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A formalism is developed for calculation of electron and positron scattering from atoms at low and
intermediate energies in terms of appropriate matrix elements of the off-shell T operator. The technique is
based on an L ? discretization of the full electronic Hamiltonian, initially avoiding all specification of
channels and asymptotic boundary conditions. Scattering information relating to specific initial and final
channels is obtained by taking appropriate off-shell matrix elements, followed by construction of the total
real axis discontinuity of the off-shell elements via moment techniques. The formalism is applied to the
problem of purely elastic e *-H scattering, resulting in converged total cross sections and angular

distributions below the pickup threshold.

1. INTRODUCTION

The theory of positron-hydrogen scattering has
been studied for many years. Massey and Mohr!
first emphasized the importance of positron inter-
actions in gases and applied various approxima-
tions of collision theory to the simplest case of
positron-hydrogen-atom scattering. Since non-
relativistic positron-hydrogen scattering is essen-
tially a two-body problem, it would seem reason-
able that with the use of computers the problem
should now be completely solved. However, accu-
- rate results have been obtained only for e*-H elas-
tic phase shifts for a few partial waves and for the
s-wave elastic amplitude up to 30 eV. 1t is the
purpose of this paper to develop a computational
formalism suitable for calculation of partial-wave-
scattering amplitudes at low and intermediate
energies; that is, over the purely elastic region,
and at energies above the impact-ionization thresh-
old, where elastic and inelastic positron scatter-
ing, positronium pick-up, as well as impact ioni-
zation can occur. In the present paper we develop
the necessary formalism for such calculations,
and apply it to calculate accurate differential and
total cross sections in the energy region below
the first inelastic threshold, the pick-up threshold
at a positron energy of 0.25 a.u. (~6.8 eV). The
following paper (Ref. 2) extends the results into
the intermediate-energy regime where there is a
continuum of open channels. Finding a workable
formalism for use in the intermediate-energy
region proved to be quite difficult, as is thoroughly
documented in Ref. 3. Thus, while methods such
as the use of optical potentials,* close coupling,®
adiabatic approximations and polarized orbitals,®
single-channel variational methods,” T -matrix
continuation,® Fredholm analytic continuation,®

and T-matrix extrapolation’ are all viable candi-
dates for calculations of elastic phase shifts, none
of these proved suitable for calculations in the
intermediate-energy region, below energies where
the Glauber, or Born'? cross sections might be
expected to be reliable. The failure® of methods
(such as those of Refs. 8-10) which might be ex- -
pected to be effective above the impact-ionization
threshold led to development of a moment T-ma-
trix method which combines the basic ideas of
Refs. 8-10 in that the detailed specification of
boundary conditions is avoided through use of L?
expansion functions and a subsequent discretiza-
tion of the full Green’s operator (z —H)™, but uses
moment techniques, 3** rather than analytic con-
tinuation®*® or extrapolation,’ to extract the re-
quired amplitudes.

Rather than reviewing the standard techniques
for calculation of e*-H elastic phase shifts, a no-
toriously difficult computational problem, we refer
the reader to Refs. 4-10 and to reviews."

The plan of the paper is as follows: In Sec. II
we review the T -matrix methods of Schlessinger
and Schwartz® and Doolen ¢! al.,'® and, in particu-
lar, present new numerical results illustrating
the difficulties of the T-matrix extrapolation meth-
od. In Sec. III we present an extension of the T'-
matrix techniques introducing the use of moments
to extract Im[T(E +i €)] followed by calculation of
Re[T (E+i€)] by a dispersion technique. The
Stieltjes method developed by Langhoff and co-
workers'* for extracting continuum information
from a finite set of moments is discussed, as is
the derivative rule (see Appendix A) method of
Heller'® and Broad.!” A peculiarity of the e*-H
problem is that the Stieltjes method is unsuitable
for numerical work, as is discussed in Sec. IV,
where numerical results for purely elastic e*-H
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scattering at energies below the pick-up threshold
are presented. Finally, ‘a brief summary is given
in Sec. V.

i

Ii. TMATRIX METHODS

The elastic-scattering amplitude f (k) may be de-
termined as

fB)= =@CNT,(E+i€)| grz/ss (2.1)

where T, (E +i €) is the elastic, diagonal, off-shell
matrix element!®

Tk(E+ie)=£i_r>r(1)(k'IT(E+z'e)lk), (2.2)
where E is, in general, independent of 2, and

T(2)=V+VG°=2)T(2) (2.32)

=V+VGR)V (2.3b)

is the T operator. In Eq. (2.32) G°(z)=( - H9™!

is the unperturbed Green’ s operator and G(z) is
the full Green’s operator (z —H)™!, where H=H,+V,
V being the scattering potential. Additionally,
H°|E) =k?/2|R), | k) being the unperturbed scatter-
ing state. The analytic structure of the off-shell
T-matrix element T, (2) as a function of the com-
plex energy z for fixed % is determined by the
analytic properties of G(z) and schematically in-
dicated in Fig. 1 for the e*-H problem. We note

in passing that the analytic properties of the ampli-
tude f (k=V2E) can be considerably more compli-
cated.’ Schlessinger and Schwartz® noted that -
T, (E) (E real) could be easily computed for E<E,
E being the lowest bound state of H, using the Kohn
principle which is, in this case, equivalent to

ELASTIC SCATTERING THRESHOLD
POSITRONIUM “PICK-UP" THRESHOLD

Im2z
THRESHOLD FOR n=2 EXCITATION
IMPACT IONIZATION THRESHOLD
........... Re z
(o] I 1 |
0.25 0.375 0.5

FIG. 1. Cut structure for the off-shell T-matrix for
the case of ¢*—H scattering. The analytic structure of
this off-shell amplitude is determined by that of the re-
solvent {(z—H)), which, in this case, has only cuts as
there are no bound states of the composite three-body
system. Thresholds (branch points) are at the ground
and excited states of the possible bound two-particle
subsystems (e"-H*) and (e*-e”). For convenience we
have chosen the zero of energy to correspond to the
ground state of the H atom with a zero kinetic energy
positron. An unusual feature of the ¢*-H (1s) system is
that the lowest inelastic threshold corresponds to the re-
arrangement (pick-up) ¢ +H (Is)—H* + P (Is), where
P (Ls) is the ground state of positronium,

writing

T(E)=V+V[1/(E—I7)]V,’ ‘ (2.4)
where H is a matrix representation of H in a finite
subset of a complex discrete set of L2 basis func-

tions. Equation (2.4) may be rewritten as a matrix
spectral resolution

7 (2) = VgLV

TR =V+) —'7F (2.5)
in terms of the matrix eigenvalue E Land |%):

H|%) =B|x)i =1, ,N, (2.6)

N being the dimensionality of the matrix represen-
tation. The representation of Eq. (2.5) is clearly
not valid at scattering energies, as matrix ele-
ments of V(E —H)~'V are real even where H has a
continuous spectrum—that is, the discretized
Green’s function (E ~ H)™! does not have the cuts
of (E —H)™' itself. However, Schlessinger and
Schwartz® were able to take values of {&|T (E)|k)
from the negative real energy axis and to analyti-
cally continue them to the positive axis in the ap-
propriate E +i € limit via a simple square root
uniformization and numerical rational fraction
analytic continuation. McDonald and Nuttall?®® and .
Doolen et al.,'° again using a version of the Kohn
principle, in effect noted that a possibly better
procedure would be to calculate

T@)=V+V[1/(z -H)]V 2.7

at complex energies close to desired scattering
energy, but far enough from the real axis to avoid
the spurious poles of (z —H)~!. They thus com-
puted an “extrapolated” T-matrix element as

E|TE+ie)| B=lim’ kT [z=3 (k+iq)?] | %),

(2.8)

where lim’ implies that only values o£ g large
enough to avoid spurious behavior of T (z) are in-
cluded as input to the numerical limiting proce-

" dure. Typical extrapolation input data for the

e*-H case are shown in Fig. 2 of Ref. 10, where
it is clear that the method is subject to computa-
tional noise, due to the convenient, but unfortu-
nately approximate L? discretization of H. The
power of the Schlessinger-Nuttall idea lies in the
fact that, for multiparticle problems, amplitudes
(presumably both elastic and inelastic) may be
calculated above the breakup threshold, without
detailed specification of channels and their cor-
responding boundary conditions, at least as long
as one stays away from thresholds. Schlessinger
was unable to calculate amplitudes above the
breakup threshold for e™-H scattering because of
numerical instabilities in the rational fraction
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FIG, 2. Extrapolated T-matrix results for e*-H(ls) f-
wave scattering for =14 a,u. The f-wave amplitude is
quite small when compared to the extrapolation error in
both Ret and Im¢, The moment method was also rela-
tively poorly behaved for this partial wave; however, as
shown in Table III, sensible results may be obtained.

continuation although these may have been avoided
by the use of more sophisticated uniformization
techniques.?! Doolen ef al.'° have successfully
applied the extrapolation techniques to compute
the s-wave elastic amplitude for e*-H scattering
below and above the impact-ionization (breakup)
thresholds. However, to obtain total and differen-
tial e* -H cross sections one needs a large number
of partial waves, and, as the numerical values of
real and imaginary higher partial-wave amplitudes
become quite small, the errors introduced by the
extrapolation rapidly become larger than the am-
plitudes themselves. This is illustrated in Fig. 2
reproduced from Ref. 3, where an attempt was
made to calculate the elastic e*-H f -wave ampli-
tude by T -matrix extrapolation.

III. MOMENT 7-MATRIX METHOD

In this section we introduce moment techniques
which allow direct calculation of the discontinuity
of the off shell (z# k?/2) T-matrix element, T, (z)
=(k|T()|k), across the cuts on the real axis
(see Fig. 1). Knowledge of this discontinuity,
which is proportional to Im7, (E +¢ €) allows con-
struction of ReT, (E +i €) via a dispersion (Hilbert
transform) relationship between the real and ima-
ginary parts of T, (E +7 €). ' Direct construction of
the discontinuity avoids the continuation and extra-
polation procedures of Sec. II, and appears to be

numerically more stable. It suffers from the
same disadvantage as the off-shell methods of Sec.
II in that the calculation of ImT, (E +¢ €) and subse-
quent calculation of ReT, (E + €) must be begun
anew for each value of k.

A. Calculation of Im Tk (E +ie)

Writing of the spectral resolution of the multi~
channel Green’s function (z — H)™! in the condensed
form

1 f""lx(E»(x(E)l
z-H J; z-E

(7 XENKXE)
=; J;glresh : z-E dE (3'1)

o

where a denotes a channel, we have

T, @)= (k| V| k) J <k|leE’><x(E' VIR o

El
(3.2)

which may be rewritten in terms of the positive
real density

P (E) = [(R|V | x(E) |? (3.3)
as

1,6)=CklV 8 - B ECE 6.9

or, in the E +7 € limit

T, (E +i€) = <k|Vlk)+Pf P—&E——)EdT—E —u7p, (E) .

(3.5)
Thus ImT, (E +i €)= -7p, (E), as the partial-wave
Born term (k| V | k) is real. The discontinuity
T.(E+i€)-T,(E~ie€)is thus —247p,(E), and
knowledge of the discontinuity [i.e., p, (E)| as a
function of E (for fixed k) allows construction of
ReT,(E +i€) as

m&(_EI)LEl (3.6)

ReT,(E +i€)=(k|V |k)+P oy

Comparison of an approximate T,z (;)
=(k|T(z)|k) [see Eq. (2.5)] with T, (z) of Eq. (3.4)
gives

pk (E dE P(E)) (3.7)
0 z-E’ .
where
B (E)) =l RV %) 17, (3.8)
illustrating the fact that we can interpret
(Rl V[1/(z -H) V|E) 3.9

as a quadrature approximation® to
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(B|V[1/(z -H)| V| E) (3.10)

itself, with weight w; and abscissas E‘,, in the
sense that we interpret

ph(E)dE “’cP(E) p(E)
E -E, Z (3.11)
and thus-
p(E)=D(E,)/ w,. (3.12)

Equation (3.12) implies that if we know the quadra-
ture weight w;, associated with the particular dis-
cretization used to convert H to H, we can com-
pute p(E,) at the points E, (which usually cover
enough of the real axis to make interpolation pos-
sible) and thus the discontinuity of T,(z) across
the real axis. However, for an arbitrary basis
the w; are not know a priori. However, the fact
that a quadrature is implicit in the discretization
allows extraction of moments of the positive defi-
nite distribution p, (E):

0,= J.E"‘pk (E)dE%Z: w; E""p,, (E,)
i

=Y E;" (E)) (3.13)
i
allowing computation of approximate moments
from the P, (E;), which are known. In an actual
calculation a finite number of these moments will
converge (usually the lower-order ones first) as
a function of the basis set and represent a .
smoothing of the discretized distribution p P (E )
t=1,..,N. This may seem like meager progress
but, as seen in Secs. III B and III C, sensible ap-
proximations to p, (E)[ and thus Im T, (E +¢ €)] can
be systematically extracted from these converged
moments.

B. Stieltjes extraction of Im T, (E +ie)

The approximate moments

G, (k) =ZE;"5,,(E,) (3.14)
i

calculated from the discretized distribution j, (]:Z‘,)
may be inverted by the Stieltjes imaging procedure
developed by Langhoff and co-workers.!* The con-
verged moments G,(R)(n=1,+++, M, M<<N) approx-
imate the moments

v, :f E~"p, (E)dE (3.15)

(4]

of a positive definite distribution p, (E). Using
standard Gaussian quadrature ideas we see that

the moments yield quadrature points (€?) weights
(w?) m=1,+++,M/2) for Gaussian integration over

-H SCATTERING. I. ... 913

py(€) as a weight function
o M/2
[ on®rs @aE=Y wireh), (3.16)
o nel
where the integration is exact if f (E) is a poly-
nomial (in E7!) of order M+ 1. In particular, we
have the exact result

Pr(E)dE =" wP | (3.17)
[ o I
suggesting that
€ nx
pgumu} (€) Ef s (E) dE =E w": s (3.18)
0 n=1

where n* is chosen such that €fx <e€< €4, ,. This
provides a histogram representatxon of the cumu-
lative weight function p™™!(€), which may be inter-
polated to give pi*™(e) as a smooth function of €,
p, (E) itself being obtained as

(3.19)

Pr (E) = _p umul(e)

This has proved to be a highly successful inversion
procedure in numerous applications.

One might ask why the moment extraction step
is necessary, as one might feel that

i* -
pgemul (¢) = Z Pa(EY), (3.20)

where i* is chosen such that €;4 < € <€y, Would
give a suitable approximation to p”‘"““1 (€). The dif-
ficulty is that the distribution p,(E ,) resulting from
an arbitrary discretization is not smooth enough
to allow the unambiguous interpolation of pg*™!
which is needed to perform the differentiation
needed to construct p,(E), via Eq. (3.19). Taking

.a small (M <N) number of moments smooths the

primitive distribution Pn(E ) to allow extraction of
an approximation to p,(E). In the e*-H problem the
above Stieltjes approximation was not always re-
liable, as p$"™!(¢) varied by several orders of
magnitude over a very small range of energies
(often in between two of the E,), making interpola-
tion of the histogram approximation ambiguous, and
suggesting that an alternative extraction procedure
was needed.

C. Derivative rule extraction of Im T, (E +ie) -

An alternative technique'®!” for extraction of an
approximation to p,(E) from the approximate mo-
ments 0, (e=1,...,M,M < N) utilizes the fact that
if €; and « are, respectively, the Gauss quad-
rature abscissas and weights for integration with
weight function p, smooth interpolation of the €/
as a function of n, gives (see Appendix A)
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Wn

= —B= 3.21
o P (3.21)
defining the “equivalent quadrature” weight wg?,
which is the quadrature weight divided by the
weight function. Thus an approximation to p,(€)

at energy € is given by

weq——€g

ak

p

Wy
eq

Wy

- ppled) = wh %e" (3.22)

¢=n
as the w? as well as the €, are directly determined
from the moments. Extraction of p,(€)) via this
method requires, as does the Stieltjes imaging
process, a numerical interpolation followed by a
numerical differentiation. If the €’ are regularly.
spaced, and if the w) are not too rapidly varying,
both methods give comparable results. However,
if, asis the case for e*~-H scattering, the wj are
very strong functions of #, while the €/, are rela-
tively smooth functions of n, the derivative tech-
nique offers a reasonable approximation scheme,
whereas the Stieltjes method fails totally.

D. Construction of Re Tk (E +ie)

ReT,(E +i€) is constructed via a quadrature ap-
proximation to the dispersion representation of Eq.
(3.8),

ReT,(E +i¢€) =(k(V|‘k)

2 (RIVIXE N XE)V IR

+P 5B dE’
0
E
—<k]V|k)+Pf —%. (3.23)

The positive density p,(E) is available from the
Stieltjes and/or derivative rule at the points €°,
and is numerically interpolated as a function of E.
The principal valued integral is then carried out
at energy E by adding and subtracting p,(E) in the
integrand (dispersion correction®):

= [py(E") = py(E)] dE’

ReT,(E +i€) T

=(kIV’k>+

+ P E)Pf E E' . (3~24)

As the first integral in Eq. (3.24) is no longer
singular at E = E’ [provided that p,(€) satisfies

an appropriate Lipshiftz condition?®] we can per-
form a numerical quadrature. It is particularly
convenient to use the quadrature weight and abscis-
sas determined from the moments of p,(E) itself,
namely, the (v, €?), and the equivalent quadrature
weights w;?, as determined in Sec. IIIC. Thus

M o
- ReTy(E +i€)={k|V|k) +Z Eciue"

eq
Wy
>
E-¢

(3.25)

In Eq. (3.25) the integral P [, dE’ (E - E')* di-

verges, unless a high energy cutoff is imposed.
However, the quadrature itself imposes such a

cutoff which we denote as E™*. E™Z may be de-
termined by enforcing the condition

+pk Pj; E - E'_

n=1

/‘Emax dE’ J wf, (3.26)
0

E+E E+€:'

nal

This choice of E™** gave excellent results when
applied to model problems® and, as will be seen

in the following section excellent agreement with
previous e'-H amplitudes, in the cases where com-
parison is possible. The final working approxi-
mation for ReT,(E +i€) is thus

M

o

ReT,,(E+ie):(k|V|k)+Z i
_Eﬂ
M
max dE' w:‘l
*pkE)Pf “E T "Z;E—e,",
(3.27)

with E™* determined from Eq. (3.26). As we are
working with an off-shell amplitude Eq. (3.27) only
approximates ReT,(E +i€) for'® E = 3k? implying
that the determination of moments and subsequent
extraction of {w,,, €f,} and w;* must be entirely re-
done as a function of k. This is a disappointingly
tedious procedure, but apparently a necessity, as
totally off-shell methods, such as the Fredholm
method,’ which attempt to calculate the amplitudes
at all energies from a single major step, failed
when applied to the e*-H problem.* We do note,
however, that the construction of the eigenvectors
[x ;) need only be performed once for each
choxce of basis, as the diagonalization of H is in-
dependent of k.

IV. CALCULATIONAL METHODS

In Sec. IV A (and Appendix B) we briefly review
calculational matrix elements of H, and determina-
tion of the eigenvalues and eigenvectors. Section
IV B contains an outline of the moment and inter-
polatory methods used to extract ImT,(E +i¢€), fol-
lowed by two examples in Sec. IVC.

A. Matrix elements and matrix manipulations
The two-particle fixed nucleus Hamiltonian
vz V2 1 1 1

He-—b_ 22— _ .=,

2 2 s 71 'r_z’ (4.1)



where 1=¢", 2=¢*, and 7,,=|T, - T,|, was dis-
cretized in the nonorthogonal Hylleraas basis®
. id i -
@ (T, T,) = v1752r 52 exp(-ar, — Br,) YlllzL(Qu 2,),
4.2)

where for states of parity (-1)%,1, +1,=L.* Cal-

culation of {¢,|H|$,) and (¢, |¢,) proceed as in Ref.

24, re_sultin~g in a secular problem of the form

(H - SE )X;(E,) =0 for each choice of nonlinear pa-
rameters @, B and for each total angular momen-
tum L. In order to build up the static exchange cut
in (z —H)™ o was fixed at its hydrogenic value
(a=1) and a large number of functions of the type
n,=0, n,,=0, and n,=0-~N were included for val-

18 MOMENT T-MATRIX APPROACH TO e*-H SCATTERING. I. ... 915

sizes and values of B8 to check convergence. Due to
the large number of functions containing high pow-
ers of 732 serious numerical problems arose in
solution of the secular problem. The Givens®
technique proved unstable, and the QZ algorithm?®®
for solution of the generalized eigenproblem AX
=ABx was finally chosen as a compromise between
speed, storage, and accuracy.

Construction of the matrix elements

E|V|RY =y kry)d (0r) | +1/7, = 1/7y,|

ues of N ranging up to 13 and 14.2® Polarization
and correlation were then included by systematic
inclusion of larger values of »n; and n,,. Calcula-
tions were carried out over a range of basis set

X (k75)d (7)) (4.3)
and
R|VI0)=CGikr)dy(r)) | +1/7,=1/7,,
X ¢ (1), T,), (4.4)

¢,5(7,) being the hydrogenic ground-state wave

TABLE I. The matrix eigenvalues E; and the B, (17:1.) for s-wave scattering at #=1.1 a.u. A 105-term Hylleraas basis
with @ =1.0, B =0.8 was used to discretize H. Energy is in rydbergs.

E.

i E; Pr(E;) i E; Py (Ey) i i Pr (E;
1 0.017637 2.888 936 (—04) 36 2.583 566 1.074 242(~02) 71 6.516462 6.438 273(-03)
2 0.079157 9.657 560 (—04) 37 2.603 927 1.805 086 (—=04) 72 6.634 387 5.438 393(-02)
3 0.206 514 2.292 725(-03) 38 2.752 572 1.293 384 (-05) 73 7.027669 1.356 834(—04)
4 0.448 177 4.346 923(-03) 39 2.798 047 2.064499(-02) 74 7.122306 6.944 094 (-05)
5 0.577953 1.186 408(-04) 40 2.861386 4.767174(-03) 75 7.278 887 7.223 282(-02)
6 0.827163 3.143 996 (-04) 41 2.910 715 1.537421(-02) 76 7.575 754 6.302850(~02)
7 0.866 161 2.494 854 (-06) 42 3.072036 7.221960(=03) 7 7.652638 1.575537(=01)
8 0.901803 1.845345(—04) 43 3.139464 1.798 908(-02) 78 8.093373 2.833812(-02)
9 0.921259 9.024 511(-03) 44 3.221670 4.980644(-02) 79 8.368 530 1.632 732(-05)
10 1.039175 . 4.359469(-04). 45 3.323630 6.221150(=02) 80 8.593 575 1.172897(-01)
11 1.085255 1.356 574 (-03) 46 3.341645 1.242994(-02) 81 8.798668 1.233493(=03)
12 1.150 753 1.148011{-086) 47 3.405344 3.437028(-03) 82 9.522294 1.462 771(-03)
13 1.225179 6.957470(-05) 48 3.557933 9.070 760(-03) 83 - 9.904670 3.318 883(=05)
14 1.287269 1.099 137(-04) 49 3.628 728 5.156 720(-02) 84 10.152635 1.888 226 (—04)
15 1.364 500 3.153834(-04) 50 3.690 376 1.563880(-02) 85 10.922446 4.469131(-05)
16 1.385889 . 2.711576(~05) 51 3.780694 3.099930(-02) 86 11.060 756 1.491890(-05)
17 1.504 550 1.220 458 (-04) 52 3.874 548 5.514 746 (-03) 87 11.976 649 8.112 760(-03)
18 1.544673 1.220 440(~04) 53 3.970 333 7.214416(-03) 88 12.347 1758 3.827408(-03)
19 1.561114 1.042694(-08) 54 4.1371761 4.385912(-03) 89 13.360 139 2.041041(=04)
20 1.595976 6.357828(-04) 55 4.261560 6.134475(-03) 90 14.177703 1.654 196 (—02)
21 1.631269 2.700 966 (—=05) 56 4.331396 1.931241(-04) 91 14.964 962 6.746 771(-03)
22 1.714 108 4.193637(-04) 57 4.496 710 7.700816 (—04) 92 15.115440 1.385 386 (—04)
23 1.811686 1.464 138(-03) 58 4.634 734 1.345 384(-03) 93 15.501294 9.219 767(-06)
24 1.885 752 3.559485(-04) 59 4.773 744 1.529399(-02) 94 16.872495 2.484 770(-02)
25 1.939691 2.220 712(-03) 60 4.976 983 2.010815(-05) 95  17.100 950 8.952668(—04)
26 1.986 838 1.637859(-02) 61 5.015437 1.912408(-05) 96 19.201838 8.278 173(-05)
27 2.011373 1.056 815(-02) 62 5.156 052 8.075326 (—03) 97 19.630367 1.07981%7(-03)
28 2.039163 2.679216(-03) 63 5.29779%4 1.728 911(-02) 98 19.823 224 1.097637(=01)
29 2.168267 4.278626(-03) 64 5.567 123 6.601771(-03) 99  21.098758 6.061541(-02)
30 2.218 557 1.015699(-03) 65 5.685498 2.801195(=03) 100 21.945342 3.306 382(—02)
31 2.275752 7.532180(-04) 66 5.838 943 1.186 487(-02) 101 24.743037 1.919841(-01)
32 2.322621 4.270 564 (-03) 67 5.992 070 6.371418(-03) 102 25.273525 5.635870(—02)
33 2.396 869 6.703 789(-03) 68 6.115129 2.569081(-02) 103 25.951542 6.825042(~05)
34 2.441982 8.182292(-04) 69 6.234 478 4.984 251(-02) 104  31.031432 1.068 242(-01)
35 2.882810(=~05) 70 6.274614 7.601954(-02) 105 37.861714 3.043076(-01)

2.533051
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TABLE II. Quadrature abscissas (6’2), weights (w’:),
and equivalent quadrature weights w3 obtained from
16 moments of the raw distribution of Ei and 513(E~i)
shown in Table I for two different values of the mapping
parameter S 2 [see text] . The weights and abscissas are
now smoothly varying functions of i allowing extraction
of p (E)via the derivative rule [Eq. (3.22)].

2

i 3 ‘ wg w§s =—PT(2EJ;T
$2=0.8

1 0.0277 5.2648(-04) 4.7185(=02)

2 0.1318 1.8525(—03) 1.6788(-01)

3 0.3529 4.2239(-03) 2.9485(—01)

4. 0.8483 1.1617(=02) 8.2245(-01)

5 2.1891 1.0279(-01) 1.6681

6 3.8884 4.2076(=01) 2.1381

7 8.3155 6.9347(-01) 8.6686

8 29.8703 8.2342(-01) 4.,1725(+01)
§2=0.5

1 0.0186 3.1080 (=04} 3.0721(~02)

2 0.0849 1.0695(=03) 1.0620(-01)

3 0.2270 2.6631(=03) 1.9321(=01)

4 0.5304 6.0449(~03) 4.4579(-01)

5 1.2486 2.2155(=02) - 1.1257

6 3.0593 3.5163(=01) 2.4792

7 7.1377 7.8938(—01) 7.7583

8 28.4302 8.8541(-01) 4.3487(+01)

function, which are needed in construction of ap-
proximations to T,(z), is outlined in Appendix B.

B. Moment-extraction techniques

Finding a reliable technique for extracting scat-
tering information from the moments 5, of the raw
distribution p,(E;) proved to be difficult. The ener-
gy interval (0, ©) was mapped onto (-1, +1) via the
transformation x = (E —S2)/(E +S2), where S2 is a
variable in the interval (0, ). Changing S2 weights
differing parts of the interval, rather than the low-
energy region sampled most strongly by the raw
inverse power moments.5,. The moment problem
was solved in x space (as a function of S2) via the
generalized technique of Sack and Donovan,?® and
the resulting x-space quadrature points and weight
mapped back to the interval (0, «) to yield the €,
and «}. Changing S2 gives different sets of €} and
wh which yielded different approximations to
ImT,(E +i€) at the different energies €}. Varia-
tion of S2 thus allows ImT,(E +i€) to be obtained
at a large number of energies €}, from a calcula-
tion in a single basis. The €4 from a single value
of S2 turned out to range over energies from 0.1
to 3 Ry (except for the s-wave case where the

5
105S k=1.1 B=0.8 S2:0.5 :
X INPUT POINTS
.ee- LOG SPLINE FIT :
4 -
76F k=14 B=0.6 S2:030 '
® INPUT POINTS :
-— LOG SPLINE FIT
3 X 2
N !
— N
W
- /
x /
N 4
2 fd -
R
‘7
X
/.
N /- i
/7 .'.
/X
/‘-"
-7 x
g.—.-’-g" BN B
0 I 2 3 4 5 6 7
3

FIG. 3. Interpolation of the quadrature abscissas (ob-
tained from the moment analysis) which are needed to
compute the equivalent quadrature weights wga. The
dotted line shows an interpolation for the s-wave ampli-
tude, resulting in the values of Im¢ shown in Fig, 4.

In this case the interpolation is satisfactory. The dashed
line shows a similar interpolation of f-wave quadrature
abscissas: points as £=2, 3, 4, 5 do not interpolate
“smoothly” (i, e., there seems to be inflection points in
the interpolated curve) leading to the scatter in Im¢
shown in Fig, 5.

105S k= 1.1
0.2} °
® 3:=09 x
. Olo} ©B=08 °
x B:07
> A (Y
5 0.08}
P e""
© 006} &
<
s S OB, 4T
- 0.048“)
002} €
)
1 P I
0 05 1.0 1.5 2.0

POSITRON ENERGY (Ry)

FIG. 4. Imt,(E +ie) for a range of E for three differ-
ent values of the nonlinear parameter g for a value of
k=1,1 a,u. Results for many different mappings (values
of $2) are shown, Im #,(E+i¢) is reasonably well con-
verged.
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FIG. 5. Im¢,(E +ie) as a function of E for several val-
ues of the nonlinear parameter g, for k=1.4 (a.u.).™
This was a worst case in terms of convergence with re-
spect to basis size g and mapping parameter S2, and in-
dicates that Im ¢, [E, +ie= (#%/2) +i€] is probably only de-
termined to about 15%—20%. See Table III for a numer-
ical summary of calculation of the f-wave cross section,

highest €} were about 8 and 30 Ry), the necessary
interpolation to obtain the derivative equivalent
weights w [Eq. (3.21)] was unstable because of
this large range of magnitudes, thus interpolation
was performed via spline interpolation of the
In(€%), the smooth functions i=1,..., M.

C. Examples

To give a feeling for the quality of data obtained
from the moment T-matrix method, we give some
illustrative results for a good case (s-wave scat-
tering) and for a particularly bad case (f -wave
scattering).

1. s-wave amplitude

Table I gives the raw E, and j,(E;) obtained
from a calculation involving 105 Hylleraas L=0
basis for k=1.1a.u,, @=1.0, B=0.8. Inspection
of the p,(E;) shows a roughness which must be

TO e*-H SCATTERING. I. ... 917

smoothed to obtain sensible approximation to p,(E)
itself. The €} and w} obtained from the moment
analysis are shown in Table II for S2=0.5 and
§2=0.8, while the log spline interpolation used
for the S2=0.5 data is shown in Fig. 3. This is

a favorable case as the In(€}) plot is smooth and
monotonic, allowing accurate interpolation. The
family of curves obtained from various mappings
(S 2 values) and for different choices of nonlinear
parameter B is shown in Fig. 4, where we focus
attention on the value of Imt, at 3 #*= E=0.605 a.u.
In this figure, and in what follows,

L (E+i€)=—k[(k |V |k)
(| VG(E+iO)V )] | pn?)s
- (4.5)

rather than T,(E+i€) is shown. This choice follows
from the fact that ¢, = e*°sind, and thus is simply
related to the phase shift 6. In this case, using the *
datafrom calculations with 8= 0.7, 0.8, and 0.9 and S2
ranging from 0.2 to 0.8, we conclude that Im¢,
=0.065+0.003 and Ref,=~0.195+0.003 for k=1.1.
This fairly well converged result is at an energy
above the breakup threshold, but is typical of the
result obtained above and below the inelastic

region in favorable cases.

2. f-wave amplitude

The corresponding interpolation and Imt¢,(E +i€)
obtained for f -wave scattering from a 76-term
basis at £=1.4 (a worst case) are shown in Figs.

3 and 5, respectively. The interpolation is not
smooth for this value of B, resulting in uyncertainty
in the derivative weights. This uncertainty man-
ifests itself strongly in the results shown in Fig. 5
suggesting that Im¢,(E +i€) is only determined to
above 10% at E=3 #k*=0.98 a.u. However, even in
this case things are not as bad as they seem.
Typical extrapolation results are shown for com-

Table III. Examples of convergence of the moment T-matrix method and T'-matrix extra-
polation methods. The case at hand is a calculation of thef wave et -H(1s) elastic amplitude
at a positron momentumk =1.4 (a.u.). This is a “worst case” for the moment method (see
Figs. 3 and 5; results for |t |2 are only good to ~15%. It is clear, however, that the extra-
polation method has failed completely in this case (see Fig. 2).

Moment method

Extrapolation method

Ret ? Im¢ Ret ‘ Im¢ [£]2
B =0.8 0.0241(7) 0.062(6) 0.0044 0.085(10) 0.040(10) 0.0088
B =0.7 . 0.0146(73) 0.071(73) 0.0052 0.000(10) 0.116(10) 0.0134
B =0.6 0.0027(10) 0.062(6) 0.0039 —-0.032(10) 0.005(10) 0.00105

2The figures in parentheses indicates the estimated error in the last figure shown [e.g.,
0.0146(73) = 0.0146 £0.0073] . The estimated errors in the moment method were calculated
as the standard deviation of values obtained using at least five different mapping parameters.
The estimates of the errors of the extrapolation results are visual, and were made from

Fig. 2.
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TABLE IV. s-wave e -H(1s) elastic phase shifts as a
function of positron momentum#% . Results of three sepa-
rate moment T'-matrix calculations (4,B,C) are com~
pared with the variational results of Bhatia et al. (Ref. 4).
Each of the T-matrix amplitudes is the average result
of at least five mappings, with different $2: 16 moments
were used.

& (a.u.) A2 BY c<¢ Bhatia
0.1 0.147 0.147 0.149 0.148
0.2 0.178 0.179 0.177 0.188
0.3 0.160 0.158 0.155 0.168
0.4 0.120 0.119 0.119 0.120
0.5 0.062 0.064 0.064 0.062
0.6 0.0015 0.003 0.003 0.004
0.7 —-0.053 -0.051  —0.051  —0.051

2105-term basis @ =1, 8 =0.7.
b105-term basis « =1, B =0.8.
€105-term basis @ =1, g =0.9.

parison in Fig. 2, and the situation summarized in
Table III. It is seen that the moment 7-matrix
method has given a moderately well-converged
value of ]tk |2 while the extrapolation methods have
failed completely.

V. RESULTS

The motivation for development of the moment
T-matrix method was to calculate amplitudes to
the intermediate-energy region where a continuum
of channels is open. However, to gain confidence
in the reliability of the method we give results for
low-energy scattering, where only the elastic
channel is open. In this energy region we can
compare with essentially exact variational results,
and find that the method is easily reliable to about

5%, a more than acceptable error for extension
past the breakup threshold. At the same time it
is clear that the moment T-matrix method cannot
compete with the high precision of the variational
methods*” in the case that only one channel is
open. ,

Tables IV-VI give s-, p~-, and d-wave phase
shifts, in comparison with those obtained by vari-
ational techniques. The resulting partial wave
cross sections, o, =(4/k?)(21 +1) | t! |2, in units
of ma?, where t} is the Ith wave amplitude, are
shown graphically in Figs. 6-8. It is clear that at
relatively low energies (k=0.1,0.2,0.3) the moment
T-matrix method suffers in comparison with the
variational work of Bhatia et al.* and Register and
Poe.” This results from the fact that for all
reasonable values of the mapping parameter S2,
only one abscissa €f appears in the low-energy re-
gion (£=0.3 is £=0.045 a.u.) making interpolation
treacherous. However, at somewhat higher % val-
ues the method is working well. Table VII dis-
plays f- and g-wave results. It is evident from
the table that the adiabatic Dalgarno-Lynn® re-
sults are a moderately good representation at this
point, and we have used the Dalgarno-Lynn phase
shifts for L =5 through 8 in construction of dif-
ferential cross sections. Past L =8 the Born®
and Dalgarno-Lynnphase shifts are essentially
identical, as is illustrated in Table VIIL

Converged differential cross sections

80 _ 1

2
56" F Z (21 + 1)L P, (cosh) | ,

1=0

in units of a2/s¥, at £=0.4 and 0.6 a.u., are shown
in Figs. 9 and 10 followed by the total cross sec-
tion as a function of energy in Fig. 11.

TABLE V. p-wave elastic ¢'-H(ls) phase shift as computed by the moment 7T-matrix

method (A, B,C) are compared with the extrapolated variational results of Armstead (Ref.
7) and Bhatia et al. (Ref. 4). Each of the T-matrix results employed 16 moments and is
the average of at least five different mappings.

Bhatia

k (a.u.) A2 BP ce Armstead 1d me
0.1 0.0073 0.0066 0.008 0.009 0.0076 0.0094
0.2 0.0321 0.033 0.032 0.032 0.0323 0.0338
0.3 0.064 0.063 0.065 0.065 0.0648 0.0665
0.4 0.098 0.095 0.097 0.102 0.0988 0.1016
0.5 0.130 0.128 0.128 0.132 0.1292 0.1309
0.6 0.155 0.160 0.154 0.156 0.153 0.1547
0.7 0.171 0.175 0.171 0.178 0.175 0.1799

287-term basis @ =1, 8 =0.7.
b87-term basis @ =1, g =0.8.
©€87-term basis @ =1, 8 =0.9,
d70-term basis.
€168-term basis, extrapolated.



TABLE VI. d-wave elastic e’ -H phase shifts as cal-
culated via the moment T-matrix method, as compared
with the variational results of Register and Poe (RP)
(Ref. 4) and the adiabatic Dalgarno-Lynn (DL) results
(Ref. 6).

2 (@.u.) A2 B> = cc RP DL

0.1 0.00044 0.0003 0.0002 0.0013 0.0014
0.2 0.0050 0.0044 0.0037 0.0054 0.0056

0.3 0.0124 0.0124 0.0122 0.0125 0.0127
0.4 0.0235 0.0230 0.0226 0.0235 0.0225
0.5 0.0386 0.0396 0.0379 0.0389 0.0340

0.6 0.0587
0.7 0.0858

0.0589 0.0588 0.0593 0.0462
0.0854 0.0870 0.0863 0.0578

2100-term basis, @ =1.0, 8 =0.6,
Y100-term basis, @ =1.0, B =0.7.
€100-term basis, @ =1.0, 8 =0.8.

VI. SUMMARY

In the present paper we have developed a mo-
ment theory which allows direct construction of
the total discontinuity of the off-shell T-matrix
T,(z) across the real axis cuts. The method in-
volves a projection of a Hilbert space discretiza-
tion of the full resolvent, (z — H)™, onto the
unperturbed scattering state ®,,(7,)j, (k7,), and
does not require detailed channel enumeration.
The method was applied tc e*-H elastic scattering
below the positronium pick-up threshold, 0.25-
a.u. scattering energy, with good results produc-
ing s-, p-, d-, f-, and g-wave correlated phase
shifts, and the resulting total and differential
cross sections. The real power of the technique,
however, lies in the ability to perform calcula-
tions at scattering energies above the impact ion-
ization threshold. Results of such calculations are
presented in the companion paper.?
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APPENDIX A: DERIVATIVE RULE

Heller'® suggested if {x,} and {w} are a set of
nth-order Gaussian quadrature weights and points
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for integration with respect to a weight function
plx) [i.e.,x; are the zeros of the (N +1)st order
polynomial orthogonal with respectto p(x)] then
a “smooth” interpolation of the x; to give x(§),
such that

x(£) le=i=xi (A1)

has the interesting and useful property that

4
dg

Wi
I p(xi)

where w; is the quadrature weight, and p(x;) the

x(&) , (A2)
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FIG. 6. s-wave partial elastic cross section for e¢*
+H(1ls) at energies below the pick-up threshold at 0.25
(a.u.). Results are shown in the static and adiabatic
(Dalgarno-Lynn) approximations, as well as those using
fully correlated Hylleraas-type basis sets thus including
polarization and correlation effects, The present mo-
ment 7-matrix results are in excellent agreement with
the previous correlated calculations of Bhatia et al, and -
Doolen et al. except at very low energies, where, as dis-
cussed in the text, the moment method suffers from the
problem that the necessary interpolations become ill de-
fined. )
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FIG, 7. p-wave partial e*~-H(ls) cross section below
the pick-up threshold. The error bars indicate esti-
mated error based on taking the standard deviation of
results obtained from a large number of mappings, The
moment T-matrix results compare well with the varia-
tional calculations of Bhatia,

weight function evaluated at the ith quadrature
point.

For the case of Gauss-Chebyschev quadrature
this can be checked analytically: For Chebyschev
quadrature of thr first kind we have'®

N
Vo fdx om
f.l dA-x"7% N X; flx,), (A3a)
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FIG. 8. d-wave partial elastic cross section for e*-
H(1ls) scattering below the pick-up threshold, The re-
sults are compared with the adiabatic Dalgarno-Lynn
results, and the partially correlated results of Sprach
and Hahn,

where
x,=—-cos[(2n =1)1/2N], (A3D)
plx)=[(1 —x?)*/2]7 (A3c)

and w, =7/N, independent of #.

TABLE VII. f- and g-wave elastic e* -H(1s) phase shifts computed by the moment T-
matrix method, compared with the adiabatic Dalgarno-Lynn (DL) phase shifts (Ref. 6).

f -wave phase shifts

g-wave phase shifts

k (a.u.) A? BY DL Ac Bd ce DL
0.1 0.00045 0.000020
0.2 0.00187 0.00083
0.3 0.0036  0.0037  0.00416 oo cee 0.00186
0.4 0.0069 0.0070 0.00753 0.00289 0,00289 0.00266 0.00334
0.5 0.117 0.118 0.1196 0.00480  0.00466  0.00467  0.00532
0.6 0.0185  0.0188  0.0173 0.00738  0.00733  0.07313  0.00778
0.7 0.0291 0.0286 0.0234 0.0109 0.0111 0.0109 0.01073

276-term basis @=1.0, 8 =0.7.
b76-term basis @=1.0, g =0.6.
€87-term basis @=1.0, 8 =0.6.
d87-term basis @=1.0, g =0.7.
€87-term basis «=1.0, g =0.8,
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TABLE VII. Comparison of ¢*-H(1s) phase shifts as computed by the Dalgarno-Lynn (DL),
method (Ref. 6), and by the asymptotic (long~-range) Born approximation (B) justifying
the use of the asymptotic Born approximation for calculation of the L =10 through 100 partial
wave amplitudes needed in the computation of the angular distributions (an * indicates that
the series expansion for the Born approximation has not fully converged).

L=0 L=2 L=8 L=10
k (@.u.) DL B DL B DL B DL B
0.1 0.181 =0.0476 0.00136 0.00132 2.92(~5) 2.92(=5) 1.55(=5) 1.54(-5)
0.2 0.241 ~0.194 0.00555 0.00502 1.16(—4) 1.16(—4) 6.13(-5) 6.15(=5)
0.3 0.230 -0.433 0.0127 0.0102 2.62(—4) 2.61(—4) 1.38(=4) 1.38(—4)
0.4 0.191 -=0.721 0.0225 0.0150* 4.68(—4) 4.63(—4) 2.46(—4) 2.45(-4)
0.5 0.141 —0.979* 0.0340 0.0165* 7.33(—4) 7.20(—4) 3.85(—4) 3.82(~4)
0.6 0.0893 -1.170* 0.0462 0.00983* 1.06(=3) 1.03(-=3) 5.56(—4) 5.48(—4)
0.7 0.0399 -1.30%* 0.0578 —-0.0124* 1.45(~3) 1.39(=3) 17.59(—4) 7.42(—4)
Equation (A2) may be checked directly: which, indeed, is w,/p(x,). A similar result
d holds for Chebyschev quadrature of the second kind
7E (—cos[(2¢& = 1)7/N]) | ., = (1 =x,2)20/N (see Sec. VB of Yamani and Reinhardt, Ref. 16).
For the more general case the zeros of the re-
quired orthogonal polynomial are not known as
analytic functions of ¢, yet the result holds empir-
ically, as may be easily verified by interpolation
———— L=0 THROUGH L=4 t MATRIX of the nuxtnerlcally dete.x'mlned zer?ls. Using
Z 4l Cmm - L=0 THROUGH L=4 t MATRIX asymptotic representations (Szego®) of the
o ;htZAIE =N % TE' fh?}:li H 9L =B (8) - classical orthogonal polynomials, Broad!” has
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FIG. 9. Differential e*~H(ls) elastic cross section E |
(a}/sv) at a positron energy E = 0,08 Hartrees (2.2 eV),
Results are shown in several approximations: — - —
in the cross section determined by the L=0—4 ampli-
tudes of Tables IV~VII; - - - - shows the result of addi-
tion of the L=5— 8 Dalgarno-Lynn adiabatic results and m
-— . —— I
results and the L =9 Born result; shows the result o 30 50 %0 120 50 180

of supplementing these results with the L=10— 100 Born
amplitudes needed to achieve convergence in the forward
direction, The — - — curve shows the 100 partial
wave result with the more accurate Bhatia s and p-wave
phase shifts: as discussed in the text the moment 7-ma-
trix method suffers at very low energies.

SCATTERING ANGLE 8 (IN DEGREES)

FIG. 10. Differential e*~-H(ls) elastic cross section
(a}/s7) at a positron energy of 0,18 Hartrees (4.9 eV)
showing convergence as a function of the number of par-
tial waves,
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FIG. 11, Elastic integrated e*-H cross section as a
function of positron energy below the pick-up threshold.
The total cross section and partial-wave contributions
are shown. Convergence to better than 1% is obtained
using the first five partial waves. As the g-wave and
DL result gives a reasonable approximation to the 7-ma-
trix g-wave partial cross section, estimates of the mag-
nitude of the contribution of higher partial waves was
made by summing the L =5— 10 Dalgarno-Lynn (DL)
results and were at most 0.5%.

fact does hold, asymptotically, in the general
case.

APPENDIX B: INTEGRAL EVALUATION
In this Appendix, we outline techniques for evalu-

ation of integrals needed to construct T,(z) from
(z =H)™.

A. Calculation of the Born term: the &V k) integrals

The Born term integral may be easily reduced to
the one-dimensional static integral

18=f0°° »Lj, (b))% (1+1/7) dr . (B1)

The integral

f” et g, (bt)d, (ct)dt = Qy_l/z(ﬁ‘!iﬂ>
o bo 2bc
(B2)
appears in Watson’s treatise.** Since
3y ()= (m/2k9)Y 2T |, |, (), (B3)
we have '

f re'z'[j,(kr)]zd';f:E%f e (dy,, /)2 dr

o 0
= _]_'._ Q (a2+2k2)
P 2%7 "

=2

(B4)

and, additionally

fﬁe e v [j, (kv)]2dr

o]
d 1 o? 4 ok
= Q ( )] ’ (B5)
[ da 2% ¥\ 287 ez

where the Q; are the Legendre polynomials of the
second kind.3?

B. The (k1V I¢,) integra's

Since the potential V=1/7, - 1/7,, does not operate
on the angular functions, the angular integrations
follow from Ref. 24, resulting in linear combina-
tions of integrals of the form

bl Aad
f v, dr, _/ v, dr, e e oyt § (k)
0 0

7 T, o
X ¥$;tdr, . (B6)
lry=r,l
The integral over 7, yields
1 o
c+2 gt

.
"1*72

(B7)

lry=rol

The lower limit necessitates consideration of two
cases: (a) 7,>7, for which |7, —7, | =7, —7,; (b)
v,> 7, for which |1fl -7, | =7,-7,. We get from
case (a)
0
1 e-(lﬂoc)rl ,‘,4114-1 d’}"l
c+2 J,
2

X f etr2j, (kv,) 2" ar,
0

X [(71 +7,)°" 2 = (7 - "’2)“2} . (B8a)

" and from case (b)

r o
2 . - .
f emaradn 40 *‘drlf ez j, (kr,)r2*t dr,
0

X [(ry+7,)°%2 = (v, — 7)) .

(B8Db)



Expanding the polynomials such as (7, +7,)" in
binomial expansions, for case (a), we have

(c+1)/ 2 2 .
9 [c ]( C+2>7€+1-2{ 722;*1 (B9a)
izo \2i +1
where [(c+1)/2] is the greatest integer in
(c+1)/2: case (b) yields

le+1y 2] ce2
+ +1= +
2 2 >r§ 121 y2iv1 (B9b)

=0\ 11

Substituting into Eq. (B.7) we are left with: for
case (a)

lte+ /2]
- 22 Z ( C+2)f e®raj, (kry)r) dr,
+ i=o0 . 0
2 +1
xf e-(x+a)r1,rg' d,,,l,
T2
(B10a)
and for case (b)
[+ /2] w
2 2 .
P " )f ePr2j, (krv,)ve dr,
i=0 \gj41/7°
T2
x [* et emt gy, (B10b)
0
where

p=a+2i +2, g=b+c+2-2i,
p'=b+2i+2, g'=a+c+2-2.

Now the integrals over 7, are performed yielding
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fe+1/2] 5
case (a)=2 Z <c+ )
=0 \2i +1

xf e™Praj, (Rr,)vy dr,
0

a
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x(e (1 01)"2 Z (1+ az)q:- J+1 5

= !
. (B11a)
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case (b)=2 Z <C+2>
t=0 \2j +1
x f etr2j, (kr,)ve dr,
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»
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(B11b)

Thus we are left with double sums over integrals
of the form .

I=f e j, (kr)v" dr
0

3 (R/2)'D(n+1 +1)r/?
- (-),2+k2)11+n+1) lzr(l+%)

n+l+l 1 —n+1 k?
szl( R R AL W)

(B12)

which are conveniently calculated via the Gauss
continued-fraction representations of ,F,(n, b; c; z),
which form may be always obtained via a suitable
Kummer transform,* :
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