
PHYSICAL REVIE% A VOLUME 19, NUMBER 3 MARCH 1979

Calculation of K-vacancy production by relativistic projectiles
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Cross sections for the production of K vacancies by relativistic projectiles are calculated using the plane-
wave Born approximation. Electronic 1s and continuum states are represented using semirelativistic Darwin
wave functions. The calculated cross sections are in good agreement with measurements using 4.88-GeV
protons, and also very high-energy (50—900-MeV) electrons. Simple formulas are given to calculate the
cross section for projectile energies greater than —3Mc .

I. INTRODUCTION

Recently there has been a growing interest in
vacancy production by relativistic projectiles.
K-vacancy production by electrons has most often
been studied' ', however two measurements with
protons" and one using heavy ions' have also been
made. The highest-energy heavy-projectile mea-
surement was with 4. 88-GeV protons. ' The re-
sults were arialyzed using the plane-wave Born
approximation (PWBA), ' '0 and revealed the need
to include the current-current interaction between
the projectile and target electron, which is not in-
cluded in the usual PWBA theory. ' Although the
inclusion of the current-current interaction con-
siderably improved the agreement between theory
and experiment, discrepancies remained for K-
vacancy production in high-Z2 targets. Meanwhile
Davidovic et al." (henceforth referred to as DMN)

made calculations using Moiler's PWBA equa-
tions, "and the Pauli approximation to represent
the electronic wave functions. " DMN's calculation
for 4. 88-GeV protons agree very nicely with ex-
periments over the entire range of targets (28 (Z,
&92). They claimed that the better agreement
with experiment is obtained because the calcula-
tions of Anholt et al. ' are only partially relativis-
tic. However, we show in this paper that DMN's

equations reduce to basically the same equations
as Anholt's when terms of the order of m/M (m is
the mass of the electron, M is the mass of the
projectile) and (Z,o')' '" (n = 137 ') are neglected.
The main difference between the two calculations
is due to an error in Anholt's equations. '

In this paper we present a simpler derivation of
the cross section for the production of K vacan-
cies by relativistic projectiles than that of DMN,
expanding on the derivation in Anholt et al. '
Screening, which was neglected by Anholt et al. ,'
is included. Al.so, we include the spin-flip term

II. THEORY

Our theory is based on the PWBA formulas of
Moiler. " The incident proton or electron with
momentum k„and spin s„ is represented by a
Dirac plane wave

Q, =N,a„e ptix(k, 'R —co,t)j, (1

where w, is the projectile's total energy yMc', M
is the mass of the projectile, R is the projectile
coordinate, and a„ is a four-vector given byrsr

a„,g, =(1, 0, k„/K„(k,„—ik„)/K, ),
a, ,),——(0, 1, (k,„+ik „)/K„k„/K,), (2)

with K,= (y+ 1)Mc.
Moiler and DMN have shown that the cross sec-

tion for the excitation of an electron from state go
to a continuum state w'ith energy e with a momen-
tum transfer q is given by

(excitation of spin-down K electrons to spin-up
continuum states and vice versa), the importance
of which was pointed out by DMN.

In deriving these equations, we assume only that
the momentum lost by the projectile in exciting the
K electron is much less than its total momentum.
Thus, the equations should be equally valid for
electron and proton excitation as long as the elec-
tron's energy is greater than approximately 40
times the K-shell binding energy. The equivalence
of electron and proton excitation cross sections
has been suggested also by DMN, and demonstrated
experimentally by Tawara. " Therefore, we also
compare our calculations with 2-, 50-, 300-, and
900-MeV electron excitation cross sections.

Finally simple formulas are given to calculate
K-vacancy production by relativistic projectiles
with kinetic energies greater than -3M''.

We use atomic units throughout this paper.

1 -a„a,~„o ~*„,~,~„o~"'~ r ', (3
z - srsys2~2
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where q, = &E/v is the minimum momentum trans-
fer needed to excite the electron to the continuum
(4E is the energy transfer, v is the projectile
velocity), r is the electronic coordinate, k', is the
initial projectile momentum, k,' is the final mo-
mentum, Z, is the projectile charge, and g„, and

g„o are final and initial electronic wave functions
with spin s, . The first term in the absolute square
in this equation comes from the Coulomb interac-
tion between the projectile and the target electron. '
The second is between thp current density of the
projectile a,'*B,a', and that of the electron g, B,g„
where &, and n, are Dirac matrices.

The essential approximation that we make is to
set the initial momentum P, equal to k,', thus a,'
=a,. This assumes that the projectile's momen-
tum is so large that the deflection due to the mo-
mentum transferred to excite the electron is neg-
ligible, which is certainly valid for relativistic
protons or heavy ions, but is also a good approx-
imation for very-high-energy electrons. Using
this approximation, it is easy to show that

[K'K'/4(n')']'"a, ',*,a'„o= P 'S,o;,

f K'K, /4(k, )']'~' a,',*.c',a„o= (P/P) 5,o.. .
I

where P=v/c. Thus the cross section is given by

d'(r 4'', q
defq ~' (q' —q,P')'

xQ f g,",.(1-l3 o,)/pe"'dr '.
O c

S2S2

square the two terms in Eq. (7) separately be-
cause n„connects different final electronic states
to the ls state than F or G, . (For example, G„
excites 1s electrons to m, =pl continuum states,
while E and G, excites 1s electrons to rn, = 0 con-
tinuum states. )

It may be shown that"

G, = &EF/qc,

therefore

F cosAG, = F(1 —p'q', /q'),

and Eq. (5) becomes

(8)

g„, =N,a, („,
where (o is the normalized eigenfunction of the
nonrelativistic Hamiltonian for the 1s (g) or con-
tinuum (P', ) state, N, is a normalization factor,
and a, is the electronic four-vector given by

t'z a . a f aa„,=] —— f , ———-,0—, 1),
gK gx gy

' K gg' ' j '

and

(10)

which is essentially identical to Anholt et al.' and
Fano. "

Following DMN, we evaluate the electronic ma-
trix elements E and G„using Darwin or Pauli wave
functions"

g& (1 —P 5,)e"'go, o dr

where

= IF-p'o»G. I'+ lp»»G. I' (»

F= g*,g oe'"dr
& S2 OS 2

and

To evaluate the electronic matrix elements, it is
desirable to take q to be the polar axis, thus q r
= qz. If the collision takes place in the xz plane,
and A is the angle between P and q, then

p ' 5, = pcosAn, + psinAn„,

where cosA. = q,/q. Therefore

( s
g =~ ——,——+z—,1, 0 l.'~' l~K', 3~ ' K, Px ay

(12)

and

Here K, = c(y, + 1)= c(2 E,/c'), whe-re E, is the
binding energy &Z' or -e= -&k', and k is the elec-
tronic momentum (we assume in writing e= 2k'
that the major contribution to o~ comes from con-
tinuum states with e«c').

In this work, we will neglect all terms of the
order of (Za)"", where @=1/c. Thus we put
K', =K,'= 2c. The normalization factors are given
by

N,'= [1+(Zn/2)'] '~'

N,'= [1+(kn/ )'2] '~'. (13)

with a similar equation for G„. We are allowed to
Inserting Eqs. (11)-(13)into Eq. (10) we obtain

the following matrix elements:
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+ (1/2 } (1/2~ - (1/2 )- (1/2~

0+ 2Q V 'V
0 e dr

=d ', * 0e'"dr =dI0,

(l/2)- (1/2) - (l/2) (1/2~
(14) where

8', d, ~ d

&&'min omin Q

„~,(fI«)'(1 —Q-/Q)
( — 'Q /Q)'

x&G +-,'qz )),

qd
2

0
~op &)ko eiqgd3~ q

gx 4e'

I »=Z Io= (3Q+ W)QA~,

G~ ——I„=4 WA2,

id
y (1 / 2 ) (1/ 2 ) x'- (-1 / 2 )- (1 / 2 ) x' P

C

dq
Gx(l/2)- (1/2) G»- (1/2) (1/2) 0 P2c

where d=N,'II,' """
I
I.I'd~ = (3q'+ z'+ k')q'&. d~,

I
I„

I

'de = (Z'+ k')/4A, de

and

2 Z exp( —2Z/ktan [2Zk/(Z +q —k )]]
A =

3[1 —exp( —27&Z/k)][(q+ k)'+ Z']"[(q —k)'+ Z']"

Following DMN, for E(1/2) (1/2) we have dropped
the (2c) '

Vg,
' vg terms The.se terms are of the

order of ikZg', -*(0, thus when E&,&»&,&» is
squared, including these terms gives a factor
1+ (Zke'/4)', which is a correction of the order
of (Ze)' which we have already neglected else-
where. Also, F&,l» &,&» is a (Zo) term which is
negligible.

Thus, summing over spins, the E vacancy cross
section per-atom is given by

d'v 16'',qd' I I, I

' 8sinA. I„
dedq v' q' c(q' —q', ,6')

2'exp(-2/ktan '[2k/(Q + 1 -k')]} (16}A'=
3[1 —exp(-2v/k)][(Q —k'+ 1)'+4k']" '

d'= [1+(Zn/2)'] '[1+ (W —1)(Ze/2)'] ',
W=k'+ 1, Wmn ——e»=2V»/Z', Q~„=' W'/4&7„,
il„=v'/Z', Z=Z, —0.3, and U» is the K-electron
binding energy. Evaluation of these equations
when S'&1 is described by Merzbacher and Lewis'
and Walske. For the transverse and spin terms,
because the integrand becomes very large for Q
=Q~, when 3' =1, it is necessary to integrate the
first step, Qm&n 1 ~ 3Qm&n analytically, keeping I'
and G constant over the interval. The remaining
part of the integral is done using straightforward
quadrature techniques.

III. RESULTS AND DISCUSSION

I I
I

200 —k~

I
I

I
I

4.88-GeV

100—

Figure 1 compare. s our theoretical calculations
with measured cross sections for the production of
E vacancies by 4. 88-GeV protons. ' As noted pre-
viously, the measured cross sections are a factor

8sinA. I,q
2 c(q' —q', 6') (16)

40—

20—
The first term inside the curly brackets is the
usual term that appears in nonrelativistic PWBA
theory. ' Et is called the longitudinal contribution.
The second is the transverse contribution that ap-
peared in Anholt's equations. The thi'rd is the
spin-flip term.

To conclude this section, we re-express Eqs.
(15) and (16}in a form suitable for numerical integra-
tion. We find it convenient to use the same inte-
gration variable as Merzbacher and Lewis, '
Khandelwal et al. ,

' and Walske. ' Letting W=e/I»
+ 1, where I»= —', Z', and Q=q'/Z',

IO—

50 40 50
Zp

70 90

FIG. 1. E-vacancy production by 4.88-GeV protons
versus target atomic number (Ref. 5). Solid line:
longitudinal {Coulomb interaction) contribution; dashed
line: longitudinal and transverse (current-current
interaction); dash-dot: total cross section including
spin-flip contribution.
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FIG. 2, K'-vacancy production by 2-MeV (Ref. 1),
50-MeV (Ref. 2), and 300- and 900-MeV (Ref. 3) elec-
trons. Solid lines: total. calculated cross section.

of 1.5-2. 5 larger than the longitudinal Coulomb-
interaction contribution, which is the only contri-
bution in the theory of Merzbacher and Lewis' and
others. " The transverse (current-current) con-
tribution increases the calculated cross sections
by a factor of 1.5-2. Also the spin-flip contribu-
tion increases the high-Z, cross sections by
another factor of 1.3. For low-Z targets, the
spin-flip contribution is a factor of the order of
Q' smaller than the transverse contribution [see
Eqs. (17)and (18)].The calculated cross sections
are in good agreement with experiment, except
possibly for the high-Z targets.

As long as the projectile's momentum k, is
much greater than the momentum &k, transferred
to excite the K electron, our gquations should be
valid for any projectile. Therefore in Fig. 2 are
shown 2-, 50-, 300-, and 900-MeV electron ex-
citation cross sections. ' ' Also shown are the
total calculated cross sections (sum of longitudin-
al, transverse, and spin-flip contributions). For
the high-energy electron bombardments, agree-
ment between theory and experiment is excellent.
However, for excitation of high-Z targets by 2-
MeV electrons, the requirement

I
&k,/k, I

«1 is
not accurately fulfilled, and one sees that the cal-
culated cross sections are greater than experi-
ment. In our calculations, the upper limit to the
continuum energy ~,„was set to infinity, but if k,
is small, one can only integrate to a finite e

losing a significant contribution to the integral if
U~ and e, are of comparable magnitude.

Figure 3 shows calculated U K-vacancy produc-
tion cross sections as a function of the total pro-

25
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FlG. 3. U K-vacancy production byprojectiles with
kinetic energies (p- l)Mc~. The calculated longitudinal,
transverse, and spin-flip contributions are shown
separately as well as the total cross section.

jectile energy E, in units of Mc'. [The projectile's
kinetic energy is (y —1)Mc'.] For y&4, the pro-
jectile's velocity is constant and equal to c. Since
the longitudinal contribution depends only on the
projectile velocity, it is constant for y&4. The
transverse and spin-flip contributions both in-
crease as the lny, the spin-flip contribution in-
creasing less steeply. For y&1.3, (proton ex-
citation energies less than 250 MeV/amu) the
cross section is completely dominated by the
longitudinal term; thus it is valid to use the tables
of Khandebval et al.' to calculate K vacancy cross
sections for those energies.

The main difference between the present equa-
tions and Anholt's previous ones' is the inclusion
of the spin-flip term here and the correction of an
error in the previous equations. In the denomina-
tor of A, [Eq. (15)], a factor

[(q+ I )'+ z'] [(q —u)'+ z'] = [q'+ v'+ z']' -4q'u*

(19)

appears I Ref 5p 4q2k2 was incorrectly writ
ten as -2q'O'. For @=0, or Z, =30, the difference
between the two expressions is negligible, but
when q/Z =1 or Z, =92, the calculated cross sec-
tions differ significantly from one another. Thus
Anholt's calculations' agreed poorly with experi-
ment only for the high-Z targets.

Equations (42) and (43) of DMN reduce to ours
when one sets K, =K,'= 2c and, in tQe first line of
Eq. (42), sets —', (Z'+ k') = Ur+ e. The latter ap-
proximation is discussed below. DMN argue
against setting K, =&,'= 2c, claiming that when one
integrates over the continuum energy e or the final
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electron momentum k, one obtains for 4.88-GeV
protons a spurious contribution to the cross sec-
tions from the region near kmax& where k,„is
given by

k,„=[Mc(y —1) + m —I„/e] —m' = [Mc(y —1)]'.
(20)

This corresponds to transferring the projectile's
entire momentum to the electron, so kmnx is ex-
tremely large. As is well known in PWBA cal-
culations for nonrelativistic projectiles, ' one can
effectively put k „=, and integrate over e or k
until the integral converges, generally near cmnx

=40IK. DMN point out that if one keeps the exact
value of K„ this spurious contribution is removed.
We find it easier to integrate only to e,„=40IK,
thus the region near k,„ is ignored.

Finally we wish to point out that the evaluation
of Eq. (7) for very high-projectile energies using
inexact wave functions can be very inaccurate.
The relation G, = ~EF/qc [Eq. (8)].is exact for
ideal wave functions. If one has G, =a~EF/qc,
where a & 1, the longitudinal contribution to the
cross sections would be given by integrating

do' 16'',d' "
dq I F I' (1 —aP'q', /q')'

dc v', q' (1 —P'q', /q')'

For P=1 and a~1, one has a large contribution to
the integral near q =q, . The error, due to having
a 4 1, is given approximately by

v„(a) = v (a= 1)[1+(1 —a)'y'

+ terms in (1 —a)y and lny].

(22)

Thus, for excitation by 1000-GeV protons or 500-
MeV electrons where y= 1000, one must have n
& 0.SSS to obtain an accurate result. Since DMN

evaluated Eq. (7) using one-electron wave func-
tions, they obtain G, = —,'(Z'+k')F/qc, not (U„+e)F/
qc, which for k = a = 0, means a = eK. Thus one
should not expect very accurate results for y R 10.
For 900-MeV electron excitation (y=1800) of
¹(ez—0.8) and U(er ——1.01), we obtain 3 F10' and
340 b for the longitudinal. contribution using DMN's
equations, but only 150 and 4. 9 b using Eq. (10).
In view of the good agreement between our calcu-
lations and experiment for these energies, the use
of Eq. (10) is clearly the best way to evaluate or.

IV. RECIPE FOR E-VACANCY CROSS SECTIONS

Although numerical evaluation of Eqs. (17)-(18)
is not difficult, we recognize that it is occasional-
ly desirable to be able to calculate the K-vacancy
production cross sections on the back of an en-
velope. In this section we derive simple formulas
for the transverse and spin-flip contributions to
the K-vacancy production cross section, for pro-
jectiles with y & 3. The longitudinal contribution
o„, can be calculated using the tables of Khandel-
wal et al. ' or Rice et al." However, in their work,
the normalization of factor d' [Eq. (8)] was not in-
cluded. One can correct for this by multiplying
their cross section by

d', = [1+(Zn/2)']-'.

Our numerical calculations of o„, agree within 5/~
with Khandelwal's multiplied by d', .

The transverse contribution can be evaluated
analytically if one makes the following approxima-
tions to Eqs. (17)-!18):(i) neglect Q with respect
to 1 —k' (dipole approximation), (ii) set 1
-exp(-2v/k) =1, (iii) set

exp]-2/ktan '[2k/(1 —k')]}=e '(4/3W —1/3)

(Ref. 20), and (iv) set d'=d', . One then obtains

TABLE I. ComParison of numerically calculated transverse contribution oKtnum to Eq. (24).

4.88-GeV protons
Cross sections (in b)

Z2 Kt num Eq. (24) Ratio ~
Eq. (24)

=10 Ratio '
28
47
65
92

71
21
9.1
3.3

68
18.8
7.9
2.7

1.04
1.09
1.15
1.24

69
20
8.8
3.3

1.03
1,03
1.04
1.00

Z2

28
47
65
92

50-MeV electrons
Eq. (24)

do=1

206
60
26
9.9

Ktnum

209
61
27
10

OKtnu m/ +Kt I.Eq ( )J

Ratio n

1.01
1.01
1.04
1.04

+Kt num

358
104
47
17

900-MeV electrons
Eq. (24)

d =10

351
101

45
16,9

Ratio ~

1.02
1.03
1.04
1.04
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TABLE I{. Constants A and 8 in Eq. (25) (in b).

0.6
28
35
47
55

1.52
$.56
1.60
1.62

0.012
0.023
0.080
0.200

65
75
85
92

1.40
1.12
0.85
0.54

0.51
0.60
0.62
0.66

0.4

0.2

0
20 40 60

Z2

80

—0.8

—0.4

'0
100

on Z, suggests a complicated dependence on Zn,
B~, and q~. Since o'~, makes a small contribution
to the total R-vacancy cross section, . the spin-flip
contribution can be obtained to sufficient accuracy
(5/o-10/o) by directly interpolating from Table II
or Fig. 4.

V. CONCLUSIONS

FIG. 4. Fitted constants A. and B (in b) appearing in
Eq. (25) versus target atomic number.

o„,= 2. 9 x 10'(Z,do/Z, Pe'„)'

x(-', e. ——,', )[»(7') 8'] (b-). (24)

Table I compares Eq. (24) with the numerically
calculated transverse cross sections. For 4.88-
GeV proton bombardments of high-Z ta,rgets, the
numerically calculated cross sections are la, rger
than the values from Eq. (24). This is mainly due
to a, failure of the dipole approximation; for high-
Z„q„=1, hence Q is not negligible with respect
to 1-O'. Ope ca,n compensate for this by setting
d', =1 in Eq. (24). With d', =1, Eq. (24) gives the
correct transverse cross section to within 5/p for
all projectile energies with y ~ 3 as Table I shows.
It is purely a,ccidental that setting d', = 1 compen-
sates for making the dipole approximation.

We have also attempted to derive a simple for-
mula for the spin-flip cross section o~, using the
same approximations. The resulting formulas
are quite complicated, and not very accurate.
Figure 3 suggests that o'~, might be given by

o„,=A+ Blny,

where, for ya3, A. and B are Z, dependent, ener-
gy-independent constants. We find that the cal-
culated spin-flip cross sections can be fit ac-
curately using this simple equation. The constants
A and B are shown in Fig. 4. Their dependence

K-vacancy production by relativistic projectiles
can be accurately calculated using the relativistic
PWBA for all targets with 20 &Z, &92. In this
pa,per we have shown ho~ the equations of Anholt
et al. ' and Fano". are derived from the theory of
Moiler, "and how these equations are more ac-
curate than DMN's (Ref. 11) at extremely high
projectile energies.

'The main improvement which could be made to
the theory is to use Dirac or relativistic Hartree-
Fock (RHF) wave functions instead of the Pauli
wave functions, retaining all terms in Zn. To
estimate the influence this has on K vacancy pro-
duction one can compare with photoelectric cross
sections calculated using RHF wave functions. "
Using Pauli wave functions, the photoelectric
cross section is given by

o, = (8vn'/«)d'
I I„(&,) I', (26)
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with P'=1. For U, Eq. (26) and (15) agree within
8% with RHF calculations" for 120 &q, & 400keV/c
or 0&&& 3U~. Thus use of Dirac or RHF wave
functions appears to have a small effect on
the transverse contribution to oz. Although
this only demonstrates the effect of using rel-
ativistic wave functions on o«, we expect ap-
proximately the same effect on o~, ando~„since
the main contribution to E» fEq. (1V)] is a dipole
one.
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