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The information-theoretic maximal-entropy procedure for the analysis of collision processes is derived as a
consequence of the dynamics, be they quantal or classical. The method centers attention on the minimal
number of operators (the "dynamic constraints") whose expectation values are both necessary and sufficient
to completely characterize the collision dynamics. For a given Hamiltonian and initial state, the constraints
required to obtain an exact solution of the equations of motion are determined by a purely algebraic
procedure. It is furthermore found possible to derive equations of motion for the conjugate Lagrange
parameters. Immediate applications are noted, e.g., a family of similar reactions is shown to have a common
set of dynamic constraints and simple illustrative applications are provided. The determination of the
scattering matrix is discussed, with examples. The general formalism consists in solving the scattering
problem in two stages. The first is purely algebraic. At the end of this stage one obtains the functional form
of, say, the scattering matrix or of the density matrix after the collision expressed in terms of parameters
whose number equals the number of dynamic constraints. The end result of this algebraic stage suffices to
analyze the scattering pattern for any initial state. The second stage is the predictive procedure. Explicit
coupled first-order nonlinear differential equations are obtained for the parameters.

I. INTRODUCTION tern after the (single) collision, can be expressed as

There is a large body of experimental results'~'
for collisions of composite projectiles (be they
nuclei or molecules) showing, for example, con-
siderable specificity in the population of the acces-
sible final states. Statistical theories are thus not
sufficient to account for the data, yet the coupling
is far too strong for simple perturbation theory to
apply. Close-coupling computational schemes are
required and when they can be carried out their
results are typically in good accord with experi-
ment, both in general qualitative trends and de-
tailed quantative conclusions. Such computations
are, however, not easy to implement nor is there
a simple interpretation of the final results, par-
ticularly when only a partial resolution of the
final states is provided by the experiment. It i.s
thus of some interest to develop a scheme where-
by the experimental or computational results can
be analyzed, correlated, and compacted.

On the basis of information-theoretic (maximal-
entropy' ') considerations, it was suggested' that
while the final phase space is not uniformly filled,
the constraints Leading to the nonstatistical final-
state distribution are often simple and can be
determined directly from the data. Many inelastic
and rearrangement collision processes in both
molecular' and nuclear" physics have already
been analyzed in this fashion. Specifically, one
assumes that the density operator" p, for the sys-

p= exp — X„A„,

where A„'s are operators (with A, =I, the identity
operator) and the X„'s are numerical coefficients.
The operators A„(called the "constraints") and the
coefficients X„are determined either from experi-
mental results or from some theoretical consid-
erations. Thus far, information theoretic argu-
ments have played a central role in motivating our
choice of the functional form Eq. (1.1), and in sub-
sequent manipulations. The applications' of Eq.
(1.1) to diverse aspects of molecular-collision
processes have stimulated other derivations" of
limiting forms of Eq. (1.1). These were often
based on a distorted-wave approximation and in-
voked additional simplifications unique to the mole-.
cular problem. Recently however it was noted that
the representation (1.1) could be usefully em-
ployed" to analyze experimental results for both
inelastic (Coulomb excitation") and rearrangement
(e.g. , n transfer' ~ '4) nuclear collisions. More-
over, there is computational evidence" that the
maximal-entropy approach is useful for describ-
ing the evolution of the system during (and not
only after) the collision.

The purpose of the present study is to document
the validity and utility of the functional form, Eqs.
(1.1), as an exact solution of the equations of mo-
tion, be they quantal or classical, for a collisional
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process. We shall, for convenience, adopt a time-
dependent formalism and discuss the existence,
construction, and properties of an evolution matrix
G such that at any time t during the collision

(1.2)

and

The applications we shall consider are to pro-
cesses, where the interaction is explicitly time
dependent (e.g. , a collision where the relative
motion is treated in a classical fashion such as,
say, Coulomb excitation" where the colliding nu-
clei move along a Rutherford trajectory). The
formalism can however be employed also in the
context of time-independent scattering theory as
will be explicitly demonstrated in a separate pub-
lication.

The central theme of Sec. II is that an initial
state, chosen to maximize the entropy (subject
to the constraints of the preparation procedure),
remains a state of maximal entropy throughout
the collision. It is thus possible to construct a
set of operators, closed under commutation with
the Hamiltonian, such that the maximal-entropy
density matrix specified by their expectation values
is an exact solution of the equation of motion. The
algebraic definition of the constraints as used here
retains the ties with (equilibrium) thermodynamics,
where the constraints employed are those opera-
tors that commute with the Hamiltonian. " A set
of constraints of particular importance is the so-
called "dynamic constraints. " These form a Lie
algebra. " The term similar reactions is given a
precise definition and it is shown that similar re- .

actions have a common set of dynamic constraints.
The formalism is applied to the two simplest

examples of vibrational and rotational excitation
in Sec. III. Many of our results for the forced
harmonic-pscjllatpr prpblem are well knpwn
and we have chosen this example so as to illustrate
the formalism in a familiar context.

The formal theory is presented in Sec. IV, where
the concepts of the dynamical group and the group
parameters are discussed. With these develop-
ments it is possible to obtain a universal solution
for the G matrix which is valid for all reactions
of the same family. Different members of afamily
of similar reactions differ only in the values of
the group parameters that are present as coef-
ficients in the expression for G.

The Lie algebraic implications of the formalism
are discussed in Sec. V. The usual formulations
of scattering theory seek a representation of the

dynamical group in a Hilbert space of state vec-
tors. ' " The simplifications achieved by the pres-
ent formalism are due to the fact that it obtains
a representation in the space of relevant operators.
Even for the usual formulations the concept of the
representation of a Lie group affords a very prac-
tical tool enabling us to compute the elements of
the scattering matrix as analytic functions of group
parameters whose number is equal to the number
of dynamic constraints and which satisfy (nonlinear)
equations of motion that are often readily solvable.
A nontrivial example is provided in Appendix B.

Several applications of the formalism to the
derivation of closed-form results for realistic
Hamiltonians of both inelastic and rearrangement
collisions are in preparation for publication.
Other work in progress includes the analysis of
experimental results aimed at identifying the dy-
namical algebra from the observed constraints.
This is being attempted for several families of
similar collisioris, both molecular and nuclear.

II. CONSTRUCTION OF THE FORMALISM

To characterize a scattering experiment one
needs to construct the initial state and then solve
the equation of motion. In this section we consider
bath problems. The initial state is selected as
the (unique) state of maximal entropy' ' subject
to the condition that it correctly yields the expec-
tation values of the different initial observables.
Any other density operator which also yields the
same expectation values has a lower entropy.
Since" entropy is a constant of the motion [cf.
Eq. (2.11) below], an initial state of maximal
entropy necessarily remains a state of maximal
entropy throughout the collision. . While this re-
sult is assured as long as the time evolution is
unitary, it falls short of a "construction" theorem.
All that it does state is that the density operator
of the system is one of maximal entropy subject
to the expectation values of those operators that
have evolved (in the Heisenberg picture) from the
operators required to specify the initial state.
Our second purpose is to determine these oper-
ators explicitly, by an algebraic procedure. Given
the Hamiltonian and the set of constraints that
characterize the initial precollision density oper-
ator we determine a set of constraints that char-
acterize the density operator throughout the col-
lision. The density operator of maximal entropy
subject to these constraints is an exact solution of
the equation of motion. I'

In addition to the procedure for the algebraic
identification of the constraints it is shown that
the value of the Lagrange parameters at any time
t can be determined. The solution of the equation
of motion is thereby replaced by solving a set of
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coupled, linear, differential equations whose num-
ber is equal to the number of constraints.

The procedure of this section has the advaritage
that it generates the density operator (during and
after the collision) for the initial state of interest.
The more formal approach of Sec. IV, which de-
termines the evolution operator and hence ap-
plies to any initial state, also shows that the num-
ber of coupled equations of motion that need be
solved equals the number of dynamic constraints,
irrespective of the specification of the initial
state.

S = —Trg Inp). (2.1)

The preparation of the initial state p consists in
the specification of the magnitudes of the expecta-
tion values of a set of (not necessarily commuting,
but linearly independent) operators, .

A. Procedure of maximal entropy

The initial state in a collision is prepared by
the experimentalist. The data available are the
magnitudes of the expectation values of the differ-
ent operators. Collision experiments with com-
posite projectiles will often achieve only a partial
selection of the initial state. ""'" This need not
however be the case and one can also consider the
limiting case of a dispersion-free preparation pro-
cedure [see Eq. (2.8) below and the example in
Sec. IIIC)]. This will typically be the case in the
analysis (e.g. , Ref. 15) of computational (close-
coupling) studies.

The (information theoretic) entropy of the den-
sity operator p is" (in "natural" units)

is that there exists some set of numbers
X„X„X„.. . , for which the trace in Eq. (2.4) is
finite. " An explicit example (Sec, IIIB) shows
that when two operators fail to commute, the con-
dition (2.4) insures that the product of their dis-
persions exceeds the bound set by the uncertainty
principle.

In practice it may well be that one (or more) of
the Lagrange parameters, say X„ is identically
zero. This implies that even when the magnitude
of (4,) is riot included as a constraint during the
maximization of S, the resulting density operator
would predict the correct magnitude of the expec-
tation value (4,). From now on we limit our con-
siderations to the set of n+ 1 operators A„,
x=0, 1, . ~ ~, n, which are found necessary to
specify the initial-state (i.e. , for which X„ is non-
vanishing. Since the operators are linearly inde-
pendent the Lagrange parameters are unique').

The rationale for selecting the density operator
of maximal entropy to describe the state of the
system following a preparation procedure has been
discussed in the literature. ' ' The information-
theoretic motivation is clear cut. Among all den-
sity operators consistent with the constraints the
density operator of maximal entropy is the most
chaotic: It corresponds to the largest possible
volume in phase space"; it has the lowest in-
formation content; its eigenvalues are more uni-
form, "and are the most probable distribution. " '
In addition, it does yield the conventional results2'
when applied to a procedure that measures just
one operator, say M. Introducing the spectral
resolution of M,

(A„)= TrI«pA„), r = 0, 1,2, . . . . (2.2) M= m. P], (2.5)

p=exp -~0
ra

(2 3)

The magnitudes of the (Lagrange) parameters X„
are determined by the condition that p is normal-
ized

We take A, to be the identity operator so that p is
normalized (A,)= 1.

The initial-density operator is selected to be of
maximal entropy subject to the conditions, Eq.
(2.2). It is constrained to be consistent with the
results of the preparation procedure, but other-
wise it spans the largest possible volume in phase
space. " The resulting expression for p is well
known'-8

where the P, 's are projection operators, Eq. (2.3)
gives

p= e-xo-xv= e-xo-)(,tP. = P.p P .t t (2.6)

p= exp -Xo — ~ P . ,

and since the projectors commute

Similarly, consider a procedure that measures
the expectation values of a set LP«) of projection
operators P«P« P,.5«&. Introduc-i—ng Q&=I —Pz,
the complementary projection to P, , P, Q& (1. -—
-6«z)P«, we obtain from Eq. (2.3)

Tr(p) = 1, (2.4) p=e ~oII(Q, +e «P, ) =e pe «P, . (2.7)

and accounts for the magnitude of the other ex-
pectation values [i.e. , that Eq. (2.2) holds for
r=1, 2, . . . ]. The only condition on the operators

Determining X, by Eq. (2.4) and X«by the condition
that Tr(pP, ) has its measured value
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p= g Tr(pP, )P, = g P,pP, . (2.8)

The preparation of a pure state (Tr(pP, ) = 6,z) is
a special limiting case, but less than perfect state
selection can also be described by the procedure
of maximal entropy.

ing explicitly the n operators of the type
U(t, to)A„U~(t, t,), x=1,2, . .. ,n .In particula, r, the
constraints required to specify the density opera-
tor after the collision are then n operators of the
form SA„St (where S is the scattering operator)
plus the identity.

p(t) = U(t, t.)p(t.)U'(t, t.) (2.9)

Then, since 1nx has a convergent-power-series
expansion for 0&x &2, and invoking the unitarity
of the evolution operator

ln[p(t)]= ln[U(t, t,)p(t, ) Ut(t, to)]

= U(t, to) ln[p(to) ] U~(t, to). (2.10)

The result, Eq. (2.10), serves to prove that the
entropy is time independent, " (from now on we
supress the argument of the evolution operator),

S= —Tr [p(t) lnp(t) ]
= -Tr [Up(t, ) U~Ulnp(t, ) U']

= -Tr [UtUp(t, ) lnp(t, ) ]
= -Tr[p(t, ) lnp(t, )]. (2.11)

Among all density operators consistent with the
magnitude of the initial g+ 1 expectation values,
the one of maximal entropy will remain of maxi-
mal entropy through the time evolution. An alter-
native and more constructive route is to examine
the time evolution of the initial-density operator, "
cf. Eq. (2.3),

B. Time evolution

In the Schrodinger picture the time evolution
is described by a unitary evolution operator U(t, t,).
In particular, the density operator at time t is
given by

C. Explicit determination of the constraints

The explicit constraints that are required to
specify the density operator at the time t are all
those (linearly independent) operators A„,
r = 0, 1,... , m, m ~ n, that are present in the ex-
pansion of the surprisal, -lnp(t):

-lnp(t) = X„(t)A„.
r

(2.15)

Here X„(t,) = 0 for n&r ~ m and the first n+1 oper-
ators are necessarily present if Eq. (2.15} is also
to hold for the initial state (i.e. , as t t,).

Equating the explicit, Eq. (2.15), and implicit,
Eq. (2.13), expansions of the surprisal,

(2.17)

The "if" part is demonstrated by substituting
Eq. (2.17) in Eq. (2.16) whence one obtains

A.„(t)= / G„,X (t ). (2.18)

QX„(t}A„=QX (to)UA Ut. (2.16)
SW

The operators A„are linearly independent and the
expansion, Eq. (2.15), need be valid for any time
i during the collision. Hence one can equate the
coefficients of A„on both sides of Eq. (2.16). It
follows that Eq. (2.15) obtains if .and only if there
exists a (time-dependent) matrix G whose elements
are defined by

-lnp(t, ) = ~„(t,)A„.
r

Using Eq. (2.10)

(2.12)
The "only if" part requires taking Eq. (2.16) to
hold at m+1 different times and solving for the
A„'s,

-lnp(t) = P X„(t,) UA„Ut . (2.13)
r&

The density operator at time t is seen to have ex-
plicitly the form of a density operator of maximai
entropy subject to the magnitude of the n+ 1 expec-
tation values Tr[p(t) UA„U ] . These expectation
values are however known, for on using'

Tr[p(t)UA„U~)= Tr[U p(t)UA„]= Tr[p(t, )A„], (2.14)

and the n+ 1 expectation values Tr[p{to)A„'] are pre
cisely those that were used to constrain the initial
state, cf. Eq. (2.12).

Solving explicitly for the density operator at the
time t has thus been shown equivalent to determin-

U'A„U= Q (G '),„A,. (2.19)

An alternative and more practical. way to state
the condition, Eq. (2.17), is obtained by taking the
time derivative of both sides. Using the time-de-
pendent Schrodinger equation i@SU/St =HU, and
noting that U(t„t,) =I, we obtain

[H, A,]= QA„a.„,, (2.20)
r~

where n„, = ikSG „,/St evaluated at t = t, ,

The set of m+1 constraints that characterizes the
density operator at any time t is.a set of operators
closed under commutation with. the HamQt. oui.an.
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= (iS) ' Tr(A„[H, p]]

(iS) 'TQP-(f) [H-, A„]f

=-(iS) ' Q n,„(A,)(t), (2.21)

or in matrix notation

(2.22)

Given the set (A„] of n+ 1 operators that character-
izes the initial state [i.e., that appear in the ex-
pansion of -Inp(t, )] one forms all operators of the
type [H, A„], say, equal to A, . If the n operators
A, are linear combinations of the n+ j operators
of the initial set, it is already closed. U not,
the original set need be augmented by the new op-
erators and commutators of the type [8, [H,A„]]
= [H, A, ] need be examined, etc. , until the result-
ing set is closed. Those operators which have
been employed to augment the original set are
taken to appear in -Inp(t) with a Lagrange param-
eter that vanishes for t =t, . For operators defined
in a finite-dimensional Hilbert space a finite set
of constraints is guaranteed to exist. For oper-
ators defined in an infinite-dimensional Hilbert
space this may but need not be the case. It is
then necessary to appeal to the Fredholm-Schmidt
theorem" which guarantees that the surprisal
-lnp [which has a finite trace, 8=-Tr(pinp)] can
be approximated to any required accuracy by a
finite number of terms.

The physical interpretation of the "closure" con-
dition, Eq. (2.20), is readily seen by taking the ex-
pectation value [over p(t)] of both sides.

s(A„)(t) s p(f)
Bt " Bt

(H, A jf= (iS) ' Q a,„A,. (2.24)

Hence, when we make the correspondnece Eq.
(2.23) in Eq. (2.21) we find that the equation of
motion for the constraints or for the Lagrange
parameters, Eqs. (2.22) or (2.29), have precisely
the same form in classical as in quantum mech-
anics. The functional form for p(t), Eq. (2.15),
and the associated equations of motion remain
unchanged in the classical limit.

The real simplification provided by classical
mechanics is that the classical p is directly the
probability derisity function in phase space." In
contrast, the quantal p is still an operator whose
(diagonal) matrix elements need be evaluated to
compare with the experimental probabilities.

E. t" (or "super evolution" ) matrix

The G matrix" defined by Eq. (2.17) propagates
the Lagrange parameters in time, cf. Eq. (2.18).
Similarly, by taking the expectation value of both
sides of Eq. (2.17)

Tr(p(t) UA, U'] = Tr{U'p(t) UA,}

D. Constraints in the classical limit

To transcribe the results to classical mechanics
it is necessary to replace the commutator bracket
by a Poisson bracket according to the well-known
correspondence

(2.23)

Now p is the density in phase space, satisfying the
classical Liouville equation sp/st =(H, p) or 9 Inp/
&t =(H, Inp] and the A„'s are functions of dynamic
variables which are closed under the operation
(H, ). Using Eq. (2.23} in Eq. (2.20) we have

Here (A)(t) is the row vector whose components are
the m+I expectation values (A„)(f)=—Tr{A„p(t)].
The rate of change of any constraint is a linear
combination of the instantaneous expectation values
of the other constraints. Given (A)(t,), the linear
differential equation (2.22) uniquely determines
(A)(t). The explicit solution for (A)(t) is discussed
in Sec. V.

The result Eq. (2.22) is valid for any initial den-
sity operator but by itself is of limited utility. It
determines the expectation values of the constraints
but to determine the expectation value of an arbi-
trary operator which is not a member of the closed
set one still requires the density matrix. It is the
procedure of maximal entropy which enables us
to use the closed set of constraints for that pur-
pose.

= Tr{p(t,)A,].

= Q G„,Tr{p(t)A„] (2.25)

or

(A,)(f,}=g G„,(A„)(f). (2.26)

In matrix notation

(A)(t) = (AQ(t, ) G '. (2.27)

The Lagrange parameters, cf. Eq. (2.18) and the
constraints, cf. Eq. (2.26) or (2.27), evolve with
time in an opposite, contragradient manner.

The differential equation, Eq. (2.22), implies
that G [or more properly, G(t, to)] satisfies the
differential equation
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iSBG
=aG, (2.28)

UCU= G-C. ~

with the boundary condition that as t -tp G I.
Instead of solving Eq. (2.21) or the corresponding
equation,

(2.29)

F. Transformations of the constraints

It is sometimes convenient to replace one set
(A„j of constraints by another, equivalent set,
say (C„]. It should then be possible to represent
any constraint A, [and hence Inp(f)] as a linear
combination of the C„'s and'vice versa. Thus, if
the two sets are equivalent there exists a square
nonsingular matrix W such that

C„=Q W,„A; A, =Q W„,'C„. (2.30)

Let the G matrix for the equivalent set be denoted
by G, i.e.,

for the Lagrange parameters one can solve for G
and determine the time evolution using Eqs. (2.18)
or (2.27). (In Sec. V F we shall show that when G

is known then G ' is immediately available without
the need for the usual procedure of matrix inver-
sion. ) The advantage of determining G first is, as
is evident from Eq. (2.28) and its boundary condi-
tion, that the same matrix G applies irrespective
of the magnitude of the initial constraints. Any
initial state, that can be characterized by the m+1
constraints of the closed set, evolves under the
same G matrix. For any set of constraints it is
only necessary to compute the G matrix once and
for all and efficient methods for doing this are dis-
cussed in Sec. V. The specific data of a particular
initial state enters only through the linear trans-
formations, Eqs. (2.18) and (2.26). The expecta-
tion values of the constraints at the time t are lin-
ear combinations of their initial values and simil-
arly for the Lagrange parameters.

Given a matrix G, we see from Eqs. (2.18) and
(2.26) that the row r of the matrix specifies which
initial Lagrange parameters contribute to A„(t),
while the column s specifies which operators at
time t have evolved'out of the initial operator A, .
It is therefore of considerable interest to be able
to identify those elements of G that are identically
zero. We shall see in Sec. V (and in the examples)
that this is indeed possible and that there are many
such elements. A trivial example is that, for r 40,
G„„=O. The proof is immediate, by taking, as
usual, Ap to be the identity operator. Since UIUt
=I and U"IU=I, the required conclusion follows.

Substituting for C„ its expansion in terms of the
first set one readily verifies that

lnp(f) = —Q y„(t)C„-=-Q &„(t)A„.
yap

(2.32)

Using Eq. (2.30), the equivalence, Eq. (2.32), im-
plies

(2.33)

Comparing Eqs. (2.30) and (2.33) we see that the
Lagrange parameters transform in an opposite
(contragradient) manner to the constraints. (The
same was true for transformations induced by
time evolution. )

G. Dynamical algebra

A key observation in the application"" of the
representation Eq. (1.1) for p to the analysis of
experimental results is that the same set of con-
straints is valid for all the different reactions
which proceed via a similar mechanism. We now
derive the corresponding theoretical result.

The set of operators A„ that serve as constraints
is invariant under commutation with H(f),

(2.34)

The time dependence of the Hamiltonian is indicated
explicitly in Eq. (2.34) since this dependence can
be different for similar problems. As a simple
example, say the time dependence stems from a
classical treatment of the relative motion. Then
trajectories with different impact parameters
will lead to different time-dependent Hamiltonians.
In the more general case, when we are working
explicitly in the interaction picture (Secs. IV and
V), so that the H(t) is really V, (t), different level
spacings in Hp will lead to different potentials, etc.
We now define a set of "similar" processes by the
condition that their Hamiltonians are all of the

(2.31)

A transformation to an equivalent set of con-
straints implies a similarity transformation of
the G matrix. Depending on the Hamiltonian (the
precise conditions are formulated in Secs. V F
and VG) it may indeed be possible to choose a
set of constraints such that its G matrix is par-
ticularly simple.

The density operator should of course be invari-
ant under any equivalent change in the constraints.
Denoting the Lagrange parameters conjugate to
the C„'s as y„'s,
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H(t) = Qh„(t)H„. (2.35)

Here the operators H„are time independent and
different collisions differ only in the (time-depen-
dent) functions h„(t).

The same set of constraints A„obtains for all
the similar collisions if it is closed under the com-
mutation with each and every one of the "Hamil-
tonians" H„,

[H„,A„]=Q d,„(H„)A„n= 1, . . . (2.36)

Here d (H„) is a time-independent coefficient
which depends on the indices s and r and differs
for different operators H„. It is readily verified
that Eq. (2.36) [and Eq. (2.35)] imply that Eq. (2.34)
obtains for all the similar reactions

[H(t), A„]=Q h„(t) [H„,A„]

= Pg h„(t)d,„(a„)A,

Thus,

= g A,(Q h„{{)d,„{H„)). (2.37)

(2.38)

[H„,a ]=QC"„„H„. (2.39)

When the condition (2.36) is obtained, the max-
imal-entropy solution for aQ the similar collisions
will be characterized by the very same set of con-
straints. The different collisions will differ only
in the values of the Lagrange parameters, as their
time evolution is determined by the matrix o. (t)
[cf. Eq. (2.19)], which does depend [via the time
dependence of the h„(t)'s, cf. Eq. (2.38)] on the
details of the particular process.

It will turn out to be very convenient to cast the
discussion in a more general form as follows. The
set of operators (H„] that appear in the resolution
of the Hamiltonian [cf. Eq. (2.35}]need not be nec-
essarily closed under commutation of the operators
among themselves. That is, if H„and H are mern-
bers of the set, it may not be possible to express
[H„,H„] as a linear combination of operators in
the set. Should this be the case, we augment the
set by the addition of the operator H, = [H„,H„]
even though for the Hamiltonian H(t) in Eq. (2.35)
h, (t) =-0. One proceeds to augment the original
set until a minimal set of operators that is closed
under commutation of its members is obtained.
For any two operators H„,H of this set

=g (d,„(H„)[A„H„]—d„(H„)[A, , H„D

=QQ(d, „(H„)d„(H )
s

-d (H )d„(H„))A, (2.41)

or, with H, = [H, H„],

[H, ,A„]= Q d, „(H,)A, (2.41')

d „(H )=g(d (H )d „(H„)—d (H„}d „(H )), (2.42)

In Sec. V C we shall come to recognize Eq. (2.42)
as implying that the constraints provide a basis
for the representation of the dyna, rnic algebra.

Similar collision processes have thus been char-
acterized as having a common dynamic algebra and
hence as having a common set of dynamic con-
straints.

The above result is simple but not trivial. Dif-
ferent Hamiltonians, composed of different oper-
ators, can generate the same dynamical algebra
and hence give rise to a common set of constraints.
For example, the operator H, assumed above to be
absent from the Hamiltonian [i.e., h, (t) =—0, cf.
Eq. (2.35)] may be present in some other Hamil-
tonian H'(t) [i.e. , h|(t) a0]. Yet, H(t) and a'(t)
should rightly be considered members of the same
family.

Such a minimal set is known as the Lie algebra"
generated by the operators that appear in the Ham-,
iltonian. The coefficients C"„are known as the
"structure constants" of the algebra.

We shall refer to the Lie algebra defined above
as "the dynamical algebra" and to the operators
H„as the elements of the algebra. These elements
will turn out to be the building blocks of the form-
alism.

We now show that the set of "common con-
straints, " introduced in Eq. (2.36) as the set
closed under commutation with every operator in
the Hamiltonian is necessarily also closed under
commutation with every element of the dynamic
algebra. The proof is based on the Jacobi identity

[[A,B],C]+ [[B,C],A]+ [[C,A],B]=0. (2.40)

Consider an element of the dynamical algebra,
say H, = [H„,H„] which is not an operator that ap-
pears in the Hamiltonian [i.e., h, (t) =-0 in Eq.
(2.35)]. Therefore the case n = I was not included
in the definition, Eq. (2.36), of the common con-
straints. However

[[H„,H„],A„]=[[H„,A„],H ]- [[H„,A„],H ]
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H. Dynamic constraints

p(t„) =. exp{- gt„(t,}tt„—Q}(t,)tt),
??

(2.43)

We need to prove that the additional constraints
are present if and only if they are present in
p(t, ), i.e. , only if at least one of the Lagrange
parameters &„(t,), X,(to), etc. , are nonzero.

By construction, the operators H„evolve only
into other operators that are elements of the dy-
namical algebra. Hence, UA;U =ZGIIA& [cf. Eq.
(2.1V)] now reads

The constraints have been defined as a set of
operators that is closed under commutation with
each one of the operators H„ that are the elements
of the dynamical algebra. There is one set of op-
erators (the "dynamic constraints") that will in-
herently satisfy this condition, i.e. , the set of op-
erators that is, itself, the dynamical algebra [cf.
the definition, Eq. (2.39), of this set]. It follows
that the set of constraints can include all the op-
erators that are the elements of the dynamical
algebra but may include additional operators.

The origin of those, sometimes present, addi-
tional constraints is readily traced to those con-
straints that were required to specify the initial
state p(t, ), Eq. (2.12). If the initial state can be
fully specified using only (some or all) dynamic
constraints then these suffice throughout the col-
lision. If one (or more) additional operators are
required to specify p(t, ) then the set of constraints
will include additional operators which are not
dynamical constraints.

Let the set of constraints be divided into the
subset (H„}, comprising all of the dynamic con-
straints and the remainder, say the set of oper-
ators B„,B„B„.. . . The initial state is thus de-
scribed by

f(GHe II) 1 (G-1)ll eB)1

p ( GB, B)-1. i

with (G ) 'B=-(GB'II) G 'B(G ' )
The time evolution of the expectation values

[cf. Eq. (2.2V)] implied by the form of G '

(H&(t) =(H&(t )(G" ") '

&B&(t) = &B&(to)(G") '+ &H&(t.)(G ')"',

(2.4V)

(2.48)

(2.49)

verifies what is already evident from the operator
equations, Eqs. (2.44) and (2.45). The expectation
values of the dynamic constraints at any time t de-
pend only on their initial values and on the dynam-
ical block of the G matrix, (i.e., G "' . It will be
shown that G '" is dependent only on the dynamic
constraints). The other constraints have no influ-
ence whatever on the evolution of the dynamic con-
straints. The additional constraints contribute at
time t if and only if one (or more) of them were
required to specify the initial state.

As before, the Lagrange parameters transform
in an opposite manner to that of the constraints
[compare Eq. (2.2V) to Eq. (2.18)]. Thus, if we
arrange the Lagrange parameters as two column
vectors then, with the form, Eq. (2.46), for G

t(.„(t)=G"'"X„(t)+G"' XB(t ), (2.50)

X (t) =GB BX (t,). (2.51)

HI. EXAMPLES

The result, Eq. (2.50), brings out one point which
is possibly not evident from Eq. (2.48). Even if in-
itially no dynamic constraints are required [so that
AB(t, ) =0] they may contribute during the collision,
[&„(t)&0]. Not so for the additional constraints.
If they were not initially required [i.e., if XB(t ) = 0]
they will continue to be absent at aD subsequent
times.

UH„U'= Q G„„H„, (2.44)

and all the elements of the type G,„are.identically
zero. But for the additional operators

UB„U =QG „H Q+G B (2.45)

(G"" G"')
( p GB.Bj

(2.46)

where G"'" is the matrix elements G „, G"'~ the
matrix of elements G „, and 0 is the matrix of
zeros corresponding to the matrix elements G,„.
The same block structure obtains for G ',

The G matrix can thus be arranged to have a block
of zeros

As illustrations of the method we solve two sim-
ple collision problems, obtaining explicit results
for the final-state distribution and for the 8-ma-
trix elements. Our aim is not only to apply the
techniques of Sec. II, but also to introduce the
more abstract ideas of Secs. 1V and V in a con-
crete context before discussing them in more gen-
eral terms. We shall thus refer ahead and would
like to invite the reader to return to this section
after he has examined the rest of the paper.

A. Forced harmonic oscillator

Consider a, harmonic oscillator (a molecule or a
vibrational nucleus) acted upon by an external
time-dependent force. This force can be taken as
due to the perturbation induced by a structureless
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H =ri(u(P2/2+Q'/2),

V =F(t)q =2't'ttf (t)Q .
(3.1)

particle moving along a classical trajectory. The
model has been used in both molecular" and nu-
clear" physics and the scattering matrix for the
problem is available in closed form. ' The same
Aamiltonian has also been extensively discussed
in quantum optics, " leading to such results as"
"an initial coherent state will always remain co-
herent. "

Introducing reduced position (Q) and momentum
(P}operators P=(mK&u) ' 'i), Q=(m(0/h)' 'q, we
can write the Hamiltonian FI Hp+ V as

ample in Sec. III C below), obtaining a set of op-
erators that is closed under commutation with K
Since N is an element of the dynamical algebra the
set of constraints coincides (for this case) with
the dynamic algebra. Hence, for subsequent times
t [cf. Eq. (2.11)1,

p(t) = exp[-P(t)N —r(t) a —r*(t ) a —Q(t)] (3.6)

There are four [P(t }, Rey(t), Imy(t), A (t)] time-
dependent Lagrange parameters. Their equations
of motion, Eqs. (2.16), are specified by the'ma-
trix z,

sP(t ) 0
Bt

Here e and m are the frequency and mass of the
oscillator and f(t) defined via Eq. (3.1) has the
dimensions of frequency. An alternative expres-
sion for EI in terms of creation and annihilation
operators a=2 't'(Q+iP}, at=2 ' '(Q —iP) is

H(t) =Stoa tab+[ f (t)a+f *(t)a ], (3.2)

srt = -i~r(t ) +if *(t )P(t ),
sr*i) ' =i~r*(t) -tf(t)P(t)

= t [f*(t)r*(t) -f (t )r(t )1 .

(3.7)

where we have shifted the zero of energy by —,'Se
and have allowed for a more general coupling
term, "' "[in Eq. (3.1)f(t) is real].

The dynamical algebra generated by the Hamil-
tonian is obtained by examining the commutation
relations between all the operators that appear in
H(t}. Putting Ã=a a,

[N, a] = -a, [N, a ] =a, [a, a 1 =I . (3.3)

The only new operator that appears is the identity
I which commutes with all the others. The dy-
namical algebra is thus four dimensional and con-
sists of four operators I, a, a, ¹

The matrix o. [cf. Eq. (2.13)] is now immediately
available. Using the commutation relations [Eq.
(3.3)] and the order I, a~, a, N

o f(t) -f*(t)

These equations can be readily integrated (for
reasons which will be discussed below). In par-
ticular we note that the Lagrange parameter of
(the reduced energy) N is time independent and the
complete solution of Eq. (3.7) is

P(t ) =P(t.),
r(t) ="-'""[r(t.) — (t, t.)P(t.)l,

y*(t) ="'""[r*(t.) -~ *(t, t.)P(t.)1,

X,(t) =A, (t )-n*(t, t )y(t ) —o.(t, t )y*(t )

+
I ~(t, t.) I'P(t. ). (3.8)

Here y(t,}=y*(t,) = 0 for the initial state, Eq. (3.5),
at =t —t p and

0 (d f*(t)-
(3.4) (3.9)

0 0 0 0

Say now the initial state is a thermal distribu-
tion over the oscillator states. Then

p(t ) sl 8 (to) )((-)(0-(f .)1 (3.5)

Here P(t, ) =K&u!OT, where T is the initial temper-
ature and A,„ the Lagrange parameter conjugate
to the identity operator, is, as always, "'"the
logarithm of the partition function. The set of
constraints is constructed by starting with N and
I (which are present at t, ) and, by taking their
commutators with H (and so on, see another ex-

The solution, Eq. (3.6), has an obvious formal
disadvantage. The Lagrange parameters become
rapidly oscillating functions of time as 4 t in-
creases. Yet these oscillations are "uninterest-
ing" being the reflection of time evolution under
the unperturbed Hamiltonian. By going over to the
interaction picture these oscillations will be fac-
tored out [cf. Eq. (3.36) below].

There is a corresponding set of equations of mo-
tion [cf. Eq. (2.19)] and their solution for the mean
values of the constraints [i.e., (I)(t) =1, (a~) (t),
(a) (t), and (N)(t)].

In conclusion, an initial state of the form"
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B. Information theory

For the problem of the forced harmonic oscilla-
tor the results obtained are as follows: Say the initial
state is thermal, Eq. (3.5). Then, the initial partition
function is wellknown, e'"0' = (1 —e' @) ', where P
=nor/kT or

~, =-ln(l-e'-") . (3.11)

p =exp[-PN- ya —y*a —X,]

-=exp[-p(a~ -w*)(a -so) -Z,]
= exp [ PN-—g P - A Q —A ]
= ex-p[[ 'p=[(P V-&)'+(Q —Vo)'] —g} (3.10)

[with -y=Pw, A = P-g~=i(y* —y)/2't', Xo= —Pp
=(y*+y)/2' ' A. =A, --'P(p'+ p,

' +1)] will always
retain this functional form since the set of con-
stzaints is identical to the dynamical algebra. The
time evolution will only change the values of the
Lagrange parameters, except that P [cf. Eq. (3.8)]
will not vary with time, and that w(t) =w(t, )+
n(t, t,).

since N= ~(&P'&+ (Q2))+ 2i([Q, P]&, the normalization
condition is indeed inherently satisfied, being an
immediate implication of the Heisenberg uncer-
tainty principle. To see this explicitly, note that
if we define (hP)' =(P'& —(P&' & 0 and similarly
for (AQ)' then the uncertainty principle is"

2(t P)(& Q) ~
I & [ Q, P]) I.

gow, since (a —h)'& 0,

(3.15)

C. Nondynamic constraints

We have thus far considered initial states of a
special type, where the constraints required to
specify the state are all dynamic constraints, i.e.,
are all elements of the dynamical algebra. Say
now N' is required to specify the initial state.
This will be the case if one wants an initial state
where the oscillator eigenstates are clustered
about some mean value, for example,

(~P)'+(~Q)"-2(~P)(~Q) - l&[Q, P]&I, (3.16)

and the end inequalities in Eq. (3.16) are the nor-
malization condition.

At later times Eq. (3.8) gives, with A, (t ) =Ao.
~'. =4+ Io' I'p =&, + la' I'p =&, +

I y I'/p (3.12)
p(t, ) = exp[-q(t, )(N- n, )' —A (t,)] . (3.17)

We now have A.,(t) as a function of the three other
Lagrange parameters P [which is not changing
with time, cf. Eq. (3.8], y, and y*.

For the mean values of the constraints we have

If weletq(t, )-~, only the state with n=n, will
contribute to p(t, ).

The set of constraints for p(t, }need now be ob-
tained. We first take the commutator of N' with
all elements of the dynamical algebra (I, a, a, N).
Only a and a~ give rise to nonvanishing commuta-
tors

&"&= -"((Q&-t& &)=
sy p

-BX'
&a)=2 '"((Q&+t(P&)= s,' =

-'(&P&'+(Q&') = lyl'/P =
I

I'.

(3.13)

These equations can be inverted (if so desired) to
yield the Lagrange parameters in terms of the
constraints

P =»/l+[&N& -(&P&'+&Q&')]-'},

p 'Re(y)=(Q& ~ 2 ' ' or p 'Xo =-(Q&,

P 'Im(y)=-(P)2 '~ or P 'X =-&P&.

(3.14)

The reason we do not have to worry about whether
the partition function exists' is that the partition
function exists when p(t) can be normalized. But
Trf p(t)}is invariant in time, Tr(p(t )}= Tr( Up(t, ) U }
= Tr(U Up(to}}=Tr(p(t, )}. Hence, if we speci-
fied an acceptable initial state, the rest is as-
sured. Just to be on the safe side, we verify that
if p(t, ) can be normalized then P should be positive
or [cf. Eq. (3.14)] that (N& &-,'((P&'+(Q&'). But

[at, N'] =-a~-2a~N,

[a, N'] =a+2Na.

The operators a, a N, a, and Na are thus pos-
sible constraints (i.e. , they can evolve out of N').
The operators that can evolve out of a N and Na
ar e d etc rmined by taking their commutators with
the elements of the dynamical algebra,

(3.18)

[ N, a~N] =a~N, [N, Na] =-Na,

[a, a~N]=2N, [a, Na]=a',

[a, a N] =-at', [a~, Na] = —2N.

(3.19)

Three new operators a2, a~', and N = a a are ob-
tained in Eq. (3.19}as additional constraints. Tak-
ing their commutator with the elements of the dy-
namical algebra, we obtain no new operators.
Starting with N' and the identity as the only con-
straints in the initial state, we have generated a
closed set of nine constraints: I, a, a~, N, a',
a~' a~N, Na, N'

We shall shortly determine the G matrix [cf. Eq.
(3.38) below] and hence p(t) for this problem. Be-
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fore that we need raise a more general question.
Does the number of independent parameters in the
solution indeed increase or does the number of
parameters reflect the number of dynamic con-
straints, and hence is the same for all possible
initial states of the family of similar collisions.
The latter is, as expected, the correct conclusion.

D. Time evolution in the interaction picture

The new concepts of the G matrix in the inter-
action picture and the G matrix as a function of
the "group parameters" are introduced in this sec-
tion as means of further simplifying the solution
of the forced harmonic-oscillator problem. A
general discussion is provided in Sec. IV.

The key formal tool will be the following expan-
sion" "for two linear operators A and B

e" Be " =B+[A, B]+( /I!2)[ A[ AB]].(1/3!)[A,[A, [A,~]]]'"
=Q (j!) '( daA)' B= e ""B, (3.20)

j=p

which is derived from the Baker-Hausdorff ex-
pansion. "" The notation (adA) denotes a (linear)
operator such that

(adA)B =[A, B], (adA)hB =[A, [A, B]] (3.21)

etc.
Taking the interaction picture to coincide with

the SchrMinger picture at the time k=0, the po-
tential in the interaction picture (when H, is time
independent) is given by

(

I/ (t) (t Hot/h) y(t )
-t Hot/h e[{tt/h)(adHp)] y(t ) (3 22)

three dimensional.
In terms of the elements of the dynamical algebra

the evolution operator can be written as [cf. E(I.
(4.3) below]

Ut (t) = exp[n(t) a~ ct—*(t ) a+i tt(t)I], (3.26)

where n(t) is a complex parameter and tt(t) is real.
The three real parameters in U, (t) are referred to
as the parameters of the (dynamical) group. We
shall obtain explicit results for their time depend-
ence (cf. Sec. III F) but first, we evaluate the G
matrix in the interaction picture.

E. 6 matrix

For any set of constraints the G matrix is de-
fined by

UA„U =Q A, G,„. (3.27)

The motivation for the introduction of the "group
parameters" is now clear. Irrespective of the num-
ber of constraints in the set, the G matrix is a
function only of the group parameters whose num-
ber equals the dimension of the dynamic algebra.
Even when additional (i.e., nondynamic) constraints
need be introduced„ the evolution operator and
hence C depend only on the parameters of the group
(and these are the parameters of the dynamic
constraints" alone).

Using the expansion, E(I. (3.20), to evaluate E(!.
(3.27) one finds that for the dynamic constraints
the expansion terminates after the first commuta-
tor

Ua ~ U~ = exp[n (ada t) —ct *(ada) +i p, (adI )]a

=a~+[aa~ —et+a+i ld. , a~] =a~ ct*-
The operators a and a~ are eigenoperators of adHO. UaU~ =a-e, UIU~ =I. (3.26)

(adH, )a =—[ H„a] =-Ko)a,

(adH, )a —= [H„a ]=K&da . (3.23)

Hence the G matrix in the interaction picture is

Therefore they are also eigenoperators of
exp[(i t /5)(adH p)] .

f(it/&)(adHp)] a (-intr t)a

[(i t/&)(adHp)&a& &(&~t)a& (3.24)

V (t) =It f f(t)ae ' ' +f *(t)a~e' ']. (3.25)

The determination of the potential in the interac-
tion picture using V(t) from E(ls. (3.2). and (3.24) is
thus immediate.

G'= 0 1

0 0

(3.29)

G' has the upper triangular form expected (cf.
Sec. p Q) for a solvable dynamical algebra.

The set (I,a, a~) is also invariant under commu-
tation with H, . In Sec. IVC the G matrix in the
Schrodinger picture will be expressed in the form
Q'6 . The G' matrix is defined by

The elements of the dynamical algebra in the in-
teraction picture are the elements of the algebra
generated by a and at. Since [a, at] = I, the al-
gebra consists of three operators: I, a, a~. It is

(3.30)(-i Hpt/&)g (iH pt/5) ~ Gpr sr si
s

[and is hence the G matrix for the Hamiltonian H„.
compare E(I. (3.31) to E(I. (2.30)] and G, the G
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matrix in the interaction picture, is all that is re-
quired to determine p,„t, the density operator for

Using Eq. (3.24) we can write G' immediate-
ly for any time interval At

0

(-i~ht)

0 0

0 0

0 -ne( '~~t)
(3.36)

(i~2 t) ~ (i& ht)

Go 0 (-i~ 6t) (3.31)

0 0 e(i~At)

When we multiply G' by G, the resulting G ma-
trix has strongly oscillatory diagonal elements and
no definite limit as At —~, in contrast to G which
is well defined in that limit.

Appendix A provides a general proof that the G'
matrix will have oscillatory matrix elements
whenever H, is time independent.

To solve for the evolution of an initially thermal
state we start with N and I as the only initial con-
straints. In the interaction picture N is not an
element of the dynamical algebra but [VI, N] is in
the algebra so that the set of constraints is I,a,
a~, N. To compute G' we only need to compute
U&NUI . Putting Uz = e" and using Eq (3.26). for
UI [A, [A, [A, a]]]=O, (3.37)

and verify, using the general result &(f) =G(t,
f )g(i,), gf =i -f, that Eq. (3.36) is indeed equiva-
lent to the result Eq. (3.8), of direct integration.
The novel point is that all the oscillatory time de-
pendence of G has been factored out by working in
the interaction picture, and as discussed in Sec.
IV C, G suffices to determine the distribution of
final states.

When N' say is an initial constraint we need to
compute UA„U~ for A„=a ', a', atN, Na, and N'.
Putting U = ei ~, using the expansion (3.20) and
using Eq. (3.26) for U', the procedure is quite
straightforward. For example,

[A, a ] =[na —n*a, a '] = -2n*at,

[A, [A, a ']] = [na —n *a, -2n *at] = 2n*',

[A, NJ = [na —n*a, Nj = -nat —n ~a,

[A, [A, N]] = [nat —n*a, —nat —n*a] =2InI',
01

a~2U't = a~2 2(y+a~ + (y
+2I I (3.38)

[A, [A, [A, N]]] =O. (3.32) Proceeding in this fashion we obtain the G ma-
trix.

Ur NUs =N —na —n*a+ InI 2 (3.33) F. Equation of motion for the group parameters

-n* -n InI'

0 1

0 0

0 -n

0 1

(3.34)

Ordering the constraints as I,a, a, N and using
Eqs. (3.29) and (3.33)

The only parameters in the G matrices are the
group parameters in U. Moreover, as expected,
the phase factor [denoted by p in Eq. (3.26)] in the
evolution operator does not appear in G. The
equations of motion for the group parameters are
considered in Sec. VE. For the present problem
Eq. (5.16) is of the form

1 -xn * xn -dP /dt-
i dn/dt

Since N is not a dynamic constraint (in the inter-
action picture), G' has the structure noted in Eq.
(2.46). In particular, since G„z= 1, the I.agrange
parameter of N is time independent. The set of
constraints is also invariant under Ho. Ho and N
commute and using Eq. (3.32)

0 0 1 -i dn*/dt

(-i(d Et) 0

Performing the integration over x
l-2 n* -y O. 0

0
(3.35)

0 '1 0 f*(&)e' "
0 0 1 ~

.=in* f(t)e' ' 'g

One can now obtain the matrix G or in =f *(t)e~' '~ with the boundary condtion n(f„
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t,) = 1. We recover our previous result, Eq. (3.'9).
What have we gained'P To begin with, it is not
necessary to know u(t, t,) as a function of t in or-
der to determine the G matrix and hence A. [n(t, t,)].
Moreover, we have explicit illustrations that for
three different sets of constraints the t" matrices
[Eqs. (3.29), (3.36), and (3.38)] depend only on the
parameters of the group.

G. Scattering matrix and the density matrix

The technique of group representation (discussed
in general in Sec. V) is employed to obtain ex-
plicit results for the scattering matrix and the fin-
al density matrix (for a thermal initial state) of the
forced harmonic oscillator. The derivation is done
in detail which will not be repeated for the case of
rotational excitation (Sec. III K and Appendix 8).

Miller" introduces a Lie group S, (Sec. 4.11 of
Ref. 42) and its (X, I) unitary representation (Sec.
4.14 of Ref. 42). There are four elements in the
Lie algebra and their (A. , l) representation (l &0, !(.

integer) is (in Miller's notation)

J'g„= (n —X) (|I„,

Using the product-form representation

p —e(-8%e(y+ ) e(y ) ( )

one finally obtains"

y, = 2o.e('~'& sinh(-.'P),

y =2n*e s '! sinh(2P),

(3.43)

(3.44)

The product form Eq. (3.43) enables us to recog-
nize p,„t as an element of the complex Lie group
denoted as G(0, 1) by Miller. " (This is just a
complex version of the real Lie group S,). Using
Eq. (4.26) of Ref. 42,

& I p...l ) =( '/ ')" '" ' '"'(r ) "L. "(-y.y ).
(3.45)

matrix of the forced harmonic-oscillator problem.
To derive a less standard result. consider a ther-

mal initial state p =e 0), e( o =1 —e, then
we saw that [cf. Eq. (3.10)] the final state after the
collision is

P,„,= exp(-P[N —o,a —n*a+ Ial ] —~o) ~ (3 42)

Eg„=If„,
Z'q„= [t(n+ 1)]"q„„,
J-y„= [tn]'"q„, .

(3.39)

r, r =(1-e' ")'e'"l~l', (3.46)

As a check of this result consider the P-~ limit,
corresponding to the oscillator being initially in
the ground state. Now [cf. Eq. (3.44)]

For A, =0, /= 1 we can make the identification J'
—Ã=a a, E—I, J —a, J a. It follows that
we can use the (0, 1)-unitary representation of S,
to obtain the matrix elements of the evolution op-
erator. Miller works with the product representa-
tion (p. 116 of Ref. 42)' of the group elements (Sec.
IVA). Using the standard result

(&+» (» (~) (-I:~.»/»

where [A, [A,B]]= [B, [A, ,B]]=0 we obtain

and using the explicit polynomial expression for
the Laguerre I.„=I.'„

(3.47)

or

(3.48)
8

Equation (3.48) is the known result for an oscilla-
tor that is initially in the ground state.

{na~ -n+a+il!I) =- (aa ) (-n a) (iP -tf)f) /3)

or, in Miller's notation

(i &/& ) ("iP/2 ) ri(P+ 3i/ )&

(3.40) H. Classical probability and the classical limit of the quantal

probability

Starting with a thermal initial state, the classi-
cal density function at later times is [cf. Eq. (3.10)]

where (r corresponds to --, (x -iy) or equivalently
to —.re(' ! in the notation of Ref. 42, Eq. (4.123).
Thus

&„I0, I~) = e('v) e(-I~I'/@(n t/~ t) u'

&& (-o'*)" "L. "(I~l'). (3.41)

Here L,,(Z), with k, s integers, k+s& 0 are the as-
sociated Laguerre polynomials. Taking the mag-
nitude of a(t, t,) for t-~, to--~ [(cf. Eq. (3.9)],
Eq. (3.41) yields the well-known" result for the S

p(P, Q) = exp( !3N ~Q@ -~OP ~0)

where N is the classical reduced-oscillator Ham-
iltonian, N+ ,' =2 (P'+Q'). —Tocompare Eq. (3.49)
with the quantal result, Eq. (3.45), for &nl pin) it
is necessary to integrate Eq. (3.49) over a region
in phase space defined by

n - (P~+2@ ) ~n+ 1. (3.50)

More precise correspondence rules can, of
course, be provided" but the simple prescription,
Eq. (3.50), will suffice for our purpose. To carry
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the required integration it is convenient to intro-
duce action J and angle 0 variables in the usual
manner P= (2 J)'r' sin(8), Q = (2J)'r'cos(8) so that
dPdQ =dJd8 and N= J —2. We further define r and

Q by ~ cosQ = (2J)'r'A, ~ sing = (2J)'r'A~, and us-
ing Eqs. (3.13) and (3.14), r = [2J(Ao2 + A&)]'r2

=2J'r'P~n(. With these changes

The classical limit is thus a high-temperature,
high-final-quantum-numbers limit. Just going to
high temperatures [i.e., Eq. (3.56)] will suffice
only under the extreme condition y'«n' or, ex-
plicitly, P'«n~n~ ' which means [cf. Eq. (3.13)],
where )n~ P'= ~y~'/P') that A(N) «nP in the col-
lision.

p( J, 8) = exp[ PN -rc—os(8 —cp) —A,,] . (3.51)

To integrate over the region specified by Eq.
(3.50) we need to integrate over 8 from 0 to 2m and
over J from n to n+ 1. The first part is immedi-
ate~

d8 exp [-PN rc—os(8 —Q) —A.,]

= e'-'"-"'(2v) J,(i~), (3.52)
I

where J, is the Bessel function of zeroth order.
The integration over J is hard (since r is a func-
tion of J) and so will be done by the mean value
theorem. The integral of Eq. (3.52) over J from
n to n+1 is simply the integrand evaluated at J
=n +~(i.e., N=n). Finally, we need the partition
function. At t- -~ this is just the classical ther-
mal result e "0 = 2v/P. At later times [cf. Eq.
(3.12)] this is

e'"' = (2v/P) e tr I'l~& (3.53)

Collecting all our results, the classical proba-
bility to find the oscillator with energy in the range
(n ——,'+2)k(u=nhu) to (n+ 1)ku) is

P.(~) =Pe' '" '~'~ 'J.(i2PI~I&~) (3.54)

The significance of Ref. 34 shouldnowbe obvious.
Some finite effort is required to "quantize" the
classical results, i.e., to bring them to a form
where they can be compared with the (necessarily
quantized) experimental results.

The quantal result corresponding to Eq (3.54) is.

given in Eq. (3.45), Po = (n~ p~n). Using the defin-
iti.ons, Eqs. (3.8) and (3.12),

Po(n) = (1 —e' ') exp[-~u~'(I -ei ')]

&&ei "L„[-4[o.[' sinh'(~P)] . (3.55)

To take the classical limit, we first have to go
to high (reduced) temperatures, P = (h~/kT) «1,
whence Eq. (3.55) reduces to

P, (n) Pe&-'"-'" &L„(-~~~'P').
8~o

(3.56)

Next, going to the limit of high quantum numbers,

L„( y'/n) = J,(2iy), -
ff~ oo

(s.57)

we see that Eq. (3.56) reduces to Eq. (3.54) with the
substitution y= ~ct~Pn' ' in Eq. (3.56).

I. Multipole rotational excitation

The (long-range) interaction between a struc-
tureless particle moving along a classical trajec-
tory and a rotor (or a symmetric top) can be de-
scribed by a time-dependent potential

I'(t)= Q Q 5*(t)Q (3.58)

& (t)= g s*.(t)Q .. (3.59)
m=.-l

The elements of the dynamical algebra are thus the
set of 2l+1 (commuting) operators Q, . The cr

matrix for such a dynamical algebra is [cf. Eq.
(2.38)] identically zero and with

Ur = exp -(i/0) g p "Q,„
tn

UrQi Ur=Qi ~

(3.60)

(s.61)

The t" matrix representation of the dynamical
algebra is simply the unit matrix. It follows that

t
S, (t')dt'. (3.62)

%e shall treat the general case elsewhere and now
continue to examine the I = 1 (dipole) case. It is
then possible to regard the three group parameters
(the p's) as components of a vector p, . When the
colliding particle follows a classical trajectory
determined by a central potential the motion is
confined to a plane. The component of p, perpen-
dicular to this plane will vanish. To see this, note
that for a central potential (say of the form s ",
where r is the relative separation)

Here Q, is the spherical component of the electric
2' pole of the rotor or the top. The central (l =0)
term in the potential governs the relative motion.
Such potentials have been extensively employed in
both nuclear"'" and molecular"'" collision the-
ory. Very many of these applications also invoke
the sudden approximation'" where the collision
time is assumed to be short compared to the rota-
tion time of the top. In this approximation, Eq.
(3.58) is also the potential in the interaction pic-
ture. %e now consider some particular multipole
so that



APPROACH TO COLLISION PROCESSES

g(t) f [v(t)lr '(t)jdt.
~CO

(3.63)

It also follows that if n is odd (e.g. , Coulomb ex-
citation) it is possible to choose a coordinate sys-
tem such that a second component of p, will vanish
at t- . The one component of p that will survive
after the collision is the one along the apex line
of the trajectory (i.e. , p, in coordinate system 8
of Alder arid Winter" ).

[L',Q. ]=2Q.+(Q L, -Q.L ).
Here

L» = L~+iL„,
and similarly for Q's

Q, = Q„+iQ„Q,=Q, .

(3.64)

(3.65)

(3.66)

The Q, 's and Q, =Q, are the spherical compon-
ents of the dipole vector operator. " The new op-
erators in the first round, Eq. (3.64), are Q, L
and Q L„and in the second round

[Q&., Q ]=Q [L.,Q,]=-Q Q.=-Q,Q . (3 6'I)

The new operator is Q,Q . In the third round

[Q Q„Q.]=0 (3.68)

and the set L', Q„Q,L,Q L„Q,Q (and I) is.closed
under commutation with Q, . The Gz(t- ~) matrix
is 6x6

Q, QQ QL, QL
1 0 0 0 0 0

1 0 0 0 2'
Q.Q

Q L,

g,L
0

-n' 2r

0 2r

1 -n'
(3;69)

J. G matrix for a dipole

Say the initial state is thermal. The Hamilton-
ian of a dipole is of the form L'/2f, where I is the
moment of inertia and L is the angular momentum
in the space frame. We require an invariant set
generated by L'. If all we require is the matrix
for t- + ~, the set should be closed under commu-
tation with Q, only (since for f- ~, p„= p,„=0
when the z axis is suitably chosen). A somewhat
tedious computation yie1.ds [L„Q,] = ~2Q,; [L„Q,] =+Q„

[L., Q,]=[L,Q]=o,
[L„L ] = 2L;, [Lg,LJ = aL, .

(3.70)

These show that the set of six operators L„L„Q„
Q, is not only closed but is also an algebra.

The commutation relations, Eq. (3.VO) identify
the Lie algebra above as the algebra of the Euc-
lidean group ' E(3) in three-dimensional space.
This is the group of transformations correspond-
ing to a rotation about a fixed point followed by a
translation. (The group is discussed in detail in
Appendix B.) The dynamical group for dipole ex-
citation (Q„Q„Q ) is a subgroup of E(3) and is
simply the group of translations in ordinary space.
In order to discuss excitation of a symmetric top
(rather than just a rotor) it is more co'nvenient
however to work with the six-operator E(3) group.
(Explicit results are provided in Appendix B.) The
-reason is that all irreducible unitary representa-
tions of E(3) are characterized"'" by a pair of
real numbers (P, K), where 2K is integer. We
shall come (Appendix B) to identify K as the K
quantum number of the top (which is the projec-
tion of the angular momentum along the symmetry
axis of the top). K=O for the rotor. P is the intrin-
sic dipole moment of the top along its symmetry
axis. Thus, for the case of dipole excitation the
mathematician's notation is tailor made for the in-
tended physical application.

the column L'. None of the entries therein are
zero, except for that on row I. Hence, [cf. Eq.
(3.69)] L' evolves into all five dynamical opera'-
tors. In contrast it should be noted that the iden-
tity operator evolves alone. The partition function
is thus constant throughout the collision.

A set of constraints for finite times need be
closed under commutation with all three Q's.
In this case it contains 15 (as opposed to six)
operators. More constraints are required to de-
scribe the system during the collision than after
the collision. Analogous phenomena are quite fa-
miliar in the coupled-states formulation. It is
not too infrequently the case that more states are
significantly populated during than after the col-
lision.

A different invariant set is generated by the op-
erators L, and L,. The commutation relations are

[L., Q, l =~„[L., Q.] = o,

where ~ = p, (+ ~)/L
An initial state p„=~~ ""0'evolves into p,„, such

that at t , lnp, „t is a linear combination of all
six operators. To see this, one needs to inspect

K. Scattering matrix for dipole excitation of a rotor

We examine the properties of the scattering ma-
trix regarding it as the (P, K=O) representation42'~
of the Euclidean group E(3). The more general
case, rotational excitation of a symmetric top, is
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discussed in Appendix B. The bases for the rep-
resentation are the eigenvectors for the symmetric
top (i.e., " !KLM)) for K=0, which are simply the
spherical harmonics (i.e., " !LM}). The scatter-
ing operator is given by [cf. Eqs. (3.60) and (3.63)]

s = «p[-(i/tl)q, (,— )qJ

1 (2L+1)(2L +'1)(L —M)t(1—M, '!))
s,'se —

2 (I yM)! (L yM»}!

(3.77)

and P~z(z) are the associated Legendre functions.
The symmetry properties

= exp(-i')»'Qq)» (3.71) I z N(x) L I' 2((

r = p, ,(~, -~)jK, i.e., it is an element of the trans-
lation group in three dimensions corresponding
to a translation. along the z axis. Q, P cos8 where
as before p is the intrinsic dipole moment and 8
is the angle between the dipole and the apex line of
the trajectory. The matrix element (L'M' ~8 LM}
is nonvanishing only for M' =M (a translation can-
not change the projection of L, i.e., [cf. Eq.
(3.VO)], L, and Q, commutej. Hence we can de-
fine a function Jz, z „(f»r) by

z,, , „(P~)=(I,'M!e( *"'"!(LM-}, (s.v2)

for L and L' non-negative integers and M an in-
teger such that M &L and L'.

The functions Jz, z „(Pr) will be shown to be a
finite linear combination of ordinary Bessel func-
tions. In the mathematical literature" they are
regarded as generalizations of the Bessel func-
tions. The use of group-theoretic techniques to
study their properties is discussed in Appendix.
B. Here we consider just the main results.

A generating function is obtained directly from
the definition of J~, ~ „as matrix elements of the
representation of the scattering matrix

~z', z, )2((x) =~z„z;))((x)» (s.v8)

are evident from this representation.
An explicit expression is derived in Appendix B

leading to a finite series representation

z', z„~(x)=+z'z)»g ( '}'( +
(L' l L)
Io 0 0

Here

t'L' f

X
x

(M 0 —M)

(3.V9)

I,
(

- f - r. +I,'.
Furthermore,

l +L +L' = even number.

(3.81)

Bz,z„=(—1)"[(2L+ 1)(2L'+ 1)]'~2, (3.80)

and j,(x) is the spherical Bessel function of the
first kind. The summation in Eq. (3.79) is finite
for the first 3-j symbol" restricts the summation
over / to the "triangular" condition

S ~Li!f}=Q Z, , , „(P~)!L»M}. (3.73)

Explicitly

~zu(9» ~) =Z ~z' z, zz(P+) ~s.'z»(9» ~) ~

(s.v4)

An integral representation is immediately avail-
able from the observation [cf.Eq. (3.74)] that J'z, z „
is just the matrix element of a plane wave between
two spherical harmonics

1

s;, z, u( }= s, 'zu ' '""~z'( )Pz( ).
1

Here

(3.V6)

Substituting t = cos6), x =pr

c
(2L + 1)(L M)!

(L +M)!

Z, . , „(x)P,".(f).(2I '+1}(L'—M)!
L'=I ml

L'+M t

(3.76)

Special limits of Eq. (3.79) include, in particular,
a rather simple result for excitation of a rotor
initially in the ground state

Zz ~,'= (-i)'(2L +1)'~'jz(x) . (s.82)

The expected"" proportionality between the trans-
ition probability (~Zz, o ~

) and the final volume in
phase space (2I. +1, since the relative motion is
treated as a time-dependent force) is very evident
in Eq. (3.82).

IV. DYNAMICAL GROUP

The purpose of this section is twofold. First,
invoking the concept of the dynamical algebra, we
introduce the dynamical group. This makes it pos-
sible to solve for the time evolution operator of
the whole family of similar processes in one go.
The different members of the family differ in the
values of the parameters in the evolution operator
but the algebraic form will be the same for any
initial state whatever. " %e then show that the
t" matrix, for the common set of constraints of
similar reactions, can be similarly determined
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for the entire family.
The second purpose of the section is to examine

the asymptotic (t-~) limit. This is done by using
the interaction picture. We find the G matrix can
be factored, G =O'GI, where GI has a well-defined
asymptotic limit. G is then identified as the G
matrix in the interaction picture.

It follows that the elements of the dynamical alge-
bra (i.e., the operators H„) can be considered as
generators of a dynamical (Lie) group. The group
property

(4.2)

implies that U( to+Ed, t, ) is an element of the group
and hence, as shown originally by Lie'~" may
be parametrized in the canonical form

U(t, t, ) = exp ——P u„(t, t, )H„ (4.3)

at least in the neighborhood of the identity [U(t„t,)
=I, u„(t„to)=0, i.e., for u„'s that are not too
large]. It will become clear that one can use the
parametrization, Eq. (4.3), to considerable ad-
vantage without having to specify the magnitude
of the coefficients u„(t, t,). The final results of
such manipulations will be functions whose argu-
ments are. the coefficients &„. For this reason the
u„(t, t, ) are termed "the group parameters. "
Specifically, they are the group parameters of the
canonical form.

The important result for the purpose of analysis
is the "fundamentaj. theorem" of Lie"" that the
(dynamical) algebra determines the (dynamical)
group. A family of similar reactions will thus
have the same dynamical group. We shall shortly
demonstrate that this implies that the G matrix,
regarded as a function of the group parameters,
will be identical for all members of the family.
A single G matrix will suffice to characterize the
evolution for an entire family of reactions. More-
over, the determination of G as a function of the
group parameters requires onjy algebraic opera-
tions. As is perhaps already obvious from Eq.
(4.3), the scattering matrix elements for different
reactions of the same family will also be the same

A. The evolution operator as an element of the dynamical group

The resolution of the Hamiltonian H =RA„(t)H„
was used, in Sec. II G to introduce the concept of
the dynamical algebra, as the Lie algebra gener-
ated by the operators H„[cf. Eq. (2.39)]. Inte-
grating the equation of motion for the evolution
operator in the vicinity of U(t„t,) =I, we find

(analytic) function of the group parameters.
Different reactions of the same family (i.e.,

same dynamic algebra) can differ only in the
value of the group parameters. Explicit non-
linear differential equations for the coefficients
u„(t, t, ) (the group parameters) will be derived in
Sec. VE. We have found these equations to be
quite practical particularly so when (cf. Sec. V G)
the dynamic algebra is solvable. There always
is the optional alternative of using an iterative
procedure to determine the u„'s as discussed by
Magnus. " Finally, as a last resort, numerical
methods can be used since, at least for small
u„'s. Magnus has proved that the solution exists.
It should be stressed however that the values of
the group parameters are not required for deter-
mining the analytic form of the G or S matrices.
They are only required if one wants to predict the
value of the matrix elements involved.

An alternative, ""product form" representation,

(4.4)

has been explored by Norman and Wei." They
have also shown that the representation is global
[i.e., also valid far from U(to, to)] for all solvable
I.ie algebras. The product form representation
can be arranged to yield very many different para-
metrizations for U. For example, the terms in
the product can be taken in different orders or'
some operators H„can appear more than once"
in Eq. (4.4), etc.

The product form representation has more flex-
ibility and is often more useful in practice.

8. G matrix for similar collisions

The construction of the G matrix for a particular
Hamiltonian was discussed in Sec. II F. Here we
consider the determination of a functional form for
G that is common to all processes with the same
dynamical algebra. The only difference in the G ma-
trices for similar collisions will be in the values
of the parameters.

The construction is straightforward and will also.
serve to prove a result which will be derived in
Sec. VD on more formal grounds: the G matrix is
a representation of the dynamical group.

Let the evolution operator define an ope'rator A
by U= e". Since A can be written as a linear com-
binatiori of elements of the dynamical algebra

(4.5)

we can use the d(H„) matrices, introduced in Eq.
(2.36), to define d(A) by



106 Y. ALHASSID AND R. D. LEVINE

[A,A, ]=P d„(A)A, ,

so that

(4.6)

U(x)A Ui(x) =e""A„e-""=gA G (x). (4.8)

d(A)=-(—Q u„(Gt,)d(U„).
n

(4.7)

Consider now the more general form U(x) = e"" and
an associated matrix G(x), i.e. , for any constraint

Qur aim is to derive a differential equation for
G(x) and to obtain the required matrix G as the
solution G(x) at x= 1. Taking the derivative with
respect x of both sides of Eq. (4.8)

&G,„(x)gA, =(A, U(x)A, U~(x)]=+ G„(A,A, ]=+ Q G„d„(A)A,=Q Q G„dd)A, ,
S

(4.9)

where [cf. Eq. (4.7)] d(A) is independent of x.
Since the constraints are linearly independent

BG,„(x)
= g d„(A)G,„(x)

t
(4.10)

or

SG(x)—„=d(A)G(x), (4.11)

with G(x=o) =I. Now d(A) is a constant matrix so
the solution of Eq. (4.11}is immediate, G(x)
= e"~'"'. Introducing the explicit expression for
d(A) from Eq. (4.7) we have for G -=G(x= 1)

G=exp — — u„ t, t, d H„
n

Here the matrices d(H„) [cf. Eq. (2.36)),

(4.12)

[If„,A„]=Q d, „(H„}A,, (4,13)

are common to all similar reactions and are time
independent. The only dependence on the paramet-
ers h„(t) of the Hamiltonian is through (time-de-
pendent) group parameters u„of the evolution
operator. Had we used a different representation
for U, say the product form, Eq. (4.14), then the
parametrization of G would change accordingly.
For the product form Eq. (4.14),

, ee ~

G=+ exp —— p.„(t,t,)d(a„) .
n

(4.14)

Again we note that, if so desired, an operator
H„may appear more than once in the product" and
that the order of terms is a matter of convenience.

To obtain explicit results for elements of G it is
still necessary to evaluate the exponentials in Eqs.
(4.12) or (4.14). This need be done only once for
all processes with the same dynamical algebra.
A more pedestrian route is to use the Baker-Haus-
dorff expansion, Eq. (3.20), with U= e". In prin-
ciple this will generate all the elements of the
matrix G by expanding UA„U~ for all the con-
straints A„. An example was provided in Sec.

III E. In Sec. pF we shall show that Eqs. (4.12)
or (4.14) provide a practical route also for the
determination of the inverse, G matrix re-
quired to obtain the mean value of the constraints
as a function of time, Eq. (2.28). Once G is known
as a function of the group parameters, obtaining
G ' reduces to a trivial operation.

~ BUI 8~~ Iin „' = VP)U„ ix P, = [v, (t), p'].

Here VI(t),

v, (t) = U,'(t, o)v(t) U,(t, o),

(4.16)

(4.17)

is the potential in the interaction picture. When
the time dependence of V(t) is due to a classical'
description of the. relative motion it is clear that
Vz(t)-0 as t- ~ and the equations of motion will
manifestly imply that UI and pr will tend to a con-
stant limit. Qtherwise one will need to appeal, as
.usual, ' '" to the adiabatic switching procedure.

Equations (4.16) have the same form as the cor-
responding equations in the Schrodinger picture
with V~(t) as the "Hamiltonian. " The discussion

C. G matrix in fhe interaction picture

As in other formulations of collision theory, the
interaction picture is introduced to factor out the
oscillatory time dependence due to evolution under
the unperturbed Hamiltonian H, . Thus, with p(t)
as the density operator in the Schrodinger picture,
one puts [U, =-U,(t, o)].

p(t) = U, p (t)U, . (4.15)

Since U, (t, o) is the evolution operator (from 0 to t)
under the Harniltonian H„Eq. (4.15) has the in-
terpretation that p (t) is the Schrodinger picture
density operator which, under the unperturbed-
time evolution from 0 to t, would evolve to p(t).
Since p(t) = Up(0)Ui, the evolution operator in the
interaction picture, U„p~(t}= U, p'(0) U', satisfies
U= U,U,. That p (t) does have well-defined asymp-
totic limits is suggested by the equations of mo-
tion in the interaction picture,
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U~(t, to)A „U~q (t, to) = Q A,G,„(t,to) .
S

The relation of G to G follows provided that the
set (A„) is closed under commutation with H(t) as
well (so that G can be defined). Then [with U
=- U(t, t,), etc. ],

UA„U = UoUIA, U~U~o = Q G,„A,

(4.19)

=Up GA, U~

or

=Q G„G,„A, , (4.20)

of Sec. ILG can thus be adapted to the interaction
picture by defining the dynamical constraints in
the interaction picture as the set of operators
closed under commutation with Vz(t),

[V~(t},A„]=Q e,„(t)A, . (4.18)
S

By taking the operators A, to be time independent
(i.e., theA, are operators in the Schrodinger pic-
ture) one can ensure (as in Sec. IIF) that similar
reactions will have a common set of constraints.
The corresponding matrix G in the interaction pic-
ture is introduced [cf. Eq. (2.30)] by

or, using Eq. (4.19) and the fact that ln p'(t) is a
solution of the I.iouville equation in the interaction
picture

X'(t) = G'X'(t, ) . (4.26)

The "interaction" Lagrange parameters corre-
spond to a density operator of maximal entropy
subject to the specified values of Tr(p'(t)A„].

It should however be noted that A„ is an operator
in the Schrodinger picture. Hence Tr(p (t)A„j is
not the expectation value of A„at the time t. The
proper interpretation is provided by Eq. (4.15),
p'(t}=U', (t, 0)p(t)U, (t, 0). In words, p~(t) can be re-
garded as a Schrodinger picture density operator
with the following history: First the system evolved
forward in time, under the action of the full
Hamiltonian. This leads to the density operator
p(t}. Then the system evolved backwards in time,
from time t to time 0, under the action of Ho. The
resulting density operator is p~(t}. Note however
that since Ho does not (by definition) induce transi-
tions p(t} and p~(t} correspond to the same distri-
bution of states. Tr(pr(t)A„]. is thus the expectation
value of A„ for the system with the time evolution
as described above. Qne can, of course, introduce
A„(t), the operator A, in the interaction picture
A~(t) = U~oA, U, . It follows from Eqs. (4.15) and
(4.21) that

G=GG . (4.21)

'Here G' is the G matrix for evolution under H„ ln p~(t) = —P X„(t)A~(t) .
r=o

(4.27)

UoA, Uo= Q G, ,A, , (4.22)

and can be factored out of the G matrix, leaving
behind a matrix G~= G~(t, t,) which dep—ends on time
only due to the interaction,

sG'(t, t,)
ih —

t
= Q'(t)G'(t, t,), G'(t„ t,) =I, (4.23)

Here the A.„'s are the same as in the Schrodinger
picture, Eq. (2.11), since they are conjugate to
the (A„)(t)'s and Tr( p~(t)A~(t)] = Tr(p(t)A„].

The relation of the XI's to the X's obtained (Sec.
II) in the Schrodinger picture can be determined
provided the set (A„J is also closed under com-
mutation with H so that it suffices to characterize
also the evoluting under H, Then

and with a well-defined asymptotic behavior [n (t)
vanishes for t-+~].

The well-defined limit of G~(t, 0) as t-~ and the
corresponding well-defined limit of G~(0, t,) as t,- -~imply, usingthegroup property that G (+~,
-m),

g X„(t)A„=ln p(t) = U, ln p'(t) tg

=Q X,(t)UoA, Uo

=+A„Q G„X(t) (4.28}
Q I(+oo, -oo) = G ~(+oo, 0)Q ~(0, -oo),

is similarly well defined.

(4.24)
or

Z(t) = G'X'(t) . (4.29)

m0
(4.25)

D. Lagrange parameters in the interaction picture

Introducing the Lagrange parameters. A~(t} con-
jugate to the set of constraints A„, we can write
the density operator as

The advantage of the interaction picture in factor-
ing out the evolution under H, is again evident. By
requesting, as usual, that the Schrodinger and in-
teraction pictures be identical at some value of t,
here, t = 0, so that A~(0}= X(0) one readily verifies
that Eqs. (4.26} and (4.29) are consistent with the
result X(t) = GA(to).
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The canonical [cf. Eq. (4.3)] and product [cf. Eq.
(4.4)

~

forms for the evolution operator and the G

matrix are equally valid in the interaction picture.
A dynamical algebra for a family of similar colli-
sions is obtained by putting

(4.30)

or
pout pin (4.35)

ln p,„,=S lnp„S,
where the scattering operator is given, as usual,
by

S = lim lim U~ (f, t ') . (4.36)
where the V„'s are time independent and are en-
larged so as to close an. algebra. Then,

U, =exp —— g u„(t, t,}V„

t~~ t'~-~

If the initial state is pure, one can also introduce
g„and P,„, such that" "

(4.3V)

and (4.31)
V. REPRESENTATIONS OF THE DYNAMICAL GROUP

Gz
——exp ——g u„(t, f,)d(V„)

n

E. Asymptotic limits of the density operators

The analysis of collision experiments requires
the limiting form of the density operator after the
collision. A s in formal time-dependent collision
theory" "we can obtain this limit as follows. I.et
the collision run its course until such time f (f-~}
that the interaction has decreased to zero. We
then bring the system back for inspection at some
finite time, say t =o . In order that the backwards
time evolution not cause any transitions (i.e. , in
order that the final-state distribution is the same
at t and 0), we travel back under H, . The. resulting
state at 0 is

p,„,=lim U~(t, 0)p(t)U (t, 0)

= lim U(t~o, )U0(t, )p0( )0U~(t, )0U, (t, )0
t~ ao

= lim U~(t, 0)p(0)U~gt, 0) .
t~ ap

Here p(t) is the density operator in the Schrodinger
picture and if we take p (0) —= p(0),

p =lim U (f, 0)p (0)U~)t, 0) =lim p (t). (4.33)
t-+ oo t-+ oo

By a similar reasoning we take the t- -~ limit by
bringing the system from -~ to t =0 under the ac-
tion of H, . Then

p„= lim U, (0, t)p(t)U (0,0t) = lim p~(t). (4.34)

Viewing the solution of the equations of motion
as the determination of -a representation of the
dynamical group has both practical 'and concep-
tual advantages. On the practical side it offers
the possibility of obtaining closed expressions for
the e1ements of the scattering matrix or for the
density matrix. This aspect is already evident in
Sec. III [see Eqs. (3.41), (3.45), or (3.72)]. Addi-
tional applications to more complex Hamiltonians
have been worked out and are in preparation for
publication. In this section we shall be primarily
concerned with this point of view as means of
directing attention to the similarity and the differ-
ence of the present method as compared with the
usual formulation of collision theory. %e shall
conclude that both approaches seek a representa-
tion of the dynamical group. In focusing attention
on the G matrix one seeks a representation in a
(finite-dimensional) basis provided by the con-
straints (which are, of course, operators) whereas
in the usual'-method one seeks a representation in
a Hilbert space of state vectors. In addition, the
concept of a representation of a group enables one
to introduce the group parameters, a concept
which is useful for both types of representations.

A. Scattering matrix as a unitary representation of a Lie group

In the basis of eigenstates of H~, say ~m), the
scattering matrix is defined, as usual, by

(5.1)
t -+ oo t -+ ao

The "in" and "out" states are simply the limits
of the density operators (in the interaction picture)
before and after the collision. It is for this reason
that it is sufficient to construct the set of con-
straints as being closed under Vz(t}. The time
evolution under H, is irrelevant to a scattering
experiment which seeks to determine the transi-
tions by the potential.

The scattering event is thus represented by"

2
S =exp —

@
. s„~ (5.2}

where s„=u„(+~,-~) and the operator V„are
common to a family of similar reactions. The

where S is the scattering operator [cf. Eq. (4.35)]
which induces the transformation of "in" to "out"
states. In terms of the operators in the dynamical
algebra [cf. Eq. (4.3)]
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magnitudes of the numerical coefficients s „can be
determined using the methods in Sec. V E. In
terms of the product form for V, , Eg. (4.4),

provided we regard the ~„'s as complex numbers
(even when the A, 's are Hermitian).

One can thus regard the density matrix p

] [ -(i/n)a„v (5 3) &(~& = p(~&t
m

(5.4)

where &„=p,'„(~, -~).
The scattering operator is thus an element of the

dynamical group {in the interaction picture). If
the unitary representation of the group (which is
generated by the dynamical algebra) is known in
the literature" one can obtain the S matrix ex-
plicitly. It is, of course, necessary to verify
that the basis used in the literature is that of ei-
genfunctions of H, . It can be checked by examin-
ing the operation of the elements of the dynamical
algebra on the basis functions. (This check will
also serve to identify the desired representation,
as was explicitly shown in Sec. III G.) Simple ap-
plications of this method were already noted.
Additional technical procedures which simpli-
fy the task of obtaining a representation are
discussed in Appendix B. Even when an explicit
representation is not available in the literature the
group-theoretic point of view is useful in ensuring
that the matrix elements of 8 are analytic functions
of the group parameters (i.e., the s„'s or the cr„'s)
and in generating relations between the different
elements (recursion relations, addition formulas,
sum rules, etc.; examples are given in Appendix
H).

B. Density matrix as a representation of a complex Lie group

It was possible to regard the scattering matrix
as a representation of a real Lie group because (i)
the group is generated by elements of a Lie alge-
bra [cf. Eq. (4.1)], and (ii) if we write U=e, then
A is necessarily an anti-Hermitian operator and
the commutator of two anti-Hermitian operators
is, itself, an anti-Hermitian operator. As things
stand, neither condition obtains for p.

To begin with, p is defined in terms of the set
of constraints: a set of operators A„which are
closed under commutation with V~(t). This invari-
ant set is not necessarily an algebra. If however
we now enlarge the set so that it does form an
algebra, then the use of the Jacobi identity [cf.
Eq. (2.40)j readily shows that all elements of the
algebra are invariant under commutation with
V~(t). Condition (i) is now satisfied. The (en-
larged) set of constraints form an algebra.

When we put p = exp(-QX„A„) then QA„A„need
be Hermitian. The commutator of two Hermitian
operators is anti-Hermitian. p cannot be regarded
as an element of a real Lie group. It can however
be regarded as an element of a complex Lie group

as a representation of a complex Lie group. The
density matrix elements will now be analytic func-
tions of the Lagrange multipliers which are the
group parameters. Of course, we are only in-
terested in the representation of those elements
of the complex Lie group for which QA „A„ is
Hermitian (i.e., for which p is Hermitian).

Thus far we have dealt with representations
using state vectors as a basis, i.e., representa-
tions in a Hilbert space. We turn now to lower
dimensional representations.

(adV )A, -=[V„,A„] = g d, „(V„)A,. (5 8)

The Jacobi identity then implies that (adV ) has
Re same commutation relations as the dynamical
algebra itself. Explicitly

(adV adV„- adV„adV„) A„

=[ V., [V„,A„]] [V„,[V.,A„]]

=[[V, V„],A„] =(ad[V, V„])A„(5.7)

or, in a formal fashion

[adV, adV„] =ad[V, V„]. (5.8)

It is for this reason that the representation via the

C. Constraints as a basis for the representation of the
dynamical algebra

The elements {V„)of the dynamical algebra (in
the interaction picture) are said to be represented
by the set of matrices Ld(V )) if the matrices satis-
fy the same commutation relations as the elements
of the algebra. It is thus required that [V„,V„] be
represented by d(V„)d(V„)—d(V„)d(V ). If one now
defines d(V ) via the condition that the constraints
form a closed set under commutation with the ele™
ments of the dynamical algebra, [cf. Eq. {2.36)]

[ V, A, ]=g d, „(v„)A, , (5.5)

it follows, on using the Jacobi identity [cf. Eqs.
(2.40) or (5.8) below], that the required condition
does obtain. We thus have one more interpretation
of tlie constraints: the (closed) set of constraints
provides a basis for a representation of the dyna-
mical algebra.

To center attention on this interpretation of the
constraints it is convenient to define the (linear)
operator «V by" [cf. Eg. (3.21)]
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d matrices is sometimes known as the adjoint rep-
resentation.

D. G matrix as a representation of the dynamical group

The essential point of Sec. II was that the set of
constraints, determined as the set closed under
commutation with II, will be closed also under
time evolution. In Lie algebraic terms this is
simply the result that any representation of the
algebra induces a representation of the group.
Indeed, we have already invoked the group proper-
ty, Eq. (4.24} of the G matrix.

In formal terms we note that one can introduce
powers of adV„, e.g. , (adV)'A„=[V„, [V„,A„]], so
that [cf. Eq. (3.20)] e "A, e ~=e" ~A„. Hence

To perform the operations in Eq. (5.14) we use
the identity (Appendix C)

A 258 A adA SS~ &+d~
—Zk ~A

e e =- e' = dx e"'""

= P(adA) (5.15)

where (cf. Appendix C) P(z) =(e' —1)/z =gz" '/n!
The representation of the awesome identity is

quite innocent. e' is represented by G(~},
where the argument in 6 serves to indicate that
all group parameters are to be multipled by x.
i@&A/Bt is represented by Bu(t, t )0/Bt, and Vz(t)
is represented by v(t) [i.e., V~(t) =Q v(t) V]. Hence
Eqs. (5.14) and (5.15)!read

U&A„U&t —= exp —— u„(adV„) A„= g A~G
8

(5.9) or

J aha),
&

~(t) (5.16)

The result [cf. Eq. (4.12)]
/

G = exp — 7 g u„d(V„)
11

(5.10)

can now be viewed as an immediate consequence
of Eqs. (5.6) and (5.9).

E. Equations of motion for the dynamical group parameters

This section is an exercise in the application of
the concept of representations aimed at obtaining
equations of motion for the parameters [u„, cf.
Eq. (4.3); p.„,cf. Eq. (4.4)] of the dynamical group,

Consider first Eq. (3.20) which implies that

~'""iA =A . (5.11)

Taking A to be defined by U= e we note that A is
represented by a vector whose components are the
group parameters. Similarly e'" is represented
by G. Hence the representation of Eq. (5.11) is

G(t, to)gut, to) = u(t, t,) . (5.12)

&U~
ikU~ = —V~(t), (5.13)

It follows from Eq. (5.12) that if we choose the
initial state such that X(t,) =u(t, t,) then X(t) = G(t,
t,)A(t, ) = A(t,). The initial state so chosen will
evolve from t, to t in such a manner that at time t
(but not necessarily before or after that time) it
will assume its precise initial form.

To obtain equations of motion for the group para-
meters we write the equation of motion of U~,
-us V,'/st = U,'V, (t) as

P(d(A)) = v(t), (5.17)

with the boundary condition u(t„ t,) =0. One now
has a choice of solving either of the (equivalent)
Eqs. (5.16) or (5.17). An illustration of the solu-
tion of Eq. (5.16}was provided in Sec. III. Here
we examine Eq. (5.17). P(z) has an inverse,

0 '(z)= (, 1) g &a
kf

(5.18)

where B~'s are the Bernoulli numbers. Hence

, t
' =0 '[d(A)]'(t)= Z ~,

' d"(A)v(t). (5.19)

Hence

8U„Bp,„
8t t

(5.20)

(5.21)

If the algebra is nilpotent [which means that d"(A)
=0 for all n ~ no& 0], the form, Eq. (5.19), is
quite suitable for practical work.

As an exercise the reader may wish to show the
equivalence of Eqs. (5.16) or (5.17) to the equation
for Su/St obtained by taking the time derivative of
both sides of Eq. (5.12}.

An alternative use of G as a representation of
U~ [cf. Eq. (5.9)] is in the derivation of equations
of motion for the group parameters in the product
form, Eq. (4.4), for the evolution operator,

N

U, = II U„; U„(t, t,) = exp —
+ g„(t, t,)V„

or, if UI =e

fks Q gyQ LAB
e —e ——t/g . (5.14)

e '„' = P ', ",
'
( ll v,) v, ( II rr,),

so that"

(5.22)
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vari „' v,' = g „'[ ',7 rr,) v, ( 11 rr,')

= V, (i) = g v, {i)V, .
S

(5.23)
I

Obtaining the representation of Eq. (5.23) is im-
mediate, if we define G(p.„.. . , p,„)as the repre-
sentation matrix when U is in the product form

(5 ~);[ II ")
Gsr(~li I"2i i &r 1i 0i -i ) 8

—Q G(i-z) V (5.24)
S

G" ', defined by the last line is simply the G

matrix evaluated for p.„=p,„„=.. . p,~ =0. The rep-
resentation of Eq. (5.23) is thus

" G,"„' =u,(t), s =1, . . . , N,
t'= j.

(5.25)

where p„= p,„(t, t,) with the boundary condition
p,„(to, to) =0 and where the coefficients (G~"„'~) are
functions of the p„'s. Equation (5.25) provides N
(nonlinear) equations of motion for the gr'o up para-
meters. The existence of a solution is assured"
when the dynamical algebra is solvable (Sec. V G).

U ~(t, to) =exp — —Q [-u„(t, t~)j V„ (5.27)

or, in terms of the (canonical) representation

[G'(2(i, i,))] '= G'(-u'(i, i')). (5.28)

F. Group property

The group property for the evolution operator
U(t, t')U(t', i,) = U(t, t,) (i.e. , for the elements of the

dynamical group) implies a corresponding property
for the representation matrices. Explicitly

G(u(i, i')) G(u(i', i,)) = G(u(i, i,)). (5.26)
P

The vector notation G(u) is simply a reminder that
G is a function of the set, u =u„. . . , u~, of group
parameters. The set of group parameters u(t, i,)
is necessarily an analytic function of the sets
~(t', io) and ~(ii i'). A particular illustration of this
general conclusion is as follows.

G ' is the matrix representing U '(f, i ) but
(e") ' =e "and hence, with A =-(i/1)Jul(i, t,)V„,

Equation (5.29) corresponds to the general result,
Eq. (5.28), for the special case t=t, . It is essen-
tially a statement of microscopic reversibility.
More general relations can be worked out but are
essentially an iterative solution of Eq. (5.17).

G. Solvable dynamical algebra

Considerable simplification occurs when the Lie
algebra is solvable. "'" In practice this means
that the matrices d which represent the algebra
can be transformed simultaneously to a triangular
form. (If the algebra is also nilpotent then there
are zeros also along the diagonal. )

Taking the d matrices to have an upper triangu-
lar form (i.e., zeros for all elements below the
diagonal) it follows that we can transform the basis
(i.e., the constraints, cf. Sec. III) in such a man-
ner that the equations defining d can be brought to
the form

(sdV„)A, = [V„,A, ] =d„A, ,

(adV„)A, = [V„,A. ,] =li»A, +d„A, ,

(5.30)

(adV„)A =[V„,A ]=d,„A,+d, A, + ~ ~ ~ +d A„.
This form is valid for all V„'s in the algebra (when
it is solvable) but the coefficients d, &

do depend on
the particular operator d;& —= d, , (V„).

Any power of an upper triangular matrix is again
an upper-triangular matrix and hence the G matrix
can also be brought to hn upper-triangular form by
using the same basis set of operators [Eq. (5.30)]
that brought the d matrices to a triangular form

UA. ,U = G„A, ,

U~2U G12~ 1 G22+2 &

(5.31)

UA U~=G, A, +G, A.,+ ~ ~ ~ +G A

A practical illustration of this general result has
been previously considered. " Simplifications also
occur in the equations for the time dependence of
the group parameters, Sec. VE and in the equa-
tions for the time dependence of the Lagrange pa-
rameters. These transform in an opposite (i.e.,

' contragradient) manner to the constraints, i.e.,
A. (t) = GA. (t,), and hence when G is upper triangular

If one knows G as a function of the group para-
meters, its inversion can be trivially executed,
by inverting the sign of all the group parameters.

Since U '(i', to) = U(t~, i') it further follows from
Eqs. (5.27) and (5.28) that

X„(i)= G ~|A.|(t0) + G»A2(to) + ~ .+ G, A.. (to)

G22A, ,(to)+ ~ ~ ~ +G2 A. (to)

(5.32)

u„(t', i,) =-u„(to, t') . (5.29) x (f)= G ~„(t,) .
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(5.33)

When one is concerned only with the Lagrange
parameters for one particular reaction it is sim-
pler to work with the equation of motion

= n(t)~(t) .8)).(t)
Bt

obtained on expanding )j), (t) in eigenfunctions of
H„)j)1(t)=Z a„(t)p„. A similar option is exercised
here. To the operator equation

(5.42)

Since n(t) (like G) is upper triangular [compare
the definition, Eq. (2.13), of n with Eq. (5.30)] one
can first solve directly for A. (t)

ih ", — =n „i.„(t),sz„(t)
Bt mm m (5.34)

then substitute the solution

(5.35)

tht. re corresponds the matrix representation

BA,
ih ==~A. .

Similarly, to the operator equation

ln p(t) = U ln p(t, )U

there is the corresponding

~(t) = G~(t,)

(5.43)

(5.44)

(5.45)

in the equation for A.

ih ' = n„„P,(t)+n, &„(t), (5.36)

which can then be solved for the unknown A

One then solves for A. „etc.
The equations of motion for the group parame-

ters also simplify. Taking the product represen-
tation as an example, we transform G (cf. Sec.
III) to a lower-triangular form. In this case Eq.
(5.25) reads

G"' ' +G' ' =v (t)21 Bt 22 Bt 2 (5.37)

Here [cf. Eq. (5.24)] G~oi) is just a constant (i.e.,
independent of the group parameters) so that

t

p, (t, t,) = — (,) v, (~) d v .
ll to

(5.38)

H. Summary

In the usual formulation of quantum mechanics
one has the choice of working with the equations
for the state vectors or with their representations.
For example, to the interaction-picture equation

i@ —= V (t) )j),(t),s(j)i(t) (5.40}

there corresponds the matrix equation

i 5 — = V~(t)a(t), (5.41)

Now that t(tl, t,) is available we can obtain Gi,',)(p,)
and hence solve for JLj2

u, (&t,) f[G",,'(w, (v,; (-)=)] ',
tp

&& [v, (T) -G/Gt, ') v, (7)] dT. (5.39)

matrix equation, etc. An important practical point
is that the dimension of the matrix equation, Eqs.
(5.43) or (5.45), equals the number of constraints, '2

and that a further reduction in the number of di-
mensions may be possible.

VI. OVERVIEW

The formalism has two distinct aims. One is to
obtain functional forms, contai. ning free parame-
ters, which can be used to analyze experimental
(or heavy-computational) results. It was shown

that for any given family of similar processes this
aspect can be implemented by purely algebraic
means. The Hamiltonian is used to generate the
dynamic algebra and hence the dynamical group.
The. G matrix is then introduced as the (adjoint)
representation of the dynamical group and so is an
analytic funt;tion of the group parameters. Given
an initial state (of maximal entropy, subject to
constraints), the G matrix specifies the magnitude
of the constraints (or of the Lagrange parameters)
which determine (via the maximal entropy formal-
ism) the final state. The final state so constructed
is an exact solution of the equations of motion.
Alternatively, the 8 matrix can be obtained as the
(Hilbert space) representation of the dynamical
group. The scattering and the density matrices
will be (analytic) functions of the group parame-
ters. For any initial state, the number of inde-
pendent group parameters equals the number of
dynamic constraints.

The first a,im of the formalism is that of analy-
sis, couched in dynamical theory. The second aim
is predictive. Equations of motion (which do have
existence theorems for their solutions"'"} were
derived for the group parameters. When the dy-
namical algebra is solvable, these equations are
demonstrably integrable. It is then possible to ex-
plicitly predict, e.g. , the dependence of the La-
grange parameters of the final state on the details
of the Hamiltonian (say, on the vibrational frequen-



cy) specific to the collision under discussion. It
should be clearly noted that the number of coupled
differential equations that need be solved is never
larger than the dimension of the dynamic algebra
(i.e., the number of dynamic constraints). This is
so for any initial state, irrespective of the number
of constraints required for its specification. Once
the group parameters have been solved for, one
need use only algebraic procedures to determine
the G matrix [via Eq. (5.10)] and hence the time
evolution of the Lagrange parameters for any set
of constraints.

where p is a positive definite Hermitian "weight"
operator. Now

((adHp)A, B) —(A, (adHp)B)

= Tr(p([H„A]'B -A'[H„B]})
= Tr([Hp, p]AtB} .

(A6)

Hence (adII p) is Hermitian if there exists a p with
the specified properties that commutes with Hp.
Since, by assumption, -

Hp is time independent such
a p is provided e.g., by

ACKNOWLEDGMENTS
p e( 8sp}/Tr(e( BHp)) (A7)

APPENDIX A: MATRIX G

The matrix G is a representation of the dyna-
mical group of H„cf. Eq. (4.22). In this appendix
we show that if H, is time independent and there
exists a finite set of operators (A„ I that is closed
under commutation with IIp then G' can always be
brought to a diagonal form with strictly periodic
diagonal matrix elements

G„(t+ b t, t) = 5„e (A1)

The proof is based on the demonstration that un-
der the stated conditions gdHp can be regarded as
a Hermitian (super) operator and hence can be di-
agonalized with real eigenvalues, i.e., that there
exists a set of operators (C„j such that

(adH p)C„= h&u„C„, (A2)

An exceedingly primitive version of the formal-
ism, based on the Fredholm-Schmidt theorem, and
a very simple example, were presented in the
Ph. D thesis (1964) of one of us (R.D,I.). We would
like to thank Professor John T. Lewis for his en-
thusiasm about that part of the thesis and for
strongly urging that it be further developed. This
work was supported by the Office of Scientific Re-
search, USAF, under Grant No. AFOSR 77-3135.

and, in general, by an normalizable definite func-
tion of IIp, e.g. , p=e( "p}. Q.E.D.

APPENDIX B: ROTATIONAL EXCITATION OF THE

SYMMETRIC TOP

This appendix demonstrates the use of group-
theoretic techniques to obtain the matrix elements
of the evolution operator during (and after) a col-
lision where a symmetric top is perturbed by a
dipole potential. We use the group E(3) generated
by the six-dimensional Lie algebra introduced in
Eq. (3.70). The full text of this appendix is avail-
able from the authors upon request.

sf f 1

QS
(Cl)

Hence, when a function depends on two parame-
ters, say s and t

APPENDIX C: DERIVATIVES OF EXPONENTIAL
OPERATORS

Despite a voluminous physics literature on the
subject we are not aware of a proof of Eq. (5.15),
and so provide one here, following ideas from Ref.
17(b).

For functions of operators that do admit of an
inverse and which depend on a parameter, say s

and hence [cf. Eqs. (5.9) and. (5.10)]

UpC„Upt = exp( [it).t(adH p)]-/IIIC„

=~~ C G' =~~e~-' "&C Os sr s sr ~ . (A3)

s(f '&f/&t)

gs
e(f 'sf/ss) f,(sf) f, (sf)

(C2)

Let the evolution operator be U= e, where A
= A(t) and define f(s, t) by f(s, t) = e '" . Then

To prove that adHp is Hermitian, we need to
show that f -1 f (sA) (-sA)A

Bs
(C3)

((adH p)A, B)= (A, (adH p)B), (A4)

where (A, B) is a scalar product, here a scalar
product of two operators A and B (since adHp acts
on operators). As has been discussed before"'"
one can define such a scalar product by

(A, B)= Tr(pA B), , (A5)

gf (s t) f 1 f e(sA) —e( sA)8~ 8

Bt
'

Bt
(C4)

The function W(s, t) is defined by Eq. (C4) and what
we require is its t dependence for s= l.

Substituting Eqs. (C3) and (C4) in the general re-
lation Eq. (C2)
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W(s, t) = sQ(sa~)
Bt

where p(z),

(C6)

e
("- )

In the second line we have used the notation adA
introduced in Eq. (3.21). Equation (C5) need be
solved subject to the boundary condition W(s= 0, t)
= 0. Since the equation is linear one might as well,

guess the solution

is a function with a convergent-power-series ex-
pansion. The result, Eq. (5.15), in the text is
simply Eq. (C6) for s= l.

To verify that Eq. (C6) is the solution of Eq. (C5)
note that Eq. (C5) is a first-order linear-differ-
ential equation and so admits an integrating factor.

Indeed, multiplying both sides of Eq. (C5) by
ei "' i brings the equation (after some rearrange-
ments) to the form

s(e' """&W) ( „,„) sA
(C6)

Bs Bt

Integrating both sides and using the integral repre-
sentation of Q(z), Eq. (C'7), and the boundary con-
dition W(s = 0, t) = 0 leads to Eq. (C6)
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