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The consequences of factorizing an exact wave function into the product of an antisymmetric part and an
exponential part are discussed. The exponent is taken as a symmetric real function and satisfies the
equations of infinite-order perturbation theory. Practical calculations to determine both factors are
performed by minimizing two functionals and the roles these play are analyzed. The relation between this
procedure and that suggested by Boys and Handy for the transcorrelated wave function is pointed out.
Illustrative calculations on helium show that good wave functions are obtained by both procedures.

1. INTRODUCTION

In contemporary research on the calculation of
accurate wave functions for electronic systems,
“the correlation problem,” there is a growing em-
phasis on the use of operator techniques. The re-
cent reviews by McWeeny' and Schaefer? illustrate
this and give detailed references. These tech-
niques enable certain perturbation-theory ideas to
be implemented, but they have the disadvantage of
making the wave function very abstract so that an
intuitive appreciation of its significance is very
difficult to achieve.

The possibilities of solving the correlation prob-
lem using wave functions which are just functions
of the coordinates have not yet been exhausted,
however, and can be extended by incorporating
ideas more typical of the operator approach. One
example of this is described in a recent publica-
tion® where the exact wave function for the closed-
shell ground state of an atom or molecule is ex-
pressed in the factorized form

y=ely (1)

and equations are derived for ¢, the orbital deter-
minant, and L, the multielectron correlation func-
tion. This wave function is based on an orbital ap-
proach and consequently is easily interpreted, but
it has the exponential factor typical of operator
wave functions. It also has very close connections
with the Boys-Handy theory of transcorrelated
wave functions.*

In this paper a more general factorization of the
wave functions is proposed in Sec. II. This permits
¢ to be an open-shell wave function or to be a com-
bination of several determinants so that the earlier
constraint to a single determinant can be dropped.
It allows ¢ and L to be determined by minimizing
functionals in which the balance of effort between
the two remains flexible. In Sec. III the signifi-
cance of optimizing a parameter in the wave func-
tion is examined in more detail.

The relation between this treatment of correla-
tion and other treatments, including that of Boys
and Handy, is investigated further in Secs. IV and
V using various simple wave functions for the he-
lium atom. In certain circumstances this treat-
ment may be identical with the transcorrelated
treatment.

II. FORMULATION

The Schrédinger equation for an atom or the
Born-Oppenheimer equation for the electronic mo-
tion in a molecule is written

Hy=wy , ()

where H is the electronic Hamiltonian and ¢ the
electronic wave function. This wave function is
now written in the factorized form (1). The factor
@ is an antisymmetric function of the electrons and
has the spatial and spin symmetry of the ground
state. A single determinant is usually the simplest
form of wave function to satisfy these require-
ments, but more elaborate functions are permitted.
This function satisfies trivially the eigenvalue
equation

Hyp=wop , (3)

where H,=w, |9 X ¢|,w,=(¢,H¢) and (¢, ¢)=1.
The correlation function L is symmetric to elec-
tron exchange and to any spatial symmetry. It is
here taken as a real function. By substituting the
product (1) into Eq. (2) it follows that .

e*Heto=(H +[HL]+3[[HLIL))p=W¢ ,  (4)

which is the transcorrelated form?* of the Schrdd-
inger equation. The commutator expansion here
terminates because L is a function and H involves
no more than the second derivative. The corres-
ponding operator equation has an infinite expansion.
When ¢ is fixed, Eq. (4) determines L. Its nature
becomes more clear if a perturbation potential is
defined by
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V=H+3[[HL]L]-H, . (5)
The mean value of V is then

w,=(0, Vo) Ao, @) =W —w, (6)
and the equation for L becomes

[HL]p =@, -V)¢ . (M

This has exactly the form of the equation for the
first-order perturbed wave function in the Dal-
garno-Lewis-Schwartz formalism.® It does have
one feature, however, which alters its nature,
namely, that V which is regarded as fixed in (7)
depends on L through its definition in (5) and has
to be made consistent with both equations. This
feature is typical of infinite-order perturbation
theory.® Thus, in general, there will be an itera-
tion between L and V. The convergence of this
iteration has to be established in each instance,
but the discussion given by Armour’ makes this
plausible when [[ H L]L] is bounded. In some cir-
cumstances the constraint that L is real may pre-
vent convergence but this does not seem to arise
for ground states in the absence of magnetic fields.

The differential equation (7) for L cannot usually
be solved exactly. During the first iteration, when
¢ is an orbital wave function and L is zero in V,
it can be shown, by methods analogous to those of
Sinanoglu,® that L is a sum of two-electron func-
tions, each dependent on two orbitals and approx-
imate forms for these can be found. This geminal
form of L is likely to represent a very good wave
function. When the iteration is continued by in-
serting this L into V the new solution must also
have three- and four-electron functions and so
eventually L involves functions of all the electrons
simultaneously. This differential-equation ap-
proach is feasible for atoms since (7) does not
contain any of the integral operators of Hy and
consequently is easier to solve than Sinanoglu’s
perturbation equation. k

An alternative and more practical method® is to
incorporate suitable parameters into a trial func-
tion for L and to minimize the Hermitian functional

F(L)=(@ {L(V=w)+(V=w)L-3[[HL]L]}p) , (8)

where V is not varied during the optimization but
is defined using (5) with the best previous estimate
of L. By modifying V it is possible to find consis-
tent values for these parameters.

Although L is defined as the solution of (7), sub-
ject to (5), for any given ¢ it will generally be
more efficient to devote effort to the improvement
of ¢ rather than to the refinement of L. One rea-
son for this is that the iteration involved in finding
L may not converge until ¢ itself is sufficiently
close to ¥. Another reason is that the techniques

of improving ¢ are more familiar. This improve-
ment can be effected by introducing parameters
into ¢ and minimizing the functional

8(@) =, (H +3[[HLILD @) Ko, ¢) , 9

where L is kept fixed during the optimizing. If L
is a sum of geminals the extra term in § involves
three-electron integrals and the evaluation of these
becomes the limiting factor in the calculation. &
also involves three-electron integrals.. Practical
considerations must play the major role indeciding
whether to introduce flexibility into ¢ or L. This

" double optimizing procedure® has the advantage of

retaining the maximum degree of choice.

III. SIGNIFICANCE OF PARAMETER OPTIMIZATION

The use of functionals to optimize approximate
wave functions may disguise the underlying pro-
cesses of solving the equations so it is useful to
investigate in more detail the significance of the
various stages in the calculation.

If §(¢) is optimized without any constraint on ¢,
then the optimum ¢ will satisfy the eigenvalue
equation

(H+3[[HL]L))p=W¢ (10)

or, because of (3),

Vo=w,¢ . (11)

Thus the best ¢ will be an eigenfunction of the
Hermitian part of the transcorrelated equation.”

If a trial ¢ contains a parameter A whose best val-
ue A, is fixed by minimizing §, then the result is
equivalent to the replacement of ¢ in § by its lin-
ear variation around A,

¢:=¢(AO)+(A—AO)—%":—. (12)

The stationary condition on § then becomes the
equation for A, ‘

<—:A—i,(H+%[[HL]L]-—W)¢>=O (13)
or
<—§%, (V—wl)g0>=0. (14)

Thus, optimization with respect to A is the same
as diagonalization of V in the subspace spanned by
@ and 3¢/, An alternative interpretation of this
process is that ¢ is varied to minimize the mean
value of V, i.e.,

IRCAL)E
o (¢, =0. (15)

Thus the more ¢ is optimized the smaller becomes
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the right-hand side of (7) until in the limit this
" equation becomes homogeneous.

The introduction of a parameter u into a trial L
can be examined in a similar way. The replace-
ment

L:=L(po)+ (1 =) :L

0

(16)
in ¥ leads to the equation for u,, the optimum u,

<<p ,:M (V= +[HL])go> , (17)
which is one component of the differential equation
(7) satisfied by the best L. Increasing the number

of parameters extends the space of functions within
which this equation is satisfied.

Boys and Handy have drawn special attention to
the problem of redundancy that arises when param-
eters are optimized in each factor of a product
wave function. Unless countermeasures are taken,
a modification of L may so influence the optimiza-
tion of ¢ that the entire process becomes unstable.
One way of achieving stability is to introduce into
L a linear parameter u such that

BL 1 1%
T

where A, is the value of one of the parameters in ¢
optimized using L, where

(18)

LL+u<gﬁ‘>; ©(19)

& is then optimized with respect to u. From (17)
the equation for u is

oL
<¢a—u*,(V—w1+[HL])<P>=0 (20)
while, from (14), A, is determined by
3¢ _
(i v -w)g)=0. (21)
Thus, using (18)
9L 2%
(o5 lLle)=(5E luLlg 0. (@)

It is now possible to evaluate § with this modified

L as '
3L

= {(cp, Vo) + <<p, [[HLO]—a——] <p> M
+/ [T, 8L 'J oL ] > /
+z< , L[H 50| on (0, @)
' aL
<<P [[HL} Em ]¢>u

v/ [T, oL 7 aL
~2<’_[H op Jop

={<¢>, Vo) +

]¢>u2}/<¢, @ - (23)

but

(o {2 - trnlle)

-2 %,[HLO‘@ =0, (24)

so that § becomes independent of . to first order,

88
o =0. (25)

It follows from this that the optimization of § with
respect to A will not be disturbed to first order by
a change in y, i.e.,
928
oA

=0. (26)

In principle, a redundant parameter like u is need-
ed in L corresponding to each parameter A in ¢,
but in practice, it is likely that a smaller number
will suffice to produce numerical stability.

When L contains redundant parameters the equa-
tions of this theory become very similar to those
of the Boys-Handy theory.* Thus (13) and (22) are
the Hermitian and anti-Hermitian parts of their
orbital equation

(5%, @+ [HLIHIHELLI-W)p) =0 (@)

and (17) can be rewritten as the correlation equa-
tion

<¢% (H+[HL]+3[[HL]L]- W)qa> =0. (28)

The contraction equation, to fix a redﬁndan’c pa-
rameter (., is not unique in this theory. One equa-
tion which they use is

<¢ ij [HL]90> (29)

and this is exactly (22). Another of their contrac-
tion equations is exactly (25), but in the circum-
stances here, when (18) is satisfied, (25) and (29)
become equivalent.

The Boys-Handy theory has been applied to Ne
and to LiH with remarkably good results that dem-
onstrate clearly the potential of this approach. In
these calculations L was expressed as a sum of !
two-electron functions of the form

gij=7'ij/(a+7’ij) . (30)

This form is chosen in order to introduce an inter-
electronic cusp into the wave function without dis-
rupting the long-range behavior of the orbital fac-
tor in the wave function. For this reason it is

given the same form for all electrons. The orbit-
als are involved in L only through the redundant
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functions which are added to this g;; to enable the
contraction equations to be satisfied. Unfortunate-
ly, this form leads to integrals which cannot be
evaluated in terms of simple functions and Boys
and Handy resorted to numerical quadrature to
complete their calculation. Since it has proved
difficult to adapt and extend these numerical pro-
cedures, few attempts have been made to follow up
their lead.

An alternative solution to this practical problem
is to restrict the functional forms so that analytic
integration is possible. One such choice uses for
L the sum of two-electron functions such as

&ij =e'A'%.i , (31)
since this Gaussian form, together with Gaussian
forms for the orbitals, gives integrals which can
be entirely evaluated using the familiar F, func-
tions related to the error function. Calculations
on He using correlation functions having one or two
Gaussians of this type and with orbitals having two
or three Gaussians, have been reported by Handy.®
These calculations have been repeated here and re-
produce Handy’s results apart from a mislabeling
of the wave functions in one of his tables. Thus the
analytic variant of this method is unambiguous and
reliable. The calculations have also been extended
to include five Gaussians in the representation of
the orbital and the change in the correlation energy
is generally less than 10~* hartree, showing that
the results have become stable to small changes
in the orbitals.

In a practical calculation using the functionals §
and F it is proposed that L should be expressed as
a sum over Gaussians using at least two different
exponents and with redundant functions around each
nucleus. Experience from the He calculation sug-
gests that this is an adequate representation of the
interelectronic cusp. The entire Boys-Handy ex-
perience suggests that this direct approach to L
will be more efficient than the indirect approach
through pair functions. The computing cost of
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manipulating the three-electron integrals is ex-
pected to be high, but against it has to be, set the
compact form of the wave function and the greatly
increased possibility of interpreting its parts phys-
ically.

IV. HELIUM-ATOM EXAMPLE

One possible reason for the obvious delay in the
appreciation of the Boys-Handy theory is that the
examples they gave seemed so complicated that the
equations themselves were not illuminated. In this
section a calculation for He is presented which is
simple enough to be checked quickly but can be
used to illustrate the various equations of the
Boys-Handy theory and also of the alternative ap-
proach suggested here. In its simplest form this
wave function is

Yp=expl—a@, +r,)+br,]. (32)
The mean energy of helium with this ¢ is
CH) =, HY /Y, )
=(8a* -=15a3% + 11a%b? - 5ab?® + b* = 27a3
+31a%b - 3ab? - b3)/ (8a® —5ab + b?) . (33)

If @ and b are determined by minimizing (H) the
results reproduce those originally found by Hyl-
leraas.'® This calculation is labeled B in Tables
I and II, while the simpler calculation in which &
=0is A. It is also possible to determine @ and &
by minimizing the energy variance. This optimiza-
tion was performed numerically and is denoted by
C.

In the Boys-Handy theory this function (32) is
written .

p=e"% ) | L=by ,—c@+7,) . (34)
The transcorrelated energy is then
Wee ={@, e"*He @) /{0, @) = 8(¢)

=a®-Za-b-c?+3bc. (35)

TABLE I. Wave functions for He using various criteria.

Function criteria a b c a+c —Wre —<(H) Variation Deviation €
A min(H) . 1.6875 0 0 1.6875 2.8477 0.897 0.0137
B min(H) 1.8580 0.2547 0 1.8580 2.8896 0.171 0.0053
C min Var 1.9651 0.3265 -0 1.9651 T 2.8835 0.104 . 0.0101
D trans 1.8638 0.2821 0 1.8638 2.8961 2.8890 0.157 0.0050
E trans 1.6595 0.2683 0.1956 1.8551 2.8997 2.8893 0.168 0.0049
trans
‘min é’,EFj 6875 0.2703 0.1689 1.8564 2.8922 2.8893 0.167 0.0049
G min §,F 1.6875 0.1719 0 1.6875 2.8772 2.8726 0.474 0.0065
H min § 2 0.3672 0 2 2.8848 2.8786 0.115 0.0114
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TABLE II. Mean values of operators.
Function ¥ v 7 73 (20 -% T Ranks
A 3.375 1.778 2.107 1.0550 1.296 0 62
B 3.378 1.805 2,195 0.9774 1.386 0.1010 32
C 3.491 1.753 2.075 0.9934 1.361 0.1163 52
D 3.351 1.823 2.241 0.9617 1.407 0.1141 26
E 3.353 1.820 2.233 0.9659 1.402 0.1086 26
F 3.353 1.820 2.234 0.9653 1.402 0.1094 24
G 3.151 1.926 2.494 0.9300 1.460 0.0848 40
H 3.503 1.751 2.075 0.9865 1.368 0.1288 56
Exact (Ref. 10) 3.377 1.859 2.387 0.9458 1.422 0.0647
The parameter ¢ may be fixed using the contrac- The potential V can be evaluated in convenient
tion equation (25), i.e., form as the function
e, (36) V=(a=2)/r,+@=2)/r,+1/r, -5, (44)
ac ’

which yields ¢ = §b, while a is fixed using the or-
bital equation

OWrc _ -

Yy =0, (37)
which y1e1ds a= 16 This value of a is exactly that
obtained when b =0 so that the orbital and correla-
tion equations have been effectively separated. The
correlation equation to fix & is

<[ Y= 8("' +72)]§0,(e—LHe - TC)(P> 0 (38)
which reduces to
11072‘; »+ B ab-5a®+ 52a=0. (39)

The numerical solution of this is shown under F
in the tables. A less flexible wave function D in
which ¢=0 and the orbital and contraction equa-
tions are

16a-106=27, 80a-128b6=113. (40)

is also shown.
An alternative contraction equation used by Boys
and Handy can be expressed as

9 ,
3c P LPp) =0 (41)
and this leads to a slightly different relation for c:
c=33b. (42)

This calculation E makes clear that the contraction
equation (41) is not equivalent to the earlier one
(36) though the numerical differences are not very
significant.

The theory of this paper can be applied to (34)
with ¢=0. The energy functional becomes

8(a)=a? —Zq - b2, (43)

where the final term arises from L. Since this
term is a constant, no iteration between ¢ and V
is required. The second functional also can be
evaluated simply:

F(b) =% +b (%2 -2a). (45)
The optimal values for a and b must satisfy
Y oF
Zo —_— 46
oa 0, ab (46)

and are shown as G in the tables. Since a =2 re-
duces V to a form without singularities at the
nuclei, it is of some interest to include a calcula-
tion H in which ¢ is fixed and only & is optimized.
When all three parameters in (34) are included,
these results become modified. The expression
for & becomes identical with that in (35) so that
the orbital parameter is =25, The optimization
of § with respect to b and ¢ yields the equations

c=3b+3-a, (47)
2ab+ zbc—Sac-2a*+ 4a=0, (48)

and, although these equations are different, their
solution is identical with the transcorrelated cal-
culation F. This is to be expected from the dis-
cussion of Sec. III since

1 8¢ oL

— == +7,) = Yy

@ oa (49)

so that ¢ is a redundant parameter in the sense
used there.

V. NUMERICAL RESULTS

The results of these calculations of the wave
function and the energy are summarized in Table
I. To facilitate comparisons of the full wave func-
tion the value of a + ¢ is included. A parameter
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which is not optimized is shown with the value
zero.

The accuracy of an approximate wave function
may be assessed by various criteria. The most
familiar is that the corresponding value of the
mean energy (H) should be as low as possible.
The table shows a steady decline in (H) as the
number of parameters increases with the wave
function E and F approaching closely the minimum
value of wave function B. Another criterion of ac-

curacy is the magnitude of the variance. It is note-

worthy that all the functions except A and G have
variances between that of the minimum variance
function C and the minimum energy function B.

As may be expected, the difference between Wic
and (H) is roughly correlated with the variance.
By this criterion F is superior to E, the function
which it most nearly resembles. A third criterion
is the deviation € of the functions from a good ap-
proximation® to the exact wave function

€= Y= Yoraer I* - (50)

By this criterion D, E, and F are seen to-be su-
perior even to B.

These comparisons suggest the conclusion that
these nonconventional methods of calculating a
wave function give results which improve as the
number of parameters is increased and become
close to the minimum energy results. Further
evidence for this conclusion is shown in Table II
which lists the mean values of various operators
along with the Pekeris values (Ref. 12). In each
column the value closest to the exact one has been
underlined. For each property the wave functions
were ranked according to their closeness to its
true value. The final column in Table II shows the
sum of these ranks for the six properties inthat
table and the three in Table I. The best overall
agreement is obtained with F, though D, E, and
B are not much poorer.
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