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We present a general theory of electron degradation and of the yields of initial species such as ions and
excited states that appear in matter as a result of irradiation with electrons. We give variational expressions

for observable quantities such as the degradation spectrum, the mean yields, and the yield fluctuations. A
systematic analysis using variational principles reveals, in greater detail than ever before, relations among
major analytical methods including the Fowler method, the Spencer-Pano method, and the method of Knipp
et al. Each of these methods represents a different angle of approach to the same problem and leads to the
same prediction for the mean yield of any initial species, for a fixed set of electron cross-section data.
Among our findings it is noteworthy that the knowledge of the Spencer-Fano degradation spectra for various
source-electron energies enables one to calculate by quadrature not only the mean but also the statistical
fluctuations of the yield of any initial species. Furthermore, when one introduces small changes in the cross-
section data (because of new information or upon consideration of chemical impurities in the medium), one

may express the ensuing modifications of any observable quantity in the form of a perturbation expansion.
Then, every term in the perturbation series is calculable again from the Spencer-Pano degradation spectra
for various source energies for the unperturbed problem. In this respect and many others, the Spencer-Fano
degradation spectrum is the most basic element in the solution of the degradation problem. Finally, our
mathematical analysis of various difference-integral equations (including nonlinear equations) may be of
interest in areas other than electron degradation. Therefore, the present paper includes remarks nn the
physical meaning of adjoint operators and on other points belonging to general mathematical physics.

I. INTRODUCTION

A central problem in the study of matter ex-
posed to high-energy radiations is the determina-
tion of the kinds and numbers of initial species
formed. Since a substantial fraction of the initial
species results from the degradation of electrons
ejected within the medium, theoretical attention has
been concerned chiefly with electrons as source
particles. Always, the problem consists of two
interlocking efforts. ' The first step is the as-
sembly of a complete set of inelastic-scattering
cross sections. Qur concern in this paper is
with the second step, which is often referred to
as bookkeePing' and entails following the course
of degradation of the electrons and keeping ac-
count of the consequences of all the inelastic
events.

There are three general approaches to the
bookkeeping portion of the problem that are cur-
rently used. The merits of each were previously
discussed. ' Qne method, machine simulation of
either Monte Carlo' or "discrete-bin" type, can
provide a complete and exact approach to the book-
keeping problem, but as recently emphasized by
Bethe and Jacob, ' further effort is required if
general properties such as systematics or scaling
laws are sought. The other two methods consist
of solution of difference-integral equations.

In the simplest medium consisting of molecules
with a single ionization threshold I, the mean
number N, (T) of ions p. roduced in the complete
degradation of a source electron of energy T
obeys the equation'

o...(T)N, (T) =o,(T)+ g „o„(T)N,.(T —E„)

(rel)t2 do (T E)
+ dE

x [N, (T —E) +N, (E —. I)j.
The cross section for excitation of the nth discrete
state is o„(T), and do, (T,E)(dE is . the differential
cross section for production of a secondary elec-
tron with kinetic energy E —I. The total ionization
cross section is

and the total inelastic-scattering cross section is

o„,(T) = o,(T)+ Q o„(T).
Equation (1.1), called the Fowler equation, has a
simple meaning: each term on the right-hand side
of Eq. (1.1) represents an alternative effect upon

N, (T) of the next collison. that an electron of ener-
gy T undergoes. The first term represents the

971 1978 The American Physical Society



A. R. P. RAU, MITIO INOKUTI, AND DARY I. A. DOUTHAY 18

a„t(T)y(TO, T) = Q o'„(T+E„)y(T, T+E„)
n

do, (E,T+I).
y 09

2 Peg

+ 2 't)(T, —T), (1.2)

where 5 is the number density of molecules in the
xIledlum.

Each term on the right-hand side of Eq. (1.2)
represents an alternative effect upon y (T„T) of
the last collision that an electron underwent to ar-
rive in the energy interval (T, T+dT). The first
term on the right-hand side represents the contri-
butions from all possible discrete excitations in
the last collision. The two integral terms repre-

ion yield due to direct ionization by the source
electron. The second represents the yield when
the source electron first excites a discrete state,
and subsequently (with kinetic energy T —E„) pro-
duces an ion. The integral term represents the
ionization process in which the primary electron
first transfers energy E &I and the two outgoing
electrons, with energies T-E and E -I, proceed
to create additional ion pairs. The faster of these
two electrons is conventionally regarded as the
primary electron and the slower as the ejected
electron. Hence, the upper limit of integration is
2(T+I). —Since N, (T) =0 for T&I, Eq. (1.1) can be
solved stepwise by ascending in T. Similar Fowl-
er equations" can be written for the average yield
N, (T) of any specific excitation s by replacing N,.
in Eq. (1.1) with N„and the first term on the right-
hand side with o,(T).

Another approach is the Spencer-Fano' method.
An elementary account of the theory has been giv-
en,"and the merit of the method has recently been
emphasized. ' Consequently, the following discus-
sion of the theory is brief.

The Spencer-Fano approach focuses on the ener-
gy distribution of all electrons in the medium (i.e. ,
the. source electron and the electrons of all subse-
quent generations), or on a closely related quan-
tity, i.e. , the degradation spectrum y(TO, T). In-
deed, Spencer and Pano' recognized the key role
of the energy distribution (or the flux) in y ray and-
neutron degradation, and extended the idea to the
electron-degradation problem. The function
y(T„T)dT represents the total path length of all
electrons with energies in the interval (T, T+dT)
produced by a unit flux of stationary source elec-
trons of initial energy To and obeys the equation

9(,(T,)=9(J dTy(TT)y, (T), , (1.3)

where E, is the threshold energy for excitation of
the kind s.

The approaches discussed above are exact. and
require as input a complete set of cross sections.
The assembly of input data can be regarded as a
separate problem; progress in that area was dis-
cussed recently

Our aim in this paper is to consider Eqs. (1.1)
and (1.2) as well-defined physicomathematical
equations for unknown quantities N, (T,) and y (T„T)
in terms of known cross sections and to seek vari-
ational principles for solving these equations.
%hile these variational principles may provide a
numerical approach, the main emphasis of the
present paper is on the insight provided by these
principles into the mathematics and physics of
the problem. Our treatment shows that the histor-
ically independent approaches through Eqs. (1.1)
and (1.2) are closely related to each other. In-
deed, they represent dual modes of descnption of
the same degradation process. Recall that Eq.
(1.1) enumerates different results of the next colli-
sion of an electron at energy T, and that Eq. (1.2)
enumerates different results of the last collision
by which an electron of energy T has appeared.
Mathematically, the dual modes of description are
expressed by the adjointness, i.e., a notion well
known in the transport theory of Z rays" and neu-

sent the contributions from all possible ionization
events. It follows from the definition of a second-
ary electron that the upper limit of the first inte-
gral of Eq. (1.2) is actually the lesser of To- T
and T+I. This limit may be extended to infinity
with the condition that do, (T,E-)/dE = 0 for T & To.
The upper limit of the second integral may also be
extended beyond its actual value T, with the stip-
ulation y (T„E)= 0 for E & T, .

Throughout this paper we deal with electronic
energy losses only. Thus, the cross section o„(T)
refers to electronic excitation whose lowest thresh-
old is E, . The function y(T„T) therefore may be
considered as being defined in the domain E, T
~T, according to Zq. (1.2). (The electron degra-
dation at kinetic energies below E, is slower by
orders of magnitude and therefore can be regarded
as a separate problem. ') In certain expressions
that appear in our treatment, it is sometimes con-
venient to stipulate y(T„T) =0 for T &E,.

The Spencer-Fano equation may be solved step-
wise by descending from T, . Once y (T„T) is
known, the yields of all initial species are deter-
mined by simple quadrature as'
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trons. "" Section II develops the variational pri.n-
ciples for N, (T,) and identifies y(T„T) as an ad-
joint function. Section III treats the variational
principle for y(T„T) and shows that y(T„T) itself
is an adjoint function. - In Sees. IV and V, we con-
sider not only the mean of the yield but also sta-
tistical fluctuations around that mean. Although
equations describing the fluctuations look more
complicated than Eq. (1.1), the variational treat-
ment shows that y(T„T) again serves as an ad-
joint function. Consequently, the degradation spec-
trum determines not only the mean yield, but also
the Fano factor and all other information about the
fluctuations.

The basic role of the degradation spectrum is
understandable from the following interpretation.
The function y(T„T) in effect represents the in-
fluence of the source term 9 '5(T, —T) in Eq. (1.2)
upon a current value T of the electron energy.
Thus, any quantity that characterizes an outcome
of the degradation process may be expressed in
terms of integrals containing y(T„T) over T. In
this sense y(T„T) plays a role similar to that of
the Green's function in mathematical physics in
general. In neutron-transport theory, the same
idea of the influence of the source particle upon a
detector (or observable) property is sometimes
called the "importance""; in this language, the
Spencer- Fano degradation spectrum is the import-
ance in the electron-degradation problem. This
interpretation also explai'ns the usefulness of
y(T„T) in evaluating effects of small changes in
cross-. section data upon quantities characterizing
an outcome of the degradation process (as we dis-
cuss in Sec. VI).

Finally, as a by-product of this investigation, we
have developed a compact prescription for the gen-
eration of adjoints (or, equivalently, Green's func-
tions or inverses) of integral operators, as dis-
cussed in the Appendixes.

For brevity of presentation, we restrict the
treatrqent throughout the present paper to an ideal-
ized medium consisting of a single molecular spec-
ies having a single ionization threshold. For any
real medium there are at least three complica-
tions: (a) the dissociation of superexcited mole-
cules in competition with preionization, (b) the
presence of many ionization thresholds corres-;
ponding to different electronic, vibrational, arid
rotational states of a resulting ion, and (c) the
multiple ionization that may result from a single
electron collision. It is possible to incorporate
explicit considerations of all these complications
into Eqs. (1.1) and (1.2), as seen in the Appendix

'of Ref. 8, for instance. Major conclusions of the
.present paper remain intact under these complica-
tions.

H. VARIATIONAL PRINCIPLE FOR THE FOOLER
EQUATION

t

We define the probabilities per inelastic collision

o„(T) dv, (T,E)/dE
(2 1)

where m stands for i or s, and write Eq. (1.1) as

QrN(T) =p(T), (2.2)

where we have dropped the subscripts on N(T) and
p(T). The appropriate subscript i or s will give
the Fowler equation appropriate to ionization or
excitation yield. The symbol Qr in Eq. (2.2) de-
notes a linear difference-integral operator com-
mon to all m defined by

(T+Ii/2
dE 'q (T,E ') [N(T —E ') + N(E '- I)].

I

(2.3)

Note that Qr acts on a function N(T) of T and also
depends explicitly on T through P„(T), q(T, & '),
and the upper limit of the integration.

We now seek a variational principle for the value
of N at some specific energy T„say N(T, ). Fol-
lowing a general procedure, ""we write as a vari-
ational estimate N„(T,)

N„(T,) =N, (T,) —J) dTL, (T„T)[QrÃ,(T) —P(T)],
0

(2.4)

where N, (T) is a known "trial" function, which is
our first guess for the solution of Eq. (2.2) and
which may contain variational parameters. The
function L, (To, T) is a trial function for the so-
called Lagrange (multiplier) function L(T„T).
The upper limit of the integral on the right-hand
side of Eq. (2.4) has been put as infinity with the
(implicit) stipulation that L(T„T)=0 for T, & T.
We shall use similar procedures in the following
development whenever they seem to cause no am-
biguity.

Because the general procedure" "for formulat-
ing a variational principle may be obscure to our
readers, we present an explanation of the meaning
of Eq. (2.4). First of all, if one knows the exact
solution N(T) of Eq. (2.2), then the integral term
in Eq. (2.4) vanishes for any L,(T„T). If one
knows only a trial solution N, (T), then the quantity
QrN, (T) —p(T) is nonvanishing at various T and
will cause errors in N(T, ), i.e. , the quantity we
want to determine. How these errors at each T
affect N(T, ) will depend upon both T and T, . The
function L,(TO, T) represents the weight by which



A. R. P. RAU, MITIO INOKUTI, AND DARYL A. DOUTHAT 18

the errors at each T affect N(T, ). Among all
possible choices of I,(T„T), there is the best we
can choose under a criterion, i.e., under the re-
quirement that Eq. (2.4} contains vanishing terms
that are first order in &N =N, —N and &L = L, —L.
The function L(T„T) chosen in this way compen-
sates errors in N, (T) and leads to a variational es-
timate of N(T). As we shall show, the use of exact
L(T„T) in Eq. (2.4) gives a so-called variational
identity, in which errors in N, (T) are fully correct-
ed for so that exact N(T) is obtained from any trial
N, (T) if exact I (To, T) is given. In this sense,
L, (T„T) plays the role similar to that of the gen-
eralized force in classical mechanics. (By the
term "variational principle, "we mean throughout
the present paper an expression that is stationary
with respect to small variations in unknown func-
tions, rather than an expression that is maximal.
or minimal. Some of our variational results may
indeed be maximal or minimal, but we defer the
examination of this issue to future work. )

Adopting an inner-product notation for the inte-
gral in Eq. (2.4), and setting terms on the right-
hand side of Eq. (2.4) that are linear in the first-
order error 6N equal to zero, we have

6N(ro) —(L(T0, T), Qr&N(r))= 0, (2.5)

where the repeated symbol T represents an inte-
gration variable.

It is possible to introduce an adjoint operator
QT so that the operator in the inner product in Eq.
(2.5) can be transferred to act on L(T„T); in other
words, we define Q~~ by the identity (L(T„T),
Qr&N(r))= (Qi~L(T„T), 6N(r)). Then, we obtain
the equation for L(T„T) in the form

QirL(r„r) = &(T, —T). (2.6)

This is the requisite equation for the Lagrange
function and the variational principle is now for-
mally complete because trial solutions of Eqs.
(2.2) and (2.6) on insertion into Eq. (2.4) will yield
an N„(T,) that differs from the exact N(T, ) only by
errors of second and higher order.

We now discuss an explicit construction of the
adjoint operator. For this purpose, it is conven-
ient to recast Eq. (2.3) by simple changes of vari-
ables in the integrals into a form such that Qr &N(r)
in Eq. (2.5) involves 6N having the same argument
in all the terms. Thus, we write

Qr 6N(T) = dE &(T —E}

where the notation exp( E-„ez)6N{E)formally repre-
sents 6Ã(E-E„), as given by the Taylor expansion.
The arrow indicates that the operator exp( E„s )
acts on any operand to the right. With this form,
the inner product of Eq. (2.5) involves a double in-
tegral fz dT lz" dz. All that remains is to inter-
change the integrations so that Eq. (2.5) can be
written as

d~ & T, -g —A~ I. To, E 5N E = 0, 2.8

where the expression in the square brackets will
involve the T integration and explicitly display the
structure of the adjoint operation. The interchang-
ing of integrations can be cast in the form of a
compact general prescription, fully discussed in
Appendix A. Accordingly,

o (T? b2
if 0 involves dE, then ~ has dT

by i~y (E 3

(2.9)

where by and b2 are the two boundaries of the range
of integration (here I and ~). That is to say, when
one operator involves integrations from one bound-
ary to some function of T, i.e., n(T), then the ad-
joint operator has its range run from the "inverse"
of E = n(r), namely T = n '(E} to the other bound-
ary. [We assume here that E = a(r) is a monotonic
sing). e-valued function of T so that the- inverse is
defined unambiguously. ] Thus, for instance,

last term in Eq. (2.7) goes over into

J,"~„drL(T„T)q(T,E+I).
With the prescription given by (2.9) and with the

exponential operator in Eq. (2.7) taken to act to the
left in the adjoint operator we have

x [1 g p„(E)exp(z„es)]

E+I
dT L(T„T)q(T, T -E)

2E+I

dTL(T„T)q(T, E pl), (2.10)
2E+I

where the arrow on top of BE denotes that it acts
on any operand to the left. Thus, Eq. (2.6) can
now be written out in full as

Qirj(TO, T) = Qp„(r+E„)L(TO,T+E„)
n

(2.7)

x 1 — p„E exp -E„&~ 5N g
n

(T+ I) /2
+ dE q(T, T E)&N(z)-

~T-I
(T-I) /2

dE q(T, E +I)6N(z),

2T+I
dE q(E, E T}L(T„E)

T+ I

dz q(z, r +I)I.(T„z)
2T+I

=6(r, r). (2.11)
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With a trivial change of variables in the first in-
tegral on the right-hand side, Eq. (2.11) is seen to
be identical to Eq. (1.2). The Lagrange adjoint
function is, therefore, the Spencer-Fano y func-
tion, apart from a multiplicative factor. From
Eqs. (2.11) and (1.2), .we can determine the factor
and write

L (T„T)=%cr„,(T)y (T„T). (2.i2)

Since we have been dealing in Eq. (2.2) simulta-
neously with all the Fowler equations for the dif-
ferent kinds of yields s, we conclude that y(T„T)
is the universal adjoint function for all the Fowler
functions. In fact, Eq. (1.3), for the yields as
simple quadrature over y(T„T), is now recovered
as a trivial identity that follows from Eq. (2.6):

N(T, )-=N(T,)-(6(T, T) n',L(T„T),N(T))

=(fi',L(T„T),N(T))

=(L(T„T),p(T)), (2.12)

where the last equality follows by switching oper-
ators inside the inner product and using Eq. (2.2).
With L given in Eq. (2.12), Eq. (2.13) is identical
to Eq. (1.3).

An alternative form of the variational identity"
follows by writing

N(TO) =N(TO) y (6(TO —T) GAL (T„T), 6N(T))

=N, (T,) (nt~(T„T), N, (T) N(T))

=N, (T,) —(L(T, T), 0+,(T) -P(T)). (2.14)

As usual, replacement of L in the above variation-
al identity by L, leads" to the variational principle
in Eq. (2.4).

Had we started with the Spencer-Fano formalism
in Eq. (1.2) and sought variational principles, say
one for N(T, ) =(L(T„T),P(T)), we would have writ-
ten

N, (T.) = (L(T., T), P(T)).= (L (T., T), P(T))

+ (6(T„T)—a',L,(T„T),~,(T)), (2.16)

where the defining Eq. (1.2) or, equivalently, Eq.
(2.6) is incorporated through a Lagrange function
A, (T). Its defining equation follows by now setting
a1.1 6L terms equal to zero, and we find

are well known and others new, now fall into place.
For instance, adjointness always involves, ""as
one of its general characteristics, an interchange
of the role of boundaries. We have seen this ex-
plicitly in Eq. (2.9) and now, in the light of this, it
is natural that the Fowler equations are solved
conveniently by starting at T =I and ascending,
while the Spencer-Fano equation is solved by
starting at T = To and descending in energy.

In addition, there is a link between the behavior
of N, (T) within a few multiples of the threshold and
the behavior of y(T„T) for T near T, to within a
few multiples of I. The degradation spectrum con-
tains structure for T near the source energy T,.
That was discussed by Fano~ with primary refer-
ence to heavy particle slowing down and was dem-
onstrated for electrons" by numerical solution of
the Spencer-Fano equation. Lewis" discussed a
related phenomenon: oscillations in the yield curve
of nuclear reactions induced by heavy charged par-
ticles. This nuclear "Lewis effect" has been ob-
served experimentaQy. ",

Miller' found the corresponding structure in
N, (T) for helium through numerical solution of the
Fowler equation and discussed its origin —the
opening of new channels for energy loss. Hence,
N;(T) contains structure near T=E, yI and 2E, +I,
where E, is the lowest electronic excitation energy
(19.8 eV for helium). Structure in N, was also
found and discussed by Jones" as well as Cravens,
Victor, and Dalgarno. " This structure apparently
does not emerge in the usual continuous slowing-.
down approximation. Recent calculations by Dou-
that" on electron degradation in molecular hydro-
gen indicate the great sensitivity of the low-energy
structure inN, (T) to the choice of cross-section
data. Also, recent measurements" of the ioniza-
tion yield in molecular hydrogen indeed show a
small slope discontinuity at an expected T value,
i.e, , T =E,+I.

Application of the variational principle, Eq. (2.4).
We discuss here only a simple application, again
designed to throw additional light on a known re-
sult. Consider the following simple choice for the
trial functions in Eq. (2.4):

L, (TO, T) =AC(To —T)+8,
tl, tt (T) =p(T) . (2.i6)

(2.iv)
Thus, we now observe that the Fowler function
N(T) is the Lagrange function in this case.

The variational treatment demonstrates, among
other things, the complete equivalence and the
close connections between the two traditional- ap-
proaches to the mean yields for a given set of
cross-section data —they are adjoints in a very
mell-defined sense. Many features, some of which

where U, W„A., and 8 are variational parameters
and the form of L~ has been surmised on the basis
of the 6-function source term in the defining equa-
tion (2.11). Note that N«(T) and L,(T„T) have two
parameters each. Generally speaking, any un-
known function and its adjoint should contain the
same number of linear parameters. This is nec-
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essary to obtain a consistent set of algebraic equa-
tions for the parameters.

Substituting Eq. (2.17) into Eq. (2.,4) and varying
the para, meters to make N„(T,) stationary, we ob-
tain a set of homogeneous equations. We have
thence

Though seemingly different, the function J is iden-
tical to L, as can be seen below. Multiplying Kq.
(3.2) from the left by L(T„E)and forming the in-
ner product, we have

(L(T, E), Q g(E, T)) =(L(T,E), 6(E —T)).

(2.18)

together with a compatibility condition

f~rodT [QE„o„(T)+Irr,.(T)] ZE„cr„(T,) +Irf, (T,)

f rodT . o;(T) a, (T,)

By the definition of the adjoint operator O~ and by
use of Eq. (2.6), the same quantity can be written
as

Therefore,
(2.19) g(T, T) =L(T„T). (3.3)

This result makes contact with the linear depen-
dence of N;(T, ) at high energies T, that was argued
for by Inokuti, ' who showed that this is true if
Z„E„o„(T)/o&(T) is slowly varying with respect to
T [this is equivalent to Eq. (2.19)] and then W, and
U are linked according to Eq. (2.18). The Inokuti
argument now takes on some added justification as
a variationa, l result.

(6L(T„E),5(E T)) —(Q,'6L(T„E),g(E, T)) = O,

from which the defining equation

Qsg(E, T) = 5(E —T) (3.2)

for the new Lagrange function g(E, T) follows.

III. VARIATIONAL PRINCIPLE FOR THE SPENCER-FANO

EQUATION

In Eqs. (2.15) and (2.16), we considered the pos-
sibility of starting with the L function defined in
Eq. (2.6) and seeking a variational principle for
its inner product with a known function p(T). We
can also seek a variational principle for L itself.
There is considerable merit in doing so because
we will not only find that such a variational prin-
ciple is more suitable for numerical handling but
also, once a variationally accurate Spencer-Fano
function is available, all the yields calculated from
it through Eq. (1.3) will also be automatically vari-
ational results.

Once again, we begin with the expression

L„(T„T)=L, (TO, T)

y(5(TO —E) —Q~~Lr(T, E), gr(E, T))

(3.1)

for a variational estimate L„(T„T),with a trial
function S,(E, T) for its adjoint 2(E, T). We then
take the usual step of equating with zero the first-
order terms in 6L =~ —L, and ~Z = g —Z„and ob-
tain

The Spencer-Fano function is an adjoint of itself.
This makes the variational principle in Eq. (3.1)
particularly suitable for numerical calculations
because any linear parameters in the trial function
will appear quadratically in the second term in Eq.
(3.1), whereas they come in linearly in the first
term and, therefore, on making the expression
stationary with respect to these parameters, one
will always get inhomogeneous equations for them.
There are no complications as there were in ap-
plying the variational principle in Eq. (2.4) with

Eq. (2.17), which led to homogeneous equations
with solutions only when the determinant vanished.
From the point of view of numerical stability,
therefore, a variational principle of the form in

Eq. (3.1) is preferred. As a by-product of deriving
this principle, we have in Eq. (3.2) an alternative
form of the Spencer-Fano equation. Instead of the
original form, Eq. (2.6) with an operation of Q on
the second argument, we now have operations by
Q on the first argument. Physically speaking, Eq.
(3.2) expresses the alternative effects, on the deg-
radation spectrum, of the next collision that an
electron of energy E undergoes. Equation (3.2) is
certainly correct, but is impra. ctical from a point
of view other than the variational principle; the
direct solution of Eq. (3.2) must start from E =E,
and ascend in E, but one does not know the solution
at E=F-, in advance. By the same token, it is per-
fectly correct to write the Fowler equation (2.2) in
the form

Q~(T) =p(T), (3.4)

but the direct solution must start at high T values,
for which one generally does not know the solution.
Thus we now see that ~ and ~~ are two alterna-
tive modes of description of the same physical ef-
fect and that one may use either of the two modes
to formulate the mathematics. This connection is
similar to adjoint functions in transport theories
for y rays" and for, neutrons. ""
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IV. STATISTICAL FLUCTUATIONS IN THE YIELD
AND THE FANO FACTOR

The px'ecise history of individual electrons de-
grading in a medium is stochastic, and so is the
yield of any initial species. If one repeatedly
measures the number of ions, for example, cre-
ated by the complete slowing down of a single elec-
tron of initial kinetic energy T in the same med-
ium, measured values will show a statistical dis-
tribution. It is the mean of this distribution, that is
given as the solution N, (T) of the Fowler equation.
The distribution and its characteristics such as
the variance are important in radiation physics
and dosimetry.

A. Ionization yie1d

Let P(T,j ) be the probability that an electron of
energy T produces exactly j ion pairs upon com-
plete degradation, and consider the simplest med-
ium consisting of moleeules having a single ioniza-
tion threshold I and characterized by the probabi-
ities p„(T), p,.(T), and q(T, E)dE as in Sec. I.
Then, P(T,j ) obeys the difference-integral equa-
tion"

P(T, I) = g P„(r)P(r E„,q)

P(T,j)=5~o for T&I, (4.2)

which means that no ions ean be generated by an
electron of kinetic energy less than I.

It is possible to formulate a variational principle
for P(T,j) itself, as we indeed do in Sec. V. How-
ever, we consider here the moment

where the second integral term is zero for j=0.
Each term on the right-hand side represents alter-
native contributions to P(T, j) depending upon the
nature of an inelastic collision that an electron of
energy T undergoes. If that collision results in
the excitation n, there mill be an electron of en-
ergy T —E„, which will contribute P(T —E„,j ) to
P(T,j). The probability of this event is p„(T).
Summing the combined contributions p„(T)P(T E„)-
over all n, one obtains the first term. If that
collision results in ionization, there mill be an
electron of energy T -E and another with energy
E-I; each of these electrons will generate var-
ious numbers of further ion pairs. The combined
contributions of that ionizing collision and its sub-
sequent ionizations are given by the second term
on the right-hand side; the sum over k and the in-
tegral over E represent all the possible alterna-
tives.

The function P(T,j ) not only obeys Eq. (4.1) but
also is subject to the boundary condition. that

(T+I)/2
+ g f ddq(T, E)P(T E,k)-

k=o I
(4.3)M(r, q) = Pq"p(T, I)

)=0

of p, th order, where p, =0,1, 2, ... . Multiplying
Eq. (4.1) withj" and summing over j, one obtains

(r+I)/2 q)o

(T, p)= PP„(r)M(r —E„,p)+ dEq(rqE) P Pj"P(T —E,k)P(E-I j —k —1).
n k=o

The double summation under the integral can be rewritten as Z,",Z» 0 by use of the index l =j -k —1.
Thus, the double sum is expressed as

(4.4)

Q (0+1+1) P(T —E, k)P(E-l, l)= Q Q Q P ( ) (,) k" "l" P(T —E, k)P(E l, l), —
l"-0 k=O l=O k=O v=O vi=0

where (", ) and („',) are binomial coefficients. Consequently, one obtains the equation

(4.5)
p p (T+I-) / 2

M(T; P) = PP (T)M(T-E P) v g„P„, , f dEq(TE)M(T —E, v —v'), M(E lv')—,
n v=O v'=0 I

for any moment. According to Eq. (4.2), M(T, p,)-
obeys the boundary condition that

M(r, o) = p p„(r)M(r E„,o)

M (T, p, ) = &M 0 for T &I . (4.6)
(r+I)/2

+ dEq T, EM T —E, 0

Thus, the problem of finding M(T, p, ) is now com-
pletely defined.

For p, =0 in particular, one has and

xM(E-I, 0), (4.7)
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M(T, O)=1 for T&I. (4.8)

(T+I) / 2

+ Jt dE q (T, E)M(T —E, 0)

xM(E I, 0)-.

One may equate all the M's on the right-hand side
with unity because of Eq. (4.8) and therefore obtain

(4.9)

M(T, O) =p, (T)+p,. (T) =1 (4.io)

One can solve Eq. (4.7) by ascending in T. In the
initial interval I& 7 &I+E, (where E, is the lowest
excitation threshold energy), for example, one has

M(T, O) =p, (T)M(T E„O)

M(T, 0) =1 for any T. (4.ii)

Equation (4.11) represents the conservation of the
total probability. Thus, we have seen that Eq.
(4.1) is indeed compatible with this basic require-
ment.

Now it is convenient to recast Eq. (4.5) in a
slightly different form by separating two terms
containing the p, th moment in the double summa-
tion, i.e., the terms with v = p, , v' =0 and with
v = p, , v' = p, , and at the same time by using Eq.
(4.11). Namely, we write

for I& T &I+E,. It is straightforward to extend this
process to show that

(T+I)/2
M (T, p ) = Q P „(T)M (T —E„,p ) + dE q (T, E) [M (T -E, p ) + M(E -I, p )]

n I

p (T+I)/2
+ Q Q', , J' dEq(T, E)M(T —E, v —v')M(E I, v'). —

v v' V
(4.12)

ArM(T, p, ) =R(T, p), (4.13)

where the inhomogeneous term R(T, p, ) is given by

(T+I)/ 2

x dEq T, E
I

x M(T —E, v —v') M(E I, v') . —

(4.i4)

For instance, consider M(T, 1). The inhomogen-
eous term reduces to

(T+I)/2
R (T, 1)= dE q (T, E)M(T —E, 0)M(E —I, 0)

I

=p, (T) (4.ls)

by use of Eqs. (2.1) and (4.11), and Eq. (4.13) re-
duces to the Fowler equation (1.1) itself. Further,
the boundary condition [Eq. (4.6)] for M(T, 1) is the
same as that for N, (T). Therefore, M(T, 1) is
nothing but N, (T), as it should be."

where the symbol Z,'Z„', denotes the remainder of
the sum after excluding those two terms. By def-
inition, the remainder contains only those moments
having order smaller than p. . It is important to
observe that the analytical structure of Eq. (4.12)
is in essence identical to that of the Fowler equa-
tion. Thus, by use of.the same operator QT de-
fined by Eq. (2.3), one can simply rewrite Eq.
(4.12) as

M(T„q) =(I.(T„T),R(T, p, )), (4.i6)

a relation which is a generalization of Eq. (2.13).
In the inner-product notation, the repeated var-
iable T is the variable of integration, as in Eq.
(2.13). Notice, more importantly, that Eq. (4.16),

Suppose that we already know M(T, 1), and let
us consider Eq. (4.13) for M(T, 2). The inhomo-
geneous term R(T, 2) is completely calculable from
M(T, 1) and the cross-section data, and is thus a
known function. It is in principle straightforward
to solve Zq. (4.13) for M(T, 2) now; indeed any
algorithm for solving the Fowler equation imme-
diately applies here. Once M(T, 2) is obtained,
one can evaluate the inhomogeneous ter'm R(T, 3)
and then solve Eq. (4.13) once again for M(T, 3).
This process of unravelling M(T, p) as a sequence
in p, may be continued indefinitely. Having thus
determined M(T, p, ) for many integers p, , one can
in principle derive therefrom P(T,j ) by an inverse
Mellin transform or by the use of a moment theo-
ry.

After the long preamble we now turn to the var-
iational treatment, i.e., the theme of the present
paper. It is straightforward to formulate the var-
iational principle for M(T, p, ) for p, =2, 3, 4. . . , in
the same way as we have seen it in Sec. II. It is
evident from Eq. (4.13) that the function adjoint to
M(T, p) for any p is nothing but L(T„T) of Sec. II,
or the product of 9lo„, (T) with the Spencer-
Fano y(T„T) function. Through an argument pre
cisely parallel to that developed in Sec. II, one
arrives at-
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like Eq. (2.13), is an identity rather than a varia-
tional estimate, although it has emerged from a
variational treatment.

To see the significance of Eq. (4.16), let us con-
sider M(T, 2), which determines the variance D(T)
of the number of ions produced, as defined by

D (T) = g [j -M (T, 1)]2P (T,j)
j=0

=M(T, 2) —[M(T, 1)]2, (4.1&)

D(T) =F(T)N, (T) . (4.18)

a concept which was first introduced by Fano" and
has been discussed by Knipp et al. ,"Herring and
Merzbacher, ' van Roosbroek, ' Alkhazov and
Vorob'ev, "and Alkhazov. ' In particular, Pano"
showed that D(T) should be nearly proportional to
N, (T) for T»I on general grounds, and wrote in
effect

The factor F(T), customarily called the Pano fac-
tor, is of the order of magnitude of unity and ap-
proaches a constant value for T»I.

According to Eq. (4.16), one can readily compute
M(T, 2) by quadrature from the knowledge of
L(T„T) and R(T, 1). The explicit form of R(T, 2)
1s

(T+I) / 2

R(T, 2) =2 dEq(T, E)
I
x [M(T E, 1—)M(E -I, 1)

+M(T —E, 1) +M(E I, 1)—]

+p,.(T), (4.19)

according to Eq. (4.14). Now recall Eq. (2.13),
which says that M(TO, 1) =N, (To) is t. he inner prod-
uct of p, (T) a.nd .L{T„T).By combining Eq. (2.13)
with Eqs. (4.16) and (4.19), we now see that M(T, 2)
can be expressed as

M(T, 2) = (I.(T, T,), R(T„2))
(T3+I)/ 2

L T, Tx,2 dEq T„E L T,-E, T, , p, T L E-I, T, , p, T,
I

+(((T —ET ), p(T ))+(I(E—I T )P' (T ))I+pg(T ))' (4.20)

where the symbols T„T„and T, repeated within
each inner product are integration variables. Thus
we now see that M(T, 2) may be evaluated by re-
peated quadratures once L(T„T) is known. It is
also noteworthy that the expression for M(T, 2)
contains terms up to the third order in I, while
the expression [Eq. (2.13)] for M(T, 1)=N, (T) is
linear in L. [In general, a similar expression for
M(T, t(, ) in terms of L can be derived; it contains
terms up to (2t(, + 1)st order in I..]

Thus, continuing the same line of argument, we
arrive at the following conclusion. The knowledge
of L(T„T) enables one to evaluate not only M(T, 1)
=N&(T) and M(T, 2) [or thence D(T)], but all higher
moments M(T, t(, ), p ~ 3 [and thence P(T,j )). In

other words, the knowledge of the Spencer-Fano
function y(T„T) [which is in essence equivalent to
L (T„T)]implies the full knowledge of P(T,j ) in-
troduced by Knipp et aE." The conclusion that the
Spencer-Fano function contains all. information ab-
out statistical fluctuations is new' to the best of our
knowledge.

Finally, it may be added that the equation for
D(T) derived by Knipp et al." also has the same
analytical structure as the Fowler equation, i.e. ,

(T+1)/2
dEq T, E N( T —E +R] E-1'

I

+ 1 —N((T)] . (4.22)

The function adjoint to D(T) is again I (T„T), and
we have

D(T) = (L(T„T),r(T)), (4.23)

D„(~,. ) = D, (TO) — dT Lq(To, T)

through the same argument as before [cf. Eqs.
(2.i3) and (4.16)].

Application of the variationai principle for D(T),
Through an argument similar to that leading to Eq.
(2.4), it is straightforward to write down an ex-
pression for a variational estimate D„(T,) in terms
of trial functions D&(T) and Lt(TO, T), i.e. ,

0 D(T) =r(T), (4.2i) x [grD, (T) r(T)]. (4.24)

where the inhomogeneous term r(T) is different but
derivable from R(T, 2) of Eq. (4.19); it isexpressed

Our application of this expression closely follows
the treatment of Ã, (T) in Eqs. (2.17)-(2.19). A
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choice of the trial functions in Eq. (2.4) may have
been

N(q(T) = T/W, Lq(TO, T) =A5(To —T), (4.25)

which is simpler than Eq. (2.17). This choice in
Eq. (2.4), together with a varying of A and W to
make D„(T,) stationary, leads to

(4.28)
o, (T,)

a simpler version of Eq. (2.18).
A similar choice, with variational parameters

C andB,

to extend the treatment to the yield of any initial
species s, e.g. , a particular excited state of in-
terest.

Let P, (T,j ) be the probability that an electron
causes j molecules to be excited to state s either
directly or through all secondary electrons in the
course of complete degradation. Within the same
premise as in Sec II, P, (T,j ) obeys an equation

P, (T,j ) =p, (T)P,(T —E„j—1)

Dq(T) = CT, L,(T, T ) =B5(TO —T),

in Eq. (4.24) and some algebra lead to

(4.27)

(4.28}
x P, (E I,j —k-) . (4.30)

where W=To/N&(T, ), From Eq„(4.18), the Fano
factor is thereby variationally estimated as

(, Z„E'„o'„(T,)/(r, (T, ) + (W - I)'
(4.29)

This result coincides with Eq. (18) of Ref. 27,
i.e., an expression derived earlier by Fano"
through an ingenious consideration. Note that the
Fano factor involves the second energy moment of
the excitation cross sections, whereas it is the
first moment that enters in O'. Often, when work-
ing with approximate cross sections, one uses sum
rules to ensure the total inelastic-scattering cross
section (i.e. , the zeroth moment) and the stopping
power (i.e., the first moment). Thus it is possible
that the zeroth and first moment are described ad-

quately even though the higher ones may be sub-
stantially in error. This will lead to a good W val-
ue but a poor I" value. This conclusion is a.iso
pertinent to the general observation from numeri-
cal work"'" that the Fano factor is sensitive —in-
deed, far more sensitive than the 8' value —to
cross-section data and to the presence of impurity
molecules. "

P (T,j }=5&0 for T&E, , (4.31)

where E, is the threshold energy for state s.
The moment

This equation can be derived from considerations
similar to those leading to Eq. (4.1). Briefly, each
term on the right-hand side represents alternative
contributions to P, (T,j ), classified according to
the kind of inelastic collisions that an electron of
energy T undergoes. Notice several differences
from Eq. (4.1). First of all, the term representing
the excitation of state s has to be isolated from the
summation over n, and the second argument in

P, (T —E„j —1) isj —1 because the very excitation
process contributes unity to the yield of s. Sec-
ondly, the summation over k in the last term runs
up toj, and the second argument in P, (E —I,j —k)
is j —k, because an. ionization process, represen-
ted by this term, does not contribute to the yield
of s. By contrast, the corresponding summation
in Eq. (4.1) runs up toj —1 and the second argu- .

ment in P, (E —I,j —k - 1) isj —k —1. The function

P, (T,j ) is subject to the boundary condition

B. Yield of initial species other than ions

So far we have discussed the yield of ions and its
statistical fluctuations. We shall now outline how satisfies an equation

(4.32)

( T+I ) /2
dEq TEM T —E p, —vM E-I v,

V-0
(4.33)
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with the condition

M, (T, p) = 6„, for T &E, . (4.34)

It is possible to draw the following conclusions
from Eqs. (4.33) and (4.34). First, the conserva-
tion of total probability, i.e. ,

M, (T, 0) = 1 for any T (4.35)

holds. Second, the moment equation can be re-
cast into the standard Fowler form

ArM (T, p, ) =R,(T, ij,), (4.36)

R, (T, p, )=P,(T)+g "
[M,(T-E„p)

v z

t. {T+I)/2
+ dEq(T, E) M, (T E, lj.-—v)

~1

xM (E —I, p)]. (4.3V)

For ij, = 1 in particular, Eq. (4.36) reduces to the
Fowler equation for N, (T), discussed in Sec.II; in
other words, M, (T, 1) is identical. to N, (T). Third,
the adjoint of any M, (T —E, p) is the now familiar
L(T„T). Finally, we have the identity

M, (TO, ij, ) = (L(TO, T), R, (T, p, )), (4.38)

which enables one to calculate by quadrature
ME(T„p, ) up to arbitrary high ij, , once L(T„T) is
known.

where the inhomogeneous term R,(T, p) is given in
terms of lower moments by

V. VARIATIONAL TREATMENT OF THE STOCHASTIC

YIELD OF IONIZATIONS

In this section we consider the function P(T, j)
defined in Eq. (4.1). This probability function em-
bodies the most detailed information possible con-
cerning the ionization yield, within the premise of
our discussion. A variational principle for it will,
therefore, be the most general result possible for
the yield of ions. All other quantities, such as the
various moments of the probability function, and
the variational principles considered for them in
Sec. IV, will follow by taking appropriate moments.
Solving for P(T,j) either directly from Eq. (4.1) or
through this variational principle or its associated
identity, may be more difficult than solving for
N;(T). Construction of the variational principle for
Eq. (4.1) remains straightforward, however. In
fact, we can anticipate a simplifying aspect. As
we saw in Sec. IV, all moments of P(T,j) obey the
same Fowler-type equation with the same operator
Qr so that L(T„T) in Eq. (2.11) is the universal
adjoint function for all the moments. This implies
that L(T„T) must also be the adjoint function for
the stochastic function P itself. This anticipated
result is verified below by construction of the var-
iational principle for Eq. (4.1), which initially
leads to an apparently more complicated adjoint
function. However; a closer examination reveals
that it is essentially the degradation spectrum.

The nonlinearity of Eq. (4.1) does not complicate
the construction of a variational principle. The
clue to this lies in the feature that our general
prescription calls for defining the operator through
its action on the first-order error (see also, Ap-
pendix B).

We can proceed in the construction of a varia-
tional principle for P(To,j,) from

P (Tj )=P (Tj ) — f dTA (T;&,T&'} P (T&) —pk (T)Pg(T —E„,jI'
I n

f
&(wl)

dT'q(TT')P, (T —T', k)P, (T, —jj—k —1)), ' ,

(5.1)

where A,(T„j„T,j) is a trial solution of the equa-
tion to be obtained for the Lagrange function
A(TO,j„T,j ) and P,(T,j) =P(T,j ) + 5P(T,j ), —where
P,(T,j) is a trial function for the exact P(T,j).
Adopting inn'er-product notation and summing over
repeated indices we have

P„(TO,jo) =P,(To,jo) —(A,(To,jo, T,j) Xrj[P,(T,j)]),
(5 2)

I

where+» is a nonlinear operator defined by

Xrj[P(T,j)]=P(T,j)—g P„(T)P(T—E„)
n

t (T+I)/2
dT'q(T& T')

x P(T —T', k)P(T' - I,j - k —1) .
(5 3)
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Here we enclose the operand with square brackets
to emphasize the nonlinearity of X». %'e note a
difference from the ease of linear operators: If
Eq. (4.1) were linear, then the variational estimate
of Eq. (5.2) would involve only the approximation of
replacing A by A, and discarding the second-order
error 6A5P. In the nonlinear case however, the
variational estimate of (5.2) includes additional
errors of higher order in 5P. These terms of or-
der (5P)' and higher order in 5P are present only
for nonlinear equations.

In order to identify the equation for A(T„j„T,j),
we write the identity

p(T„j,) =p,(T„j,)
—(A(T„j„T,j ), x' ~(P) [5P(T,j))], (5.4)

where x'r&(P) is a new operator that generates the
Fr6chet derivative, '4 i.e.,

&„[P,(T,j)]=&„[P(T,j))+X'„(P)[»(T,j))+ ~ ~ ~

(5.5)

The explicit form of (5.5) is obtained by writing
(5.3) with P, in place of P and displaying all terms
linear in 6P =P, —P. A change of the variables of
integration and summation so that all terms in-
volve 6P with the same argument gives

(T I)/2
5p(T,j) —g p„(T)exp(-E„s )6P(T,j)+ dT&q(T, T —T')5P(T', k)P(T T' —I—j—k.- 1)

n "TI
& (r-s)/2

dT'q(T, T'+I)P(T —T' I,j —k-—1)5P(T', k). (5.6)
0~0

Writing the first two terms as

permits identification of Xr&(P)[5P(T,j)]. Applying the rules for adjointness given in Eq. (2.9), we can
constructX'r~&A(To, j„T,j), which is

TyI

A(T„j„T,j ) —g A(T„j„T,j)p„(T)exp(E„B~)y g dE A(T„j„E,m)q(E, E T)P(E —-T —I, m —j —1)
n m~)41 . 2 +~I

dE A(To,jo, E, m)q(E, T+ I)P(E —T —I, m —j —1) . (5.7)
2~I

The adjoint equation is thus

X~qA(T„j„T,j)=6(T, —T)5)~,

and the variational principle is now comp1.ete.
Equations (5.7) and (5.8) illustrate a general

feature (see Appendix B) of the adjoint function,
namely, that A enters only linearly in the defining
equations even for nonlinear problems. Another
feature illustrated by Eqs. (5.7) and (5.8) is that
the original function P is itself involved in the
equation for A. This does not detract from the
utility of the adj oint function since the var iational
principle requires only a trial approximation A, to
the exact A and only a trial P, is required to obtain
A, . (A note of caution is necessary here since in
some instances it may be inconsistent to replace
P by P, in the adjoint equation. Such difficulties
and their resolution are considered in detail in
Ref. 19.)

For the problem of this paper a further simpli-
fication occurs since closer examination reveals
that P drops out of Eq. (5.8) and A is essentially
the L, function of earlier sections. %e note first
that the solution of Eq. (5.8) obtains by proceeding

stepwise from large values of the second index j
and in this domain (i.e., j )T/I), P(T,j)=0
by conservation of energy. Consequently
A(T„j„T,j) is not defined for sufficiently large j
and can be chosen to be independent of j for j~ jo.
Exercising this option in the choice of A(T„j'„T,j),
we can interchange the order of integration and
summation in Eq. (5.7). Since P& ~, P(E —T,j —k
-1)=1, the summations in Eq. (5.7) collapse leav-
ing the equation with the same form as Eq. (3.2)
for L(T„T). The index jo is a dummy index since
it appears in the same way in every term. Hence
the identification of A with L is justified.

An alternative and perhaps simpler argument
proceeds by observing that construction of the var-
iational principle for P(TO, jo) is possible without
the summation over j of Eq. (5.1), viz. , the La-
grange function A is common to all j, and j. This
circumstance arises from the structure of Eq.
(4.1) for P(T,j). Since the right-hand side of Eq.
(4.1) contains only indices not greater than j, the
equation can be viewed as a recursion relation
which ig linear in the sense that the values of the
unknown P(T,j) occur only linearly.
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Since the adjoint A(T„j„T,j}of P(T„j,) is es-
sentially identical to L,(T„T) in that both j, and j
are dummy indices, the results of this section
again emphasize that L(To, T) is the fundamental
quantity in the entire problem. In fact, the results
of Sec. IV can also be obtained by considering a
variational principle for the moments of P(T,j).

VI. INFLUENCE OF CHANGES IN THE CROSS-SECTION
DATA UPON ELECTRON-DEGRADATION QUANTITIES

are supposed to be known. Suppose that changes
in the cross-section data lead to a new set of col-
lision probabilities

p„(T)=p„' (T) + ep, ' (T)

p((T) =p("(T)+ep"'(T},

q(T, E) =q(o'(T, E)+eq("(T, E),

(6.3)

(6.4)

(6.6)

and thence to new operators

Az = Qz +Qcoz y

(0)

g(0)f + ~tr- r

(6.6)

(6.7}

Our knowledge of the cross-section data is al-
ways imperfect, but is being improved from year
to year by new experiment and theory. Whenever
new information on cross sections reaches us, we
want to find out how the prediction of the initial-
species yields and of the degradation spectra will
be modified in the light of the new information,
hopefully without repeating the entire degradation
calculation again using a new set of cross-section
data

Furthermore, the medium in which electrons
degrade may contain chemical impurities, either
intentionally or inadvertently. We want to find
out how the chemical impurities affect the yields
and the degradation spectra. The presence of
chemical impurities causes additional collision
processes of electrons, and may be regarded as
changes in the cross-section data.

Let us formulate a general theory for answering
the questions raised above, provided the changes
in the cross-section data are sufficiently small.
That is to say, we shall develop a perturbation
theory in the language of neutron-reactor phy-
sics." Suppose that we have already solved the
problem defined by the set of probabilities {p„"'(T),
p,."(T),q'o'(T, E)]. The corresponding Fowler
operator Q~" is given by the same equation as
Eq. (2.3) with all the probabilities now having
superscript (0). The adjoint operator Qro~t is
given in the same form as in Eq. (2.10}.
Thus, the solutions of the unperturbed problem

Q(o)N(o)(T) p(o&(T} (6 1)

Q", "L"'(T„T)= 6(T —T,), (6.2)

where q is a real number introduced for conven-
ience. We shall assume that E~~ and &co~ are
small compared to A~" and A~ 't. However, it is
convenient to say that we regard p as small com-
pared to unity and the solutions N, (T) and L(To, T)
asanalyticfunctions of & in a domain near &=0.
So long as &~ and ~~~ themselves are st, ll, we

may put p = 1 in our final result.
Parenthetically we note that the multiplication

of all the cross-section data by a scale factor
leaves all the probabilities and thence A~ and Qt~

invariant. In other words, the electron degrada-
tion problem is linear so long as it is described
by Qr and Qtr. [The nonlinearity of Eqs. (4.1) and

(4.30) is only superficial, as we saw in Sec. V.]
Physically speaking, the degradation problem is
linear if the density of electrons present in the
medium is negligible compared to the density %
of molecules, so that one need not consider colli-
sions between two electrons or between an elec-
tron and an initial species. When the medium is a
plasma, then these collisions are non-negligible
and the degradation problem becomes nonlinear.
Furthermore, electron collisions with another
electron or any ion are governed by Coulomb
forces and are therefore highly efficient for the
electron slowing down. Indeed, Cravens et al. '
found a strong sensitivity of the ionization yield
upon the original electron density, even when it
was of the order 10-' 5 or smaller.

Let us return to our theme and consider solving

Q~, (T) =p, (T), (6.6)

This is the solution of the new problem correct
to the first order in q. In other words, the inner-
product term is the first-order correction to the
mean yield resulting from changed cross sections.
We may also interpret the quantity p,"'(T) —(orN,"
(T) as an effective probability for the additional
production of species s by an electron of energy T.
When one evaluates this additional production by

where Qr is given by Eq. (6.6) and p, (T}by Eq.
(6.3) and (6.4). The problem is formally the same
as in the beginning' of Sec. IV. We may write the
same expression as Eq. (2.4), and use N"'(T, ) and

L ' (To, T) as trial functions. Then, we have

N„(T,) = N."'(T,)
(L"'(T„T),-Q~("(T) —p, (T)}. (6.9}

Next, we use Eqs. (6.1), (6.3), and (6.6) in the
right-hand side, and obtain

N„(T,) = N,"'(T,)
—.(L"'(T., T), ~,N."'(T)-p,"'(T)}.

(6.10)
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the use of exa,ct L(T„T), then the probability is
certainly p("(T) itself. When one evaluates it by
the use of L"'(T„T), then one should use the
effective probability, modified by the term

(dr-N, o&(T), which represents the reduction due to
competition with all the other processes.

Furthermore, we may use the right-hand side of
Eq. (6.1) as a new trial function for N, (T,), and
again write down the same expression as Eq. (2.4).
Then, we obtain an estimate of N, (T,) correct to
the order q'. In principle, we can repeat this
process to any order in & and obtain better and
better estimates. A similar treatment of L(T„T)
is also possible. This procedure is an example of
supervariational principles in the language of
Ref. 19.

Alternatively, we shall derive the same result by
the use of a perturbation series. Let us rewrite
Eq. (6.8) in the form

N"'(T, ) = (L"'(T„T),~~"'(T)}
= -(L"'(T., T), ~ &"'(T,T'), P.(T'}

—(d, ,N,")(T'))). (6.17)

Symbolically, we may express this result as
N(2) (L(o& L(0) P N(o&} (6.18)

Generally, we may write in this notation

N(u) —
( I)n-)(L(0) L(0) L(0) p N(0))

8

(6.19)

where (,&L
"' appears n —1 times in succession.

Thus the solution of Eq. (6.11) is now complete.
It is also straightforward to extend the analysis to
M(T, &I) of Sec. IV. Results are completely ana-
logous.

Finally, we present an analogous treatment of
L(T„T), i.e., the solution of

(Q(o&+ g(d )N, (T) =p,"'(T)+ ep"'(T)

and set

(6.11)
(Or( "+q cg(r)L(T„T) = 5(T —T,) .

We set

(6.20)

(6.12)N, (T) = Q ~"N,"&(T),

where N,
' '(T) for o, ~ 1 are functions to be deter-

mined. Inserting Eq. (6.12) into Eq. (6.11) and

comparing each term in the same power in q, we
obtain

(6.21)L(TO, T) = Q q "L'~'(To, T)

in Eq. (6.20} and consider each term in the same
power in q. Then we have

g'o&N'»(T) =p'»(T) (0 N("(T) (6.13}
Q(ro "L"'(T„T)= -m'P" "(T„T) (6.22)

0"'N' '(T) = -&u N "(T) (6.14)

for n~ 2.
In Eqs. (6.13) and (6.14) it is the same Fowler

operator 0'ro& (for the unperturbed problem) that
acts on the unknown function at each step of
solution successive in n. As we saw in Sec. II
and IV, we can immediately express the solution
by the use of the adjoint function L"'(T„T). The
result is

N,"'(To) =-(L (To, T), (drN ~ "(T)) (6.16)

for e ~ 2. In other words, we can calculate 1V,
'

(T,) to any c(, by taking an inner product with
L"'(T„T). The logical content of Eq. (6.15} is
identical to our earlier variational result, i.e.,
Eq. (6.10); N,"(T~) &N+,"'(T,) is the same as the
right-hand side of Eq. (6.10).

The analytical structure of N,
' '(To) is easily

recognizable. Combining Eqs. (6.15) and (6.16),
one may write, for instance,

N' (To) = (L (T, T), p '(T) —(d~ '(T)) (6.15)

for z&1.
We now write T' in place of T in this equation

and take inner products of both sides with L"'
(T', T).

(fl(0)'fL((8)(T Tl) L(0)(T g T))
= —((utr, L'~ "(To,T')) L' '(T', T)). (6.23)

The left-hand side is L(~&(T„T), as the following
shows.

(0( )tL(~)(TO, T'), L( &(T', T))

=(L ~&(TO, T'), Ar, &L &(T', T}}
= (L' &(T„T'), 5(T'- T))=L'I'(To, T).

Here use has been made of the adjointness prop-
erty and of Eqs. (3.2) and (3.3). Consequently,
we have

L ~'(To, T) = —((dt L " (TO, T'), L (T', T))
= —(L( '(To, T'), (ur. L( &(T'& T)).

(6.24)

This enables us to write L' '(T„T) successively,
all in terms of L"'(T„T).

First, we have
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L(a) —
( 1)+(L(0) (0L(0) (0L( &) (6.27)

where (dL"' appears z times in succession. Al-
ternatively, I ' ' may be expressed in terms of re-
peated ~~, e.g. ,

L (1) ((dtL (0) L (0))

L(0) ( (0('(gtL (0) L (0) L (0))

L( ) ( I) (~t. ..~tL(o) L(0)) (6.28)

where u&t appears a times and L 0& (o(+ 1) times.
In summary, the knowledge of the Spencer-

Fano degradation spectrum enables one to cal-
culate any yield and other quantities related to
electron degradation in the new problem with mod-
ified cross-section data.

VII. CONCLUDING REMARKS

Throughout the present discussion, we have
tried to elucidate conceptual relations among dif-
ferent formulations and among different aspects
of the electron-degradation problem. We hope that
our discussion will help strengthen the under-
standing of the rich mathematical physics involved
in the problem, i.e., a part of what Weinberg and
Wigner" call the scholarly tradition in neutron-
reactor physics. The tool of our treatment was
the general variational method, ""and the key
notion was the adjoint operator. In fact, the ad-
joint operator has been used in neutron-reactor
physics for a long time, and its power has been
demonstrated also for treating spatial aspects of
the particle-degradation problem. ' "~" In con-
sideration of radiation actions on matter in con-
densed phases, one often finds it important to dis-
cuss the spatial distribution of degrading electrons
and of initial molecular species; this aspect is
commonly referred to as track-structure effects.
The notion of the adjoint operator should play a key
role in the analysis of the track-structure effects.

L "(T0,T) = —(L '(T0, T'), (dr, L' '(T', T)).
(6.25)

Next, we have

L"'(T0,T) = ((L '(T0, T'), (dr, L '(T', T")),
(0r„L(0&(T",T)).

(6.26)

Symbolically, we may express this result as

L (1 ) (L (0 ) 0)L (0 ))

L"'=(L"& L "& ~L('&)

and hence generally as

We hope to explore this surmise in the near future.
It may be useful to comment on different points

of emphasis in our problem and in neutron physics.
We have discussed in detail fluctuations in the
number of initial species (Secs. IV and V). These
fluctuations are important in semiconductor de-
tectors and other real situations in which one
deals with a small number of initial yields. It
seems that an equivalent of the fluctuation problem
for neutrons is seldom discussed in reactor phy-
sics but may be important in neutron dosimetry.

We have pointed out that the degradation spec-
trum y(T0, T) plays the role of a Green' s function.
However, there is a contrast between y(T„T) on
the one hand, and the Green's function that ap-
pears in quantum mechanics, classical potential
theory, and other topics on the other hand. The
Green's function in those standard topics usually
has a singularity in the domain of a variable of
physical interest, for example, the energy in
quantum mechanics and the position in classical
potential theory. By contrast, y(T„T) is smooth
in T and T„except for structure neai T = T, (the
Lewis effect), and it is therefore straightforwar(i
to compute integrals (or inner products) involving
y(T„T). In this. sense, y(T„T) is similar to the
Green's function for the diffusion problem. This
similarity is ne surprise when we recall that the
diffu'sion process is fundamentally the degradation
of particle energy by random collisions.

Finally, the electron degradation in a plasma,
i.e., a medium containing charged particles, is a
nonlinear problem, as we pointed out in Sec. VI.
The use of the adjoint operator in this problem
awaits future study.
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APPENDIX A: INTERCHANGE OF MULTIPLE

INTEGRATION S

A crucial step in constructing the adjoint A~ of
an operator 0 involves transferring the operation
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of 0 on &N in an inner product

(L(T), 06N(T)) (Al)

to an operation of Qt on I . When 0 is a differen-
tial operator, this requires integration by parts,
and, finally (Al) can be cast in the form

(AtL(T), 6N(T)) +boundary terms. (A2)

When A is an integral operator, by contrast, the
required manipulation is interchanging the order
of repeated integrations in (Al). A typical term in

(Al) has the structure

r
b2 o(T)

dT dEI T,E &N E,
by bg

(A3)

where b, and b2 are the two boundaries on the
range of variables, and n(T) is assumed to be
a single-valued function of T. Our aim is to re-
cast (A3) so that the integration over E runs from
b, to 5» the rest of the integrand that multiplies
&N(E) can then be identified with At j(E). The
switching of the integrations is straightforward
if o((T) satisfies

o((b, ) =b„(cb(,) = b, (A4)

dE dTI T,E 6N E,
K)

(A5)

E
((o}
I

b
I

I

I

I

I

I

I

I

E
)(b}
Ibp--
I

I

I

I

I

I

I

I

bI
I

b
T

2

FIG. 1. The domain of repeated integrations in Eq.
(A3). (a) Shows the case in which the interchanging of
the integrations is straightforward. (b) Shows the case
in which extra-boundary terms (represented by the
cross-hatched areas) arise.

In that case, as shown in Fig. 1(a) by the solid
vertical arrow with the attached horizontal wavy
arrow, the integrations in (AS) can be described
in the following terms: at a fixed T, the E values
run from b, up to n(T) along the solid arrow; this
solid arrow itself slides from left to right along
the wavy arrow from T = by to T = b„sweeping
out the diagonally shaded area of integration. The
same region of integration can be described, on the
other hand, by the other set of arrows shown,
where the solid arrow runs, at fixed E, from the
c((T) curve to the boundary T=b, and slides ver-
tically up from E =b, to E=b, Thus, (A. 3) is re-
written as

where n '(E) represents the value of T at some
fixed E such that o. (T}=E.

In a more general situation, where a(T) does
not satisfy Eq. (A4), the following complication
can a,rise. Figure 1(b) shows that, whereas (A3)
covers the diagonally shaded area, (A5) covers,
in addition, the cross-hatched areas. Then, (AS)
cannot be replaced by (A5) without also introduc-
ing these "extra-boundary" terms, which are the
analog now of the terms in (A2) that are more fam-
ili.ar to us for differential operators. In the prob-
lem treated in Sec. II, these extra terms vanish by
virtue of the structure of the integrand. Consider,
for instance, a representative term in Eq. (2.5)
when Eq. (2.7} is substituted into it,

00 (,T-7&/2

dTL(To& T) dE q(T, E+I)6N(E).
0

(A6)

APPENDIX 8: A NOTE ON NONLINEAR OPERATORS

The construction of variational principles for a
function f(x) that obeys a nonlinear equation

-„[f(&)j =0 (B1)

First, the lower limit on the first integral can be
eXtended down to 0, the cross section q being zero
for T (I. The upper limit is effectively terminated
at Tp by virtue of the L function existing only in a
region where T & T, . The above expression has,
therefore, by 0 and b2= T, . N(. contributions from
regions such as the cross-hatched ones in Fig. 1(b)
can arise because L and q ensure that the integrand
vanishes for T(b, and T)b, . As a result, (A6)
can, in fact, be replaced by

40 2gy7

J
dE f dTI(T, T)q(TE+l)ll)q(E,), (Aq)

7 p

In all the applications in the present paper, the
general prescription of replacing (A3) by (A5) is
valid and it is this prescription that has been cap-
suled in Eq. (2.9).

A remark is also in order regarding difference
terms such as the one involving exp(-E„ss) in Eq.
(2.7). In forming the adjoint operator, which in-
volves switching it to act on the L on the left, sim-
ilar manipulations for changing the variables of
integration are necessary, with an attendant change
in the limits of integration. Once again, in gener-
al, this can introduce "extra-boundary" contribu-
tions. Butfor the applications in the present paper,
where L(T„T) is taken to be zero for T (E„
such complications are absent, and the formal
replacement of operators acting to the right by
making them act on the left constitutes the pass-
age from 0 to Qt. Throughout the present paper,
trial functions L,(T„T)are always meant to be
defined only in the physical region, E, (T & T,.
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=-„7 [f]Z(x, x ) =6(x-x ). (84)

Since 2 is introduced linearly in Eq. (82), the
adjoint equation always involves 2 linearly and
although the equation for 2 now involves f, this
does not necessarily detract from its utility in
that a formal solution for 2 in terms off can often
be found.

Let us consider the example

requires first the identification of the operator
whose adjoint one wishes to construct. The pro-
cedure of our general formalism points the way
since we begin by writing

f„(x)=f, (x) —(Z, (x,x'), :"„,[f,(x')]), (82)

with the precaution that 2, of this appendix is not
to be confused with the specific 2 of Sec. III. With

f, -=f+ &f, we then ensure that all terms linear in
5f vanish. Since

=-. [f,(")]==-. [f(")]
+(6="[f]&6f)(f-f)+" (88)

the operator involved is the Frechet (functional)
derivative . [f]. When Eq. (Bl) is linear in f,

is independent off. For nonlinear equations,
however, " ' itself involves f. As the problem
of Sec. V and the following examples illustrate,
this in no way complicates the construction of the
adjoint equation, which is

id'(x„x) + 2f(x)Z(x„x) =0, S(x„x,) =1. (87)

This immediately admits the solution

Z(x„x)=exp(ei f f(x')dx').
xIe 0

(88)

An obvious choice for 2, in Eq. (86) is the right-
hand side of Eq. (88) with f replaced by f, . The
above example arises in mathematical physics for
Hiccati-type equations such as the ones that occur
in the phase-amplitude method" for scattering.
The phase function obeys a first-order nonlinear
equation similar to Eq. (85), whereas the ampli-
tude function obeys a linear equation, but one that
involves the phase function. In fact, the adjoint
function 2 in Eqs. (87) and (88) is just the square
of the amplitude function. "

As another example to illustrate the construction
of the adjoint function for a nonlinear problem,
consider the Lotka-Volterra equations that de-
scribe two znteractzng species":

where f, (x) is chosen so that f, (0) =0. The usual
process of integration by parts leads to the 2 equa-
tion, which we write in a form slightly different
from (84), taking the 6 function into account as a
boundary condition:

i
d

-f'(x) =c', f(0) =0, (85) dN~

dt
' =o(, N, (1-N,/y) P, N, N„—

and suppose we are required to find f(x,). Writing
Eq. (82) explicitly, we have .

XQ

f„(xo)=f, (xo) — dx Z, (xo, x)
0

X i —
4

—C, B6
QX

dN~

dt n, N, + p2N-, N, &

(BS)

where N, and N, are functions of t, and a, p, and

y are constants. This problem is in matrix form
and one can write " '&N as

eA o')(mv) (», O, )(, oe, )e,&x O, ~, )(e)e&
0 1~ t DNA ( p~N, -~, +p2N~) ki5&,1

:"'~I is then, correspondingly

(810)

P, N, )——(I. L) (LL)
&»I

(811)
-c(2+ p, N, j

At this stage, the coefficients n, P, y, and N can be regarded as known and L, is obtained in terms of
them. These examples, and the one considered in Sec. V, illustrate that nonlinear problems can be handled
in our general variational formalism in a straightforward manner.
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