-
Ko= . { X (22)
(X lﬁ |C> {
with -
<xllﬁl§1> ce <X1lﬁ‘§1v>
x=| : ) (23)

.(XNU;IQ) ter (XNIﬁ|§N>
From Eq. (26) we have

detK,=(C - wS|H|C)detX. (24)

‘Note that X is independent of w. The determinant

of X might_vanish at certain energies, and the
singularities thus arising are unavoidable, On
the other hand, the singularity which originates
from a specified w should be perfectly avoidable.
We will consider this latter type of singularity
in greater detail below.

B. Avoidable singularity

In order to eliminate D; from Eq. (20), we
will introduce the first Kohn condition. Thus

2. lBleyD, == |A1S) - 7% |HIC) . (25)
i ,
Therefore, when detX is not zero,
D==X""MT" - X""M°T°, (26)

where D, M*®, and M° are the column vectors

constructed of {D;}, {M$}, and {M¢}, respectively.

Insertion of Eq. (26) into Eq. (20) results in
ASTS +A%T =1,
AcsTs +AccTc = A, ,

(27a)
(270)

where
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SS_1 . pSY-lpS s¢_ _pSy~lp7°¢
AT =1 EE M , A Eé M ’ (28)
Acsz_l—;c)_{-I.M's’ Acc=1_£c2_(-1Mc’

and where P ° and P° are the row vectors of {Pj}
and {P¢}, respectively. Notice that none of A%
to A% depends on w.

On the other hand, from the second Kohn condi-
tion [Eq. (9)] and the property of &; [Eq. (14)],
one obtains

(C = wS|H|T*S +T°C) =0, (29)
Use of Egs. (27) and (29) gives
A=(B=aw)/(rw=-2), 30)
T°=(M*w=M)/(yw=05), (31a)
TC = (M = M%w)/(yw = 0), (31b)

where
@ =AM SS = ACS)ISC ,
,y =ASSMSC _ASCMSS ,

B =AGOMCS _AcsMcc ,
6 =AssMcc _AscMcc .
(32)

Clearly, A depends on w in a hyperbolic man-
ner. That is, for any given &, there exists one,
and only one, spurious singularity on the w axis at

w;=0/7. : (33)

Conversely, if one chooses w different from wy,
such a kind of singularity can be avoided. There-
fore, it never concerns a true resonance but is
merely a spurious resonance. The singularity
pointed out by Schwartz” is to take place when %
passes through the point at which 6 =0,

Generally, the A obtained by Eq. (30) is not
accurate enough; it contains the first-order
error. According to Kato,® X, involved in ¢;,
should be corrected by Eq. (3) to give [Ag]. The
[A¢] may be converted to the corresponding first-
order correction of A by the relationship analogous
to Eq. (10). The result is

] =(w=[re]) /(1 = [Ag]w), (34)

which is equivalent to a more general first-order
correction formula

M=+ 2818 l9)/(1 - 2Clal), (35)

as long as ¥ satisfies the Kohn conditions. Both

"Eqgs. (34) and (35) can be expressed in terms of

w as follows:
[A]=[(B=2M,) = aw]/[(y +2My)w = 5], (36)

where M, stands for det M,.
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III. PROPOSAL OF NEW OPTIMIZATION PROCEDURES

A. Minimum-basis-dependence method

When the basis set {x;} by itself approaches a
complete one, both the coefficients 7°° and 7°
should come to zero. This is evident from the
following two points. Firstly, if the wave func-
tion is exact, neither A nor D;’s involved in it
will depend on w, so that both T° and 7° should
be constants, regardless of w. Secondly, T°
and 7° should identically fulfill Eq. (29), which
forces them to depend on w unless T°=T°=0.
On the contrary, if the basis set chosen is in~
sufficient or if the w in Eq. (9) is fixed at a
wrong point such as w=06/y, then either T° or
T°, or occasionally both of them, will inevitably
tend to depend on w, taking some values of
large magnitude.

The situations delineated above provide a good
reason for demanding the norm

Iygp =(T*P+(T°) (37)

to take on a minimal value possible. There exists
a single point which minimizes Iy, on the w
axis. It is

wMBD =(ASSMCS +ASCMOC)/(ASSMSS +ASCM3¢) .
(38)

Once we obtain wyg, , the calculations of ¥ and
[r] are made in a straightforward way. It is clear
that A obtained by this method does not experience
the avoidable singularity; if 7° and 7° are bound,
so will A be [Egs. (30)~(32)]. The present min-
imum-basis-dependence (MBD) method can
readily be extended to multichannel scatterings.'?

B. Minimum-error method

Suppose that the exact wave function ¥ is ex~
panded in a complete set of square-integrable
basis functions:

F=S+XC+ Y dix;. (39)
i=1 ’
Because
X=x+2(FlA1Y) (40)

the origin of the error of [A] will then be

23 Aalillgy = (K =) — 25 |A1y) - 25(CIA1Y)

i=N+1
(41)
The right-hand side of Eq. (41) will depend on

w in a hyperbolic manner. Therefore, one might
seek for the w which minimizes

Iyp=(X =\ + &S|H|9)? + X C|Ay)y> . (42)
Imposing the condition dl yz/dw =0, we have
[(ad —yB) (@ +Xy) + ANZM 26 |wye
=(ad-YB)(R6+p) - 4M 3y . (43)

Equation (43) as it stands is useless because
X is unknown. We are thus obliged to replace
X by Eq. (36). The resulting equation is cubic
in w. Of the three w values obtained by solving
it, only the w which gives the smallest Iy is
physically acceptable.

IV. COMPARISONS WITH OTHER THEORIES

A. Choices of w

The radial wave functions as used in the Kohn,*
Rubinow,® Hulthén,?® minimum-norm (MN),!
and optimized anomaly-free (OAF)'° methods all
fulfill the Kohn condition. Therefore, their
functional forms as well as the resulting [A] are
completely determinate, once their characteristic
w values have been specified. In Table I, such
w’s pertinent to these various variational theories
are summarized, together with those for our
minimum-basis-dependence (MBD) and minimum-
error (ME) methods.

A few words seem to be in order regarding the
Hulthén method. Nesbet® and Shimamura!® have
already shown that Hulthén’s condition, (¢|8|y)
=0,%'% does not necessarily hold in the vicinity
of the eigenvalues of the matrix (x;|H|y,) as long

TABLE L. w for various variational theories.

Method w
Kohn 0
Rubinow 40
Hulthén ? Bryxl(B+y)2—4a8]/?
20
& S(y=p)
Extended Hulth _oty=p
enced TR Y(y +B) — 226
MN —v/o
OAF 2+ —(@—20) + [(a=—6)2 +4yp]i/2
2y
ME ‘ Eq. (43)
MBD Eq. (38)

2 The correct sign should be taken so that the calculated
I ypp, Eq. (37), may be minimized.

® This does not always give real w values. In such
cases, the original formulation of Nesbet (Ref. 10) should
be referred to.
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TABLE II. Phase shifts [p] calculated by various methods for the case where N=15 and a

SCATTERING.

=0.15. The entries are 16° times the deviations from the exact p values. ?

I. ...

E =0.1986012 0.3067471 0.4661227 0.4663029 0.5614866 0.7570471
Method  peyact = 0.254 41 -0.33681 0.717 52 1.500 66 1.902 52 1.48282
Kohn -599 781 -904 -1610 =502 -52
Rubinow -2917 —-835 47 —-156 —-95 -71
Hulthén -1990 -1110 1737 -1820 —447 -53
MN -923 —-626 =297 —4887 —413 —56
OAF -230 244 ~349 5616 eesb —-T74
ME -2095 —940 -150 -1720 —465 -53
MBD -807 -379 -367 -3519 -427 -56

2 Hazi and Taylor, Ref. 14,
b Real solution was not found.

as the first Kohn condition is imposed on §. For
such cases, Hulthén’s method had better be ex-

tended to a form such that w minimizes |[(¢|4|y)|.
The w value is then given by

w=8(y = p)/[r(r+B) —-2as].

We will refer to this method as the extended
Hulthén method. It is easy to prove that, as &
is varied, Eq. (44) is connected continuously with

B. Numerical examples

1015

We have performed sample calculations of the
phase shift p=tan™!A by the various methods

(44) mentioned in the foregoing sections. Their vari-

ational corrections [p]=tan™![A] are all given
through Eq. (35). In place of the effective poten-
tial V4 (#) =V (r) +1(1 +1) /272, the model potential
function of Hazi and Taylor!* was used:

the w for the original Hulthén method (Table I).
The extension enables to define Hulthén’s w for

any given k.

Vix)=

1

2X

=2 (x<0)

2" (x>0)

TABLE III. The basis-size dependences of the phase shifts at E=0.1986012 a.u. and a

=0.15. The entries for p and [p] are 10° times the deviations from the exactp value (0.254 41).

Method N= 5 10 15 20 30 40
Kohn ) 34 650 22161 8021 2804 -134 -1
[pl —146 240 -9982 -599 -25 0 0
Rubinow p 8835 91492 —7465 —663 -8 -1
[p] 8330 16617 -2917 -93 0 0
Hulthén p=I[p] -165881* —455552 —1990 -81 0 0
MN 0 54455 23182 5464 636 -15 -1
[o] —99578 —8957 -923 —67 0 0
x> 0.9646(0) 0.1276(—1) 0.7277(—3) 0.3422(~4) 0.1041(=7) 0.6015(—11)
OAF P 82123 28957 11103 5178 —68 -1
[pl -28123 -4021 -230 21 0 0
ME 0 86 077 -4731 -2656 279 -5 0
[p] —20 084 —87684 -2095 473 0 0
MBD o 271793 20167 6364 1585 -15 -1
[p] —158456 -12150 —807 —-48 0 0
Ivpr"© 0.9607(—1) 0.1049(—2) 0.5725(—4) 0.3826(—6) 0.3729(—8) 0.7905(—12)

2 The extended Hulthén method, Eq. (44).
® 1u= (SIHIW)? + (Cla)*.
© The figures given in parentheses indicate the multiplicative power of 10."
4 Equation (37).

(45)
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The square-integrable basis functions {x;} used
were the Hermite functions. The size N of the
basis was varied between 5 and 40, As the as-
ymptotic functions S and C, the following func-
tions were adopted:

B2 ginkx (x>0)

B2 g ginkx (x<0)

S = (46a)

and
- B2 coskx (x>0) (46b)
kY2 e"% coskx (x<0)

with the damping factor b being fixed at 0.15 in
atomic units (a.u.).

First, we have examined the energy dependen-
ces of [p] for a potential for which @ =0.15 in
a.u. The energy ranges examined were limited
to those for which exact solutions are available.'*
The results obtained for the size N =15 are sum-~
marized in Table II. Since there was no avoidable
singularity in the energy region of our present
test, no significant differences in the resulting
[p] values were encountered. The Rubinow and
OAF methods occasionally gave the best results
at given energies. The MN and MBD methods
provided nearly equally good results steadily
over the entire energy ranges examined.

In Table III, the basis-size dependences of both
p and [p] are shown for a case of £=0.1986012
and @ =0.15, both in a.u. The [p}] values are suf-
ficiently close to the exact phase shift (0.25441)
when N is larger than 15, With N greater than
30, exact p values are obtainable by any of the
methods here examined. For the sake of com-
parison, the values of Iygp and I, =(S|H|¢)?
+(C|H|§)? calculated at varying N are also listed.
Both these I’s converge to zero in a monotonous
manner. However, in case where E is in the
vicinity of the critical E at which detX=0, these
monotonous behaviors will break down. None-
theless, we may regard these I’s as useful mea-
sures of the accuracy of the basis-set calcula-
tions.

The way that A is corrected to [A] is illustrated
in Fig. 1 for the case where E=0.3067471 a.u.,
N=15, and a=0.15. Both A and [\] vary hyper-
bolically with w:

A =-0.33122 -0.07503 /(w - 0.37129), (47)

[A]=—0.35956 — 0.00732/(w — 0,40305).  (48)

The constant term (-0.35956) for [A] is much
nearer to the exact value (=0.35015) than is that
(=0.33122) for A. The numerator (0.00732) for
[7] is about one-tenth that (0.07503) for A. The
latter result indicates that the dependence of [A]

|
d
i
Kohn i
4
|
0AF ¢ i

— -0.2 } f : 4
< / i
I}
5 Msu/ :r
< /o
{
1

ME Rubinow A

FIG. 1. Schematic representation of the hyperbolic
curves of A and [Al vs w for the case where E
= 0.3067471 a.u., N=15, anda =0.15, — — —,
A=—=0.33122~-0.07503/(w —0.37129); , [Al
==0,25956 — 0.00732/ (w — 0.40305); A exact
=tan Pgy,q,=—0.35015.

on w, and hence on the methods, should be rela-
tively small. The range of w for divergence should
accordingly be narrower.

V. CONCLUDING REMARKS

We have examined the dependences of both A
and [A] upon w=tané in a systematic manner, to
clarify mutual relationships among various vari-
ational methods. This was accomplished by the
help of a basis-transformation scheme which
was introduced in order to distinguish avoidable
(spurious) singularities from unavoidable (innate)
ones.,

In connection with the above, we have proposed
two new optimization procedures for the calcula-
tion of A, They have been termed the minimum-
basis-dependence (MBD) and minimum-error (ME)
methods. Both the methods are free from avoid-
able singularities. The MBD method seems to be
more promising than any other existing varia-
tional theory for the following reasons: (i) it
is capable of providing an optimum A through
simple linear equations without any cumbersome
diagonalization procedure; (ii) it permits a def-



inition of I ;5 as a useful measure of the suf-
ficiency of the basis functions used; and (iii) no
special device is required even in the vicinity of
the eigenvalues of the matrix (x;|4|x,).

In the succeeding paper, we will extend the

19 OPTIMIZED KOHN METHOD FOR SCATTERING. I. ... 1017

MBD method to cover multichannel scatterings.
Further, the characteristics of the unavoidable
singularity, particularly in regard to its rela-
tionship with the true resonance, will be dis-
cussed elsewhere,

*This paper is taken in part from the doctoral disserta-
tion submitted by K. Takatsuka to Osaka University.
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