Second-order contributions to the fine structure of helium from all intermediate states*

Michael L. Lewis and Paul H. Serafino
Gibbs Laboratory, Physics Department, Yale University, New Haven, Connecticut 06520

(Received 4 August 1976; revised manuscript received 7 July 1977)

Abstract

For the theoretical assessment of the $2^{3} P$ helium fine structure to become comparable to the precision measurements that have been made, it is necessary that the theory be calculated through order $\alpha^{6} m c^{2}$. In particular, the second-order contribution from the Breit and mass-polarization operators must be evaluated to an accuracy of 1% or so. In this work, for each of five possible intermediate state symmetries the DalgarnoLewis method is used to obtain the first-order perturbed wave function, from which the second-order energy follows by integration. Both the perturbed and unperturbed wave functions are expanded in Hylleraas-type series with a progressively larger number of terms, the second-order energies being computed at each stage; up to 455 terms are used for ${ }^{3} P$ intermediate states and up to 286 for ${ }^{1} P,{ }^{3} D,{ }^{1} D$, and ${ }^{3} F$. The sequence of second-order energy results for each symmetry is extrapolated to the limit of an infinite number of basis functions to arrive at a final result. The ${ }^{3} P,{ }^{1} P$, and ${ }^{3} D$ states will contribute to both the larger and the smaller fine-structure intervals ν_{01} and ν_{12}, respectively, while ${ }^{3} F$ and ${ }^{1} D$ states affect only ν_{12}. The total theoretical result, up to order $\alpha^{6} m c^{2}$, for ν_{01} is much more accurate than that for ν_{12}, allowing the finestructure constant α to be determined very precisely by comparison of theory to experiment, with the result $\alpha^{-1}=137.03608(13)$, good to 0.94 ppm .

I. INTRODUCTION

Owing to the theoretical framework embodied in the Breit and Bethe-Salpeter equations and to the precise experiments carried out at Yale, ${ }^{1,2}$ the accurate theoretical determination of the fine structure of helium-4 in the $2{ }^{3} P_{J}$ states has been a subject of great interest for many years. For one thing, it provides one more check on the consistency of quantum electrodynamics. From another point of view, assuming that quantum electrodynamics is indeed valid, the theoretical and experimental determinations of the fine-structure splitting can be combined to yield a precise value of the fine-structure constant. Specifically, given the precision of the experiment (1.2 ppm for the larger interval ν_{01}), the fine-structure constant can be determined to better than 1 ppm if the theoretical splitting is accurate to 1 ppm or better, which entails computations of order $\alpha^{6} m c^{2}$.

Such a theoretical undertaking is comprised of four separate tasks. The first is the calculation of the fine-structure splitting to first order with the Breit operators and the mass-polarization operator, achieved by Schwartz ${ }^{3}$ to an accuracy of about 0.2 ppm . Second, the splitting is calculated to second order with these operators to an accuracy of better than 1%; it is this aspect which is in fact the major concern of our research, ${ }^{4-6}$ since the pioneering work by Hambro ${ }^{7}$ only determined α to 3 ppm . Third, a higher-order operator must be derived from quantum electrodynamics, a task that has been accomplished by Douglas and Kroll. ${ }^{8}$ Fourth, the expectation value of this operator must be computed to 1% precision; this Daley et al. ${ }^{9}$ have
succeeded in doing. Small corrections also must be made to account for nuclear recoil. ${ }^{9}$ The anomalous moment of the electron contributes a term of leading order $\alpha^{5} m c^{2}$ in addition. ${ }^{3,9,10}$ We have then for the $2^{3} P_{J}$ helium energy level E_{J}, apart from the leading anomalous moment term, the formal expression

$$
E_{J}=E_{0}+\alpha^{4}\left\langle H_{4}\right\rangle_{J}+\alpha^{6}\left\langle H_{4} \frac{1}{E_{0}-H_{0}} H_{4}\right\rangle+\alpha^{6}\left\langle H_{6}\right\rangle_{J}+\cdots,
$$

where E_{0} is the nonrelativistic energy level, H_{4} is the Breit interaction, and H_{6} is the operator of Douglas and Kroll.

In this paper we will first calculate the major part of the second-order contribution to the fine structure, namely, that due to intermediate states of ${ }^{3} P$ character. The method used for obtaining the second-order energies circumvents the need to sum over all intermediate states, and is described in Sec. III. Second-order contributions from the other possible symmetries, namely, ${ }^{1} P$, ${ }^{3} D,{ }^{1} D$, and ${ }^{3} F$, are not negligible and these are treated in the remainder of the paper. To apply the second-order method, we need the nonrelativistic $2^{3} P$ eigenvalue and eigenfunctions to some order of approximation, as well as matrix elements of the Breit operators between the ${ }^{3} P$ basis functions and the intermediate states. The calculation of these quantities for each intermediate state symmetry is described in the subsequent sections, beginning with the ${ }^{3} P$ case.

II. FINE-STRUCTURE OPERATORS

The reduction of the Breit equation ${ }^{11}$ to small components results in the six operators that con-

TABLE I. Nonrelativistic $2^{3} P$ energy eigenvalues

ω	N	E_{0} (a.u.)
1	4	-2.1294717879
2	10	-2.1326784020
3	20	-2.1330850392
4	35	-2.1331402223
5	56	-2.1331575951
6	84	-2.1331622876
7	120	-2.1331635942
8	165	-2.1331639815
9	220	-2.1331641069
10	286	-2.1331641531
11	364	-2.1331641725
12	455	-2.1331641814

tribute to the second-order energy. In addition, the mass-polarization operator mixes with the other operators and contributes to the fine structure. The Schrödinger Hamiltonian for helium ($Z=2$) is

$$
\begin{equation*}
H_{0}=-\frac{1}{2} \nabla_{1}^{2}-\frac{1}{2} \nabla_{2}^{2}-\frac{Z}{r_{1}}-\frac{Z}{r_{2}}+\frac{1}{r_{12}} . \tag{1}
\end{equation*}
$$

The nonrelativistic wave function Ψ_{0} is needed to calculate the matrix elements of the Breit operators. The variational method is used to derive this wave function. Ψ_{0} is the solution of

$$
\begin{equation*}
H_{0} \Psi_{0}=E_{0} \Psi_{0} \tag{2}
\end{equation*}
$$

where E_{0} is the zeroth-order energy, while the approximation used for Ψ_{0} is the Hylleraas-like basis ${ }^{12,13}$

$$
\begin{equation*}
\psi_{0}=\sum_{\boldsymbol{l}, m, n=0}^{l+m+n \leq \omega} C_{l m n} U_{l m n}, \tag{3}
\end{equation*}
$$

where

$$
\begin{equation*}
U_{l m n}=\frac{1-P_{12}}{4 \pi \sqrt{2}} \overrightarrow{\mathrm{r}}_{1} r_{1}^{m} r_{2}^{n} r_{12}^{l} e^{-\kappa \sigma r_{1} / 2} e^{-\kappa r_{2} / 2} . \tag{4}
\end{equation*}
$$

The $C_{l m n}$ are coefficients that are obtained by the variational method and P_{12} interchanges coordinates r_{1} and r_{2}, while \vec{r}_{1} indicates the P character of Ψ_{0}. This type of wave function was used by Schwartz ${ }^{3}$ in the calculation of the major contribution to the helium fine structure. With 286 terms in ψ_{0} the first-order fine structure was calculated to 100 ppm . Schwartz changed the basis by replacing $C_{l m n}$ by $C_{l m n}+D_{l m n}\left(r_{1}+r_{2}\right)^{1 / 2}$. This new basis better describes the behavior of the helium wave function near the nucleus. With 439 terms Schwartz achieved better than 1-ppm accuracy in the firstorder fine structure.
The variational principle is equivalent to finding ψ_{0} such that

$$
\begin{equation*}
\delta\left\langle\Psi_{0}\right| H_{0}-E_{0}\left|\Psi_{0}\right\rangle=0 \tag{5}
\end{equation*}
$$

In matrix form we obtain

$$
\delta\left(\sum_{m=1}^{N} \sum_{n=1}^{N} C_{m} C_{n}\left(\left\langle U_{m}\right| H_{0}\left|U_{n}\right\rangle-E_{0}\left\langle U_{m} \mid U_{n}\right\rangle\right)\right)=0
$$

where $N=\frac{1}{6}(\omega+1)(\omega+2)(\omega+3)$ is the number of terms in the expansion of Ψ_{0}. The eigenvalue problem is solved by an iterative method and the results are shown in Table I. The wave function Ψ_{0} is written in terms of spherical tensors ${ }^{14} T_{p}^{q}(\overrightarrow{\mathrm{r}})$ where, for example,

$$
\begin{align*}
& T_{1}^{(1)}\left(\overrightarrow{\mathrm{r}}_{1}\right)=-\left(x_{1}+i y_{1}\right) / \sqrt{2}, \tag{6}\\
& U_{l m n}=\frac{1-P_{12}}{4 \pi \sqrt{2}} T_{1}^{(1)}\left(\overrightarrow{\mathrm{r}}_{1}\right) u_{l m n}(1,2), \tag{7}
\end{align*}
$$

and

$$
\begin{equation*}
u_{l m n}(1,2)=r_{1}^{m} r_{2}^{n} r_{12}^{l} e^{-\kappa \sigma r_{1} / 2} e^{-\kappa r_{2} / 2} . \tag{8}
\end{equation*}
$$

The screening constants determined by Schwartz were used:

$$
\begin{aligned}
& \kappa=4.61999994516372, \\
& \sigma=0.28999999910593 .
\end{aligned}
$$

Thus

$$
\begin{align*}
H_{0} u_{l m n}(1,2) T_{1}^{(1)}\left(\overrightarrow{\mathrm{r}}_{1}\right)=u_{l m n}(1,2) T_{1}^{(1)}\left(\overrightarrow{\mathrm{r}}_{1}\right)(& -\frac{1}{8}\left(\kappa^{2} \sigma^{2}+\kappa^{2}\right)+\frac{1}{r_{1}}\left[\frac{1}{4} \kappa \sigma(4+2 m+l)-Z\right]+\frac{1}{r_{2}}\left[\frac{1}{4} \kappa(2+2 n+l)-Z\right] \\
& -\frac{1}{r_{1}^{2}} \frac{m}{2}(m+3+l)-\frac{1}{r_{2}^{2}} \frac{n}{2}(n+1+l) \\
& +\frac{1}{r_{12}}-\frac{1}{r_{12}^{2}} \frac{l}{2}(2 l+4+m+n)+\frac{r_{1}}{r_{12}^{2}} \frac{\kappa \sigma l}{4} \\
& \left.+\frac{r_{2}}{r_{12}^{2}} \frac{\kappa l}{4}-\frac{r_{2}^{2}}{r_{1} r_{12}^{2}} \frac{\kappa \sigma l}{4}-\frac{r_{1}^{2}}{r_{2} r_{12}^{2}} \frac{\kappa l}{4}+\frac{r_{2}^{2}}{r_{1}^{2} r_{12}^{2}} \frac{m l}{2}+\frac{r_{1}^{2}}{r_{2}^{2} r_{12}^{2}} \frac{n l}{2}\right) \\
& +u_{l m n}(1,2) T_{1}^{(1)}\left(\vec{r}_{2}\right) \frac{l}{r_{12}^{2}} . \tag{9}
\end{align*}
$$

The matrix elements are given in terms of a number of integrals described in Appendix A. Thus we have
in general

$$
\begin{align*}
\left\langle H_{0}\right\rangle_{p q}= & \left\langle U_{l^{\prime} m^{\prime} n^{\prime}}\right| H_{0}\left|U_{l m n}\right\rangle \\
=\frac{1}{3}\{ & -\frac{1}{8}\left(\kappa^{2} \sigma^{2}+\kappa^{2}\right)\left[A_{d}(L+2, M+4, N+2)-B_{e}\left(L+2, M^{\prime}+3, N^{\prime}+3\right)\right] \\
& +\left[\frac{1}{4} \kappa \sigma(4+2 m+l)-Z\right]\left[A_{d}(L+2, M+3, N+2)-B_{e}\left(L+2, M^{\prime}+2, N^{\prime}+3\right)\right] \\
& +\left[\frac{1}{4} \kappa(2+2 n+l)-Z\right]\left[A_{d}(L+2, M+4, N+1)-B_{e}\left(L+2, M^{\prime}+3, N^{\prime}+2\right)\right] \\
& -\frac{1}{2} m(m+3+l)\left[A_{d}(L+2, M+2, N+2)-B_{e}\left(L+2, M^{\prime}+1, N^{\prime}+3\right)\right] \\
& -\frac{1}{2} n(n+1+l)\left[A_{d}(L+2, M+4, N)-B_{e}\left(L+2, M^{\prime}+3, N^{\prime}+1\right)\right] \\
& +A_{d}(L+1, M+4, N+2)-B_{e}\left(L+1, M^{\prime}+3, N^{\prime}+3\right) \\
& -\frac{1}{2} l(2 l+4+m+n)\left[A_{d}(L, M+4, N+2)-B_{e}\left(L, M^{\prime}+3, N^{\prime}+3\right)\right] \\
& +\frac{1}{4} \kappa \sigma l\left[A_{d}(L, M+5, N+2)-B_{e}\left(L, M^{\prime}+4, N^{\prime}+3\right)\right] \\
& +\frac{1}{4} \kappa l\left[A_{d}(L, M+4, N+3)-B_{e}\left(L, M^{\prime}+3, N^{\prime}+4\right)\right] \\
& -\frac{1}{4} \kappa \sigma l\left[A_{d}(L, M+3, N+4)-B_{e}\left(L, M^{\prime}+2, N^{\prime}+5\right)\right] \\
& -\frac{1}{4} \kappa l\left[A_{d}(L, M+6, N+1)-B_{e}\left(L, M^{\prime}+5, N^{\prime}+2\right)\right] \\
& +\frac{1}{2} m l\left[A_{d}(L, M+2, N+4)-B_{e}\left(L, M^{\prime}+1, N^{\prime}+5\right)\right] \\
& +\frac{1}{2} n l\left[A_{d}(L, M+6, N)-B_{e}\left(L, M^{\prime}+5, N^{\prime}+1\right)\right] \\
& \left.+l\left[B_{d}(L, M+3, N+3)-A_{e}\left(L, M^{\prime}+2, N^{\prime}+4\right)\right]\right\}, \tag{10}
\end{align*}
$$

where $L=l+l^{\prime}, M=m+m^{\prime}, N=n+n^{\prime}, M^{\prime}=m+n^{\prime}$ and $N^{\prime}=n+m^{\prime}$.
With the wave function calculated from the variational principle above, one can find the matrix elements of the six Breit operators (which elements are needed in both the first- and secondorder perturbation calculations):
$H_{1}^{(1)}=\frac{1}{4} \alpha^{2} Z\left(\frac{\vec{\sigma}_{1}+\vec{\sigma}_{2}}{2}\right) \cdot\left(\frac{\overrightarrow{\mathrm{r}}_{1} \times \overrightarrow{\mathrm{p}}_{1}}{r_{1}^{3}}+\frac{\overrightarrow{\mathrm{r}}_{2} \times \overrightarrow{\mathrm{p}}_{2}}{r_{2}^{3}}\right)$,
$H_{1}^{(2)}=-\frac{3}{4} \alpha^{2}\left(\frac{\vec{\sigma}_{1}+\vec{\sigma}_{2}}{2}\right) \cdot \frac{\left(\overrightarrow{\mathrm{r}}_{1}-\overrightarrow{\mathrm{r}}_{2}\right) \times\left(\overrightarrow{\mathrm{p}}_{1}-\overrightarrow{\mathrm{p}}_{2}\right)}{r_{12}^{3}}$,
$H_{1}^{(3)}=\frac{1}{4} \alpha^{2} \frac{1}{r_{12}^{3}}\left(\vec{\sigma}_{1} \cdot \vec{\sigma}_{2}-\frac{3\left(\vec{\sigma}_{1} \cdot \overrightarrow{\mathrm{r}}_{12}\right)\left(\vec{\sigma}_{2} \cdot \overrightarrow{\mathrm{r}}_{12}\right)}{r_{12}^{2}}\right)$,
$H_{1}^{(4)}=-\frac{1}{2} \alpha^{2} \frac{1}{r_{12}}\left(\overrightarrow{\mathrm{p}}_{1} \cdot \overrightarrow{\mathrm{p}}_{2}+\frac{\overrightarrow{\mathrm{r}}_{12} \cdot\left(\overrightarrow{\mathrm{r}}_{12} \cdot \overrightarrow{\mathrm{p}}_{1}\right) \overrightarrow{\mathrm{p}}_{2}}{r_{12}^{2}}\right)$,
$H_{1}^{(5)}=-\frac{1}{8} \alpha^{2}\left(p_{1}^{4}+p_{2}^{4}\right), \quad H_{1}^{(6)}=\frac{1}{2} Z \pi \alpha^{2}\left[\delta^{(3)}\left(\overrightarrow{\mathrm{r}}_{1}\right)+\delta^{(3)}\left(\overrightarrow{\mathrm{r}}_{2}\right)\right]$;
and the mass-polarization operator

$$
\begin{equation*}
H_{1}^{(7)}=(m / M) \overrightarrow{\mathrm{p}}_{1} \cdot \overrightarrow{\mathrm{p}}_{2} \tag{12}
\end{equation*}
$$

where m is the electron mass and M is the helium nuclear mass. $H_{1}^{(1)}$ contains spin-orbit terms; $H_{1}^{(2)}$ presents spin-other-orbit contributions. Spin-spin terms are present in $H_{1}^{(3)}$ while $H_{1}^{(4)}$ includes the effect of the retardation of the electromagnetic field. The relativistic increase of mass is given in $H_{1}^{(5)}$ and the contact interaction is present in $H_{1}^{(6)}$.

With the use of the spinors

$$
\alpha=\binom{1}{0} \text { and } \beta=\binom{0}{1}
$$

and defining, for a vector $\overrightarrow{\mathrm{v}}, v_{ \pm 1}=T_{ \pm 1}^{(1)}(\overrightarrow{\mathrm{v}})$ and v_{0} $=T_{0}^{(1)}(\overrightarrow{\mathrm{v}})=v_{z}$, we obtain
$H_{1}^{(1)} \alpha(1) \alpha(2) u_{t m n}(1,2) T_{1}^{(1)}\left(\vec{r}_{1}\right)$

$$
\begin{align*}
&=\frac{1}{4} \alpha^{2} Z\left\{\alpha(1) \alpha(2) u_{l m n}(1,2) T_{1}^{(1)}\left(\overrightarrow{\mathrm{r}}_{1}\right)\left[\frac{1}{r_{1}^{3}}+\frac{l}{r_{12}^{2}} \frac{\left(\overrightarrow{\mathrm{r}}_{1} \times \overrightarrow{\mathrm{r}}_{2}\right)_{0}}{i}\left(\frac{1}{r_{2}^{3}}-\frac{1}{r_{1}^{3}}\right)\right]\right. \\
&\left.-\frac{1}{\sqrt{2}}[\alpha(1) \beta(2)+\beta(1) \alpha(2)] u_{l m n}(1,2) T_{1}^{(1)}\left(\overrightarrow{\mathrm{r}}_{1}\right)\left(\frac{1}{r_{2}^{3}}-\frac{1}{r_{1}^{3}}\right) \frac{l\left(\overrightarrow{\mathrm{r}}_{1} \times \overrightarrow{\mathrm{r}}_{2}\right)_{+1}}{i r_{12}^{2}}\right\} . \tag{13}
\end{align*}
$$

The matrix element following from $H_{1}^{(1)} \alpha(1) \alpha(2) u_{l m n}(1,2) T_{1}^{(1)}\left(\vec{r}_{1}\right)$ is

$$
\begin{align*}
\left\langle H_{1}^{(1)}\right\rangle & =\left\langle\frac{1-P_{12}}{4 \pi \sqrt{2}} \alpha(1) \alpha(2) u_{l^{\prime} m^{\prime} n^{\prime}}(1,2) T_{1}^{(1)}\left(\overrightarrow{\mathrm{r}}_{1}\right)\right| H_{1}^{(1)}\left|\frac{1-P_{12}}{4 \pi \sqrt{2}} \alpha(1) \alpha(2) u_{l m n}(1,2) T_{1}^{(1)}\left(\overrightarrow{\mathrm{r}}_{1}\right)\right\rangle \\
& =\frac{1}{(4 \pi)^{2}}\left\langle\left(1-P_{12}\right) \alpha(1) \alpha(2) u_{l^{\prime} m^{\prime} n^{\prime}}(1,2) T_{1}^{(1)}\left(\overrightarrow{\mathrm{r}}_{1}\right)\right| H_{1}^{(1)}\left|\alpha(1) \alpha(2) u_{l m n}(1,2) T_{1}^{(1)}\left(\overrightarrow{\mathrm{r}}_{1}\right)\right\rangle \\
& =\frac{1}{6} \alpha^{2}\left[A_{d}(L+2, M+1, N+2)-(l / L) B_{e}\left(L+2, M^{\prime}+3, N^{\prime}\right)-\left(l^{\prime} / L\right) B_{e}\left(L+2, M^{\prime}, N^{\prime}+3\right)\right] . \tag{14}
\end{align*}
$$

The general matrix elements of the other six operators are computed in like fashion as outlined elsewhere by Hambro. ${ }^{7}$ The resulting expressions range in complexity from a single term for $H_{1}^{(6)}$, which vanishes unless $n=n^{\prime}=0$, to 225 terms for $H_{1}^{(5)}$. Moreover the kinds of integrals appearing in these matrix elements demand various further computations depending on the operator being examined. Although the general integrals encountered can be computed recursively up to a point, many special cases arise when one or more of the variables r_{1}, r_{2}, and r_{12} are raised to their lowest allowed powers in the integrands.
As an illustration, integrals involving r_{12}^{-2} occur in the matrix elements of four of the seven operators and this class of integrals must be computed separately as a special case. Integrals containing more negative powers of r_{12} generally diverge individually, but these always occur in combinations which cancel the divergences to yield a finite result. This is how the matrix elements of $H_{1}^{(3)}$, for example, are rendered finite in spite of the presence of an r_{12}^{-5} factor in the operator. Furthermore, in $H_{1}^{(5)}$ matrix elements there are integrations over all space, for both the coordinate spaces of \vec{r}_{1} and \vec{r}_{2}, of terms that behave as $r_{12}^{-2} r_{2}^{-2}$, as r_{2} approaches zero. These again require special consideration, as described in Appendix A under the subject of F_{L} integrals one of whose arguments is zero.

III. SECOND-ORDER METHOD

In order to calculate the second-order corrections to the $2^{3} P_{J}$ helium energy levels, it is hardly feasible to compute the well-known sum over intermediate states, since the latter are not at hand. Instead, one returns to the inhomogeneous Schrödinger equation for the first-order perturbed wave function Ψ_{1} :

$$
\begin{equation*}
\left(H_{0}-E_{0}\right) \Psi_{1}=-\left(H_{1}-E_{1}\right) \Psi_{0}, \tag{15}
\end{equation*}
$$

where Ψ_{0} is the nonrelativistic helium $2^{3} P$ eigenfunction and E_{0} its eigenvalue. Further, H_{1} is the perturbation Hamiltonian and E_{1} its expectation value in the (normalized) state Ψ_{0} 。

Once this equation is solved for Ψ_{1}, the secondorder energy is given by an integral involving Ψ_{1} and other knowns. If H_{1} is decomposed into a sum
of operators $H_{1}^{(i)}$, then in fact there are secondorder energies $E_{2}^{(i, j)}$ given by any of four (two, if $i=j$) different expressions:

$$
\begin{align*}
E_{2}^{(i, j)}\left\langle\Psi_{0} \mid \Psi_{0}\right\rangle & =-\left\langle\Psi_{1}^{(i)}\right| H_{0}-E_{0}\left|\Psi_{1}^{(j)}\right\rangle \\
& =-\left\langle\Psi_{1}^{(j)}\right| H_{0}-E_{0}\left|\Psi_{1}^{(i)}\right\rangle \\
& =\left\langle\Psi_{0}\right| H_{1}^{(i)}-E_{1}^{(i)}\left|\Psi_{1}^{(j)}\right\rangle \\
& =\left\langle\Psi_{1}^{(i)}\right| H_{1}^{(j)}-E_{1}^{(j)}\left|\Psi_{0}\right\rangle . \tag{16}
\end{align*}
$$

Restricting ourselves for the time being to ${ }^{3} P$ intermediate states, we expand $\Psi_{1}^{(i)}$ with the same basis functions as for Ψ_{0} :

$$
\begin{equation*}
\Psi_{1}^{(i)}=\sum_{l, m, n=0}^{l+m+n \leq \omega} X_{l m n}^{(i)} U_{l m n}(1,2), \tag{17}
\end{equation*}
$$

with $U_{i m n}$ as in Sec. II. If we take Ψ_{0} and E_{0} as determined for a given ω (see Sec. II) together with the expansion for $\Psi_{1}^{(i)}$ above using the same ω (this is not necessary, but is convenient for our purposes), Eq. (15) becomes

$$
\begin{align*}
& \sum_{k=1}^{N(\omega)} X_{k}^{(i)}\left[\left\langle U_{k^{\prime}}\right| H_{0}\left|U_{k}\right\rangle-E_{0}(\omega)\left\langle U_{k^{\prime}} \mid U_{k}\right\rangle\right] \\
&=-\sum_{k=1}^{N(\omega)} C_{k}(\omega)\left\langle U_{k^{\prime}}\right| H_{1}^{(i)}-E_{1}^{(i)}\left|U_{k}\right\rangle \tag{18}
\end{align*}
$$

for $k^{\prime}=1,2,3, \ldots, N(\omega)$ and $N(\omega)=\frac{1}{6}(\omega+1)(\omega$ $+2)(\omega+3)$. In the above, the indices (l, m, n) have been mapped bijectively into the set of indices k.

This last set of equations can be construed as a matrix equation for the column vector X with a special feature. This is that the matrix ($H_{0}-E_{0}$) has 0 as an eigenvalue in the chosen basis, and so is de facto singular. If we set $X_{1}^{(i)}=0$ and solve the matrix equation remaining after the first row and first column of ($H_{0}-E_{0}$) are deleted, then we will have a consistent set of $N(\omega)-1$ equations to be solved for the $N(\omega)-1 X_{k}$, $k=2,3, \ldots, N(\omega)$. Since $\operatorname{det}\left(H_{0}-E_{0}\right) \neq 0$ now, there is a unique solution for these X_{k}; they may in fact be inserted into the $k^{\prime}=1$ equation to check for consistency and for roundoff errors.

Doing this for each i, we may then obtain mixed ($i \neq j$) and unmixed second-order energies for given ω. If both $H_{1}^{(i)}$ and $H_{1}^{(j)}$ are spin independent, then $E_{2}^{(i, j)}$ shifts each fine-structure level by the same amount and so does not affect the splittings. Otherwise $E_{2}^{(i, j)}$ is extrapolated by sev-
eral methods ${ }^{15}$ to infinite ω, and the total secondorder spin-dependent shift of the $2^{3} P_{j}$ level is then given by

$$
\begin{equation*}
\left(E_{2}\right)_{J}=\sum_{i}\left(E_{2}^{(i, i)}+2 \sum_{j \geqslant i} E_{2}^{(i, j)}\right) . \tag{19}
\end{equation*}
$$

For the ${ }^{3} P$ intermediate states, we shall do the above calculations for $J=2$ to obtain $\left(E_{2}\right)_{2}$. The level shifts for $J=0$ and $J=1$ are derived from the $J=2$ result by the Wigner-Eckart theorem, and the change in the fine-structure intervals follows easily by subtraction.

IV. TEST OF METHOD

Hambro has shown that a simple test of this method of calculating second-order energies can be made. The nonrelativistic Hamiltonian is H_{0} $=T+V$, where T is the kinetic and V is the potential energy. If T and V are considered perturbations,

$$
\mathcal{F}_{1}^{(1)}=V \text { and } \mathcal{F}_{1}^{(2)}=T,
$$

then the virial theorem can be used to show the first-order energies:

$$
E_{1}^{(1)}=2 E_{0}, \quad E_{1}^{(2)}=-E_{0},
$$

and one can further show that the second-order energies are

$$
\begin{aligned}
& E_{2}^{(1,1)}=E_{0}, \quad E_{2}^{(2,2)}=E_{0}, \\
& E_{2}^{(1,2)}=-E_{0}, \quad E_{2}^{(2,1)}=-E_{0} .
\end{aligned}
$$

The results of this test calculation are shown in Tables II and III.

V. FINAL SECOND-ORDER EXTRAPOLATIONS FOR ${ }^{3} P$ INTERMEDIATE STATES

For the ${ }^{3} P$ intermediate states, the first-order energies are presented in Table IV and the spindependent second-order energies are given in Table

TABLE II. First-order test calculation.

ω	$\frac{1}{2} E_{1}^{(1)}$ (a.u.)	$E_{1}^{(2)}$ (a.u.)
1	-2.1557992764	2.1821267650
2	-2.1349720423	2.1372656826
3	-2.1330337966	2.1329825540
4	-2.1331028335	2.1330654447
5	-2.1331389305	2.1331202659
6	-2.1331557072	2.1331491267
7	-2.1331612524	2.1331589107
8	-2.1331631144	2.1331622472
9	-2.1331637550	2.1331634031
10	-2.1331639938	2.1331638346
11	-2.1331640936	2.1331640148
12	-2.1331641400	2.1331640985

V , for $\omega=1$ to $\omega=12$. In addition, Table VI shows those second-order energies which do not affect the fine-structure splittings.

We have extrapolated the second-order results in Table V to infinite ω. Following Schwartz, successive differences between second-order energies as a function of ω are fitted to both exponential and inverse power types of behavior. This yields a best value for the (constant) ratio and inverse power, respectively, with an uncertainty in each case; these can then be used to obtain the individual extrapolated results. The final extrapolated result is a weighted average of the two already obtained, being closer to that one which has smaller uncertainty and best fits the data.
In some cases, we did not extrapolate the individual $E_{2}^{\left(i_{0} j\right)}$, but instead took certain propitious combinations of several of them as they occur in the expressions for the changes in the larger and smaller fine-structure intervals. These expressions are

$$
\begin{align*}
\Delta \nu_{01}= & 3 \sum_{i, j=1}^{2} E_{2}^{(i, j)}-50\left(E_{2}^{(1,3)}+E_{2}^{(2,3)}\right) \\
& +75 E_{2}^{(3,3)}-2 \sum_{i=1}^{2} \sum_{j=4}^{7} E_{2}^{(i, j)}+30 \sum_{j=4}^{7} E_{2}^{(3, j)} \tag{20}
\end{align*}
$$

and

$$
\begin{align*}
\Delta \nu_{12}= & 8\left(E_{2}^{(1,3)}+E_{2}^{(2,3)}\right)+24 E_{2}^{(3,3)} \\
& -4 \sum_{i=1}^{2} \sum_{j=4}^{7} E_{2}^{(i, j)}-12 \sum_{j=4}^{7} E_{2}^{(3, j)} . \tag{21}
\end{align*}
$$

The behavior of most of the $E_{2}^{(i, j)}$ as a function of ω is either smooth or so rapidly convergent as to yield extrapolations accurate to 0.5% or better. The exceptions are $E_{2}^{(1,1)}, E_{2}^{(1,5)}$, and $E_{2}^{(3,3)} . E_{2}^{(1,1)}$ and $E_{2}^{(3,3)}$ demonstrate a smooth but slow convergence with ω, reflecting the pole-type singularities

TABLE III. Second-order test calculation.

ω	$E_{2}^{(1,1)}=-E_{2}^{(1,2)}=-E_{2}^{(2,1)}=E_{2}^{(2,2)}($ a.u. $)$
1	-1.801314478
2	-2.088199826
3	-2.128536110
4	-2.132450237
5	-2.132976961
6	-2.133092204
7	-2.133137444
8	-2.133153794
9	-2.133159927
10	-2.133162283
11	-2.133163254
12	-2.133163696

of $H_{1}^{(1)}$ and $H_{1}^{(3)}$, while $E_{2}^{(1,5)}$ shows neither rapid
TABLE IV. First-order matrix elements of the Breit operators.

ω	$\begin{gathered} E_{1}^{(1)} \\ \frac{1}{2} \alpha^{2} \mathrm{Ry} \end{gathered}$	$\begin{gathered} E_{1}^{(2)} \\ \frac{1}{2} \alpha^{2} \mathrm{Ry} \end{gathered}$	$\begin{gathered} E_{1}^{(3)} \\ \frac{1}{2} \alpha^{2} \mathrm{Ry} \end{gathered}$	$\begin{gathered} E_{1}^{(4)} \\ 2 \alpha^{2} \mathrm{Ry} \end{gathered}$	$\begin{gathered} E_{1}^{(5)} \\ 2 \alpha^{2} \mathrm{Ry} \end{gathered}$	$\begin{gathered} E_{1}^{(6)} \\ 2 \alpha^{2} \mathrm{Ry} \end{gathered}$	$\begin{gathered} E_{1}^{(7)} \\ 2(m / M) \mathrm{Ry} \end{gathered}$
1	0.13621571056	-0.21827744969	0.01965274559	0.03449072482	-9.650 52136145	7.80228491927	-0.058 22955825
2	0.13112509381	-0.201776410 02	0.01801510757	0.03290489833	-9.974 34933799	7.94518101620	-0.059 29955696
3	0.13479007901	-0.203 08763420	0.01793222385	0.03411307449	-9.90142936352	7.90537179137	-0.061960 76282
4	0.13688109890	-0.20459137882	0.01798238406	0.03467268686	-9.916 22447228	7.91217014522	-0.063 37755523
5	0.13789797283	-0.20535411455	0.01800112009	0.03494044691	-9.910 32004911	7.90894367756	-0.064 19143256
6	0.13834071978	-0.20567630911	0.01800944347	0.03503568454	-9.912 07647762	7.90971549809	-0.064 46346223
7	0.13851949264	-0.20580366588	0.01801273656	0.03506573634	-9.91176690275	7.90951858999	-0.064 53566945
8	0.13859287311	-0.205 86018320	0.01801427924	0.035075957702	-9.912 13244101	7.90968439917	-0.064 56304596
9	0.13862168632	-0.205884 99514	0.01801503024	0.035079216496	-9.91205502899	7.90963894750	-0.064 57048328
10	0.13863193766	-0.20589652836	0.01801543659	0.03508023599	-9.912 13012590	7.90967401407	-0.064 57227311
11	0.13863545722	-0.20590246134	0.01801567137	0.03508059366	-9.912 09771743	7.90965690680	-0.064 57262972
12	0.13863642619	-0.20590573429	0.01801581435	0.03508072733	-9.912 09672103	7.90965611837	-0.064 57245406

The extrapolated results are shown in Table VII, where we obtain the total second-order contribution from ${ }^{3} P$ intermediate states as $5.062(38)$ and $-0.413(79) \mathrm{MHz}$ for ν_{01} and ν_{12}, respectively. Some of the individual error estimates for the $E_{2}^{(i, j)}$ may be somewhat optimistic and others more or less conservative, but in any case only four or five of the $E_{2}^{(i, j)}$ significantly affect the total uncertainty. Furthermore, our results for those energies for which Hambro obtained improved values are not inconsistent with his results, and we have used $\omega=10$ preliminary extrapolations to anticipate the $\omega=11$ and $\omega=12$ values for our $E_{2}^{(i, j)}$ quite successfully, as a check on internal consistency of the method.
These results, together with those for the other intermediate states should allow α to be determined to 1 ppm or better. The other contributions are discusised in the sections following.

VI. ${ }^{1} P$ INTERMEDIATE-STATE CONTRIBUTIONS

We now complete the second-order calculation by computing the effects of ${ }^{1} P,{ }^{3} D,{ }^{1} D$, and ${ }^{3} F$ intermediate states. Of these symmetries, only the first two contribute to both the fine-structure intervals ν_{01} and ν_{12}; the last two only affect ν_{12}.
The second-order method has been described for ${ }^{3} P$ states already and its application to symmetries other than ${ }^{3} P$ is not much different. The major difference arises in the solution of the inhomogeneous Schrödinger equation for the i th perturbation wave function,

$$
\begin{align*}
\sum_{k=1}^{N(\omega)} X_{k}^{(i)}\left[\left\langle\tilde{U}_{l}\right| H_{0}\left|\tilde{U}_{k}\right\rangle-\right. & \left.E_{0}(\omega)\left\langle\tilde{U}_{l} \mid \tilde{U}_{k}\right\rangle\right] \\
& =-\sum_{k=1}^{N(\omega)} c_{k}\left\langle\tilde{U}_{l}\right| H_{1}^{(i)}\left|U_{k}\right\rangle \tag{22}
\end{align*}
$$

Here we have expanded $\Psi_{1}^{(i)}\left(L, S, J, m_{J}=J\right)$ as

$$
\begin{equation*}
\Psi_{1}^{(i)}=\sum_{k=1}^{N(\omega)} X_{k}^{(i)} \tilde{U}_{k}\left(L, S, J, m_{J}=J\right) \tag{23}
\end{equation*}
$$

where $k-(l, m, n)$ with $l, m, n \geqslant 0$ and $l+m+n \leqslant \omega$, and $N(\omega)=\frac{1}{6}(\omega+1)(\omega+2)(\omega+3)$. Furthermore,

$$
\begin{align*}
\tilde{U}_{l m n}\left(L, S, J, m_{J}=J\right)= & \frac{1+(-1)^{S} P_{12}}{4 \pi \sqrt{2}} e^{-\kappa \sigma r_{1} / 2} e^{-\kappa r_{2} / 2} \\
& \times r_{12}^{l} r_{1}^{m} r_{2}^{n} Y\left(L, S, J, m_{J}=J\right) \tag{24}
\end{align*}
$$

with κ and σ as before and Y a spherical tensor representing an $L-S$ coupling state of total angular momentum J, projection m_{J}, and odd parity. Now
TABLE V. Second-order energies

ω	$\begin{gathered} E_{2}^{(1,1)} \\ \left(\frac{1}{2} \alpha^{2} \mathrm{Ry}\right) \frac{1}{4} \alpha^{2} \end{gathered}$	$\begin{gathered} E_{2}^{(2,2)} \\ \left(\frac{1}{2} \alpha^{2} \mathrm{Ry}\right) \frac{1}{4} \alpha^{2} \end{gathered}$	$\begin{gathered} E_{2}^{(3,3)} \\ \left(\frac{1}{2} \alpha^{2} \mathrm{Ry}\right) \frac{1}{4} \alpha^{2} \end{gathered}$	$\begin{gathered} E_{2}^{(1,2)} \\ \left(\frac{1}{2} \alpha^{2} \mathrm{Ry}\right) \frac{1}{4} \alpha^{2} \end{gathered}$	$\begin{gathered} E_{2}^{(1,3)} \\ \left(\frac{1}{2} \alpha^{2} \mathrm{Ry}\right) \frac{1}{4} \alpha^{2} \end{gathered}$	$\begin{gathered} E_{2}^{(1,4)} \\ \left(\frac{1}{2} \alpha^{2} \mathrm{Ry}\right) \alpha^{2} \end{gathered}$
1	-0.246939 97780	-0.606520 19222	-0.003 91498798860	0.37526345793	-0.029 729889762	-0.064 385508466
2	-0.365 38907652	-0.79651107786	-0.004 86896871953	0.51106300223	-0.039 027567208	-0.096 387812985
3	-0.442 53234141	ד0.892 24182198	-0.005 25884272089	0.57923346960	-0.043180 481133	-0.113 39813802
4	-0.489 47376525	-0.950 70590329	-0.005 43870181714	0.61476599912	-0.045 005653530	-0.122 73700356
5	-0.522 67810611	-0.99038074654	-0.005554 94107446	0.63651548279	-0.045 980429182	-0.12846636958
6	-0.545 89612141	-1.0171813390	-0.005 63638051573	0.64920382733	-0.046 520836115	-0.13158785913
7	-0.562 41192301	-1.036333877 7	-0.005 69794231922	0.65667285532	-0.046840481206	-0.13318872779
8	-0.574 85409001	-1.050929 2314	-0.005 74614901380	0.66160345878	-0.047 042908573	-0.13412084193
9	-0.584 63872161	-1.062 1741611	-0.005 78483387829	0.66495584780	-0.047178 038543	-0.134 67536661
10	-0.592456 09561	-1.071 0117897	-0.005 81651635217	0.66715953366	-0.047271371260	-0.134 96948668
11	-0.598 88011247	-1.0782093138	-0.005 84290039676	0.66872491770	-0.047 338639704	-0.13514599275
12	-0.604 29774283	-1.0841761145	-0.005865 16605797	0.66988253069	-0.047388457435	-0.135259 54133
	$E_{2}^{(1,5)}$	$E_{2}^{(1,6)}$	$E_{2}^{(1,7)}$	$E_{2}^{(2,3)}$	$E_{2}^{(2,4)}$	$E_{2}^{(2,5)}$
ω	$\left(\frac{1}{2} \alpha^{2} \mathrm{Ry}\right) \alpha^{2}$	$\left(\frac{1}{2} \alpha^{2} \mathrm{Ry}\right) \alpha^{2}$	$\left(\frac{1}{2} \alpha^{2} \mathrm{Ry}\right) m / M$	$\left(\frac{1}{2} \alpha^{2} \mathrm{Ry}\right)^{\frac{1}{4}} \alpha^{2}$	$\left(\frac{1}{2} \alpha^{2} \mathrm{Ry}\right) \alpha^{2}$	$\left(\frac{1}{2} \alpha^{2} \mathrm{Ry}\right) \alpha^{2}$
1	-1.35275726630	0.83202422982	0.088292460193	0.048646059034	0.10839243211	2.1020161850
2	0.034234318757	0.12237467203	0.160069879020	0.061924185653	0.14564998624	-0.293 85512724
3	-0.194195 27820	0.26305275911	0.187985961 .983	0.067859016361	0.16406035277	0.29612545301
4	-0.113889 21513	0.23655335156	0.205644018918	0.071008826004	0.17420964573	0.046292285177
5	-0.13959754533	0.25949067000	0.219018381676	0.073049238631	0.17998997032	0.14707821536
6	-0.130 33343571	0.26135085801	0.225661852817	0.074454087419	0.18286280872	0.09128475501
7	-0.123428 32187	0.26235254364	0.228291950796	0.075492546921	0.18425172989	0.12697387647
8	-0.10294942172	0.25536834464	0.230351387838	0.076293345049	0.18502208225	0.10978703406
9	-0.095 69022218	0.25423395244	0.231723871536	0.076925676055	0.18542987436	0.11820103749
10	-0.093 81112277	0.25526771803	0.232100864198	0.077438305728	0.18562519525	0.10630662742
11	-0.096105 37313	0.25802418816	0.232381516317	0.077862148441	0:185 72980665	0.1078264602
12	$\begin{gathered} -0.093421226 \\ E_{2}^{(2,6)} \end{gathered}$	$\begin{gathered} 0.258023481 \\ E_{2}^{(2,7)} \end{gathered}$	$\begin{gathered} 0.23262983464 \\ E_{2}^{(3,4)} \end{gathered}$	$\begin{gathered} 0.078217446863 \\ E_{2}^{(3,5)} \end{gathered}$	$\begin{gathered} 0.18578663633 \\ E_{2}^{(3,6)} \end{gathered}$	$\begin{gathered} 0.1069805555 \\ E_{2}^{(3,7)} \end{gathered}$
ω	$\left(\frac{1}{2} \alpha^{2} \mathrm{Ry}\right) \alpha^{2}$	($\frac{1}{2} \alpha^{2} \mathrm{Ry}$) m / M	$\left(\frac{1}{2} \alpha^{2} \mathrm{Ry}\right) \alpha^{2}$	($\left.\frac{1}{2} \alpha^{2} \mathrm{Ry}\right) \alpha^{2}$	$\left(\frac{1}{2} \alpha^{2} \mathrm{Ry}\right) \alpha^{2}$	$\left(\frac{1}{2} \alpha^{2} \mathrm{Ry}\right) m / M$
1	-1.248 3005459	-0.169152 04628	-0.008 7418079518	-0.13546362650	0.079731206176	0.013890400158
2	-0.009 0421916799	-0.235 87517358	-0.011210409140	0.025656689317	-0.003 859000323	0.018025837945
3	-0.32176715543	-0.27157620714	-0.012 264960517	0.00087455149239	0.0092833187737	0.020086284655
4	-0.20622786968	-0.292 05928948	-0.012 751258084	0.0070956951158	0.0066321367347	0.020936916568
5	-0.262354 20127	-0.306 04486246	-0.012982926713	0.0066883624005	0.0070825927222	0.021347172299
6	-0.237308703 05	-0.31257984158	-0.013 091136660	0.0070882739263	0.0070014818146	0.021498040345
7	-0.256 63974030	-0.315 64899421	-0.013144105726	0.0065153818107	0.0073467639558	0.021572087018
8	-0.248892796 00	-0.31775122828	-0.013171239 018	0.0062694403631	0.0074997899591	0.021604339147
9	-0.253 60071402	-0.318873 26167	-0.013 184916583	0.0063914863029	0.0074542100528	0.021611 .864122
10	-0.247932 10820	-0.319 27447253	-0.013192 271426	0.0067428873300	0.0072859049568	0.021617230998
11	-0.248853 5773	-0.31950346899	-0.013 196263747	0.006899529484	0.0072105886658	0.021620011407
12	-0.248523 394	-0.31963136459	-0.013198291862	0.006779555	0.0072712014	0.021619651675

no equations are to be deleted in (22) because the matrix ($H_{0}-E_{0}$) is nonsingular, and so the problem reduces to the one of inverting an $N(\omega)$ by $N(\omega)$ matrix.
In addition, we have new integrals appearing in the case of D and F symmetries involving spherical tensors more complicated than the $T^{(1)}\left(\vec{r}_{1}\right)$ encountered previously. The calculation of these integrals is not too difficult but we nevertheless indicate as an example in Appendix B how the ${ }^{3} F$ integrals are reduced to the A and B integrals introduced earlier in this paper. We proceed now to examine the effect of ${ }^{1} P$ intermediate states.
The operators with nonvanishing matrix elements between ${ }^{1} P$ and ${ }^{3} P$ states are

$$
\tilde{H}_{1}^{(1)}=\frac{1}{4} \alpha^{2} Z\left(\frac{\vec{\sigma}_{1}-\vec{\sigma}_{2}}{2}\right) \cdot\left(\frac{\overrightarrow{\mathbf{r}}_{1} \times \overrightarrow{\mathrm{p}}_{1}}{r_{1}^{3}}-\frac{\overrightarrow{\mathbf{r}}_{2} \times \overrightarrow{\mathrm{p}}_{2}}{r_{2}^{3}}\right)
$$

and

$$
\begin{equation*}
\tilde{H}_{1}^{(2)}=\frac{1}{4} \alpha^{2}\left(\frac{\vec{\sigma}_{1}-\vec{\sigma}_{2}}{2}\right) \cdot\left(\frac{\overrightarrow{\mathrm{r}}_{1}-\overrightarrow{\mathrm{r}}_{2}}{r_{12}^{3}} \times\left(\overrightarrow{\mathrm{p}}_{1}+\overrightarrow{\mathrm{p}}_{2}\right)\right) . \tag{25}
\end{equation*}
$$

These are the spin-antisymmetric parts of $H_{1}^{(1)}$ and $H_{1}^{(2)}$, the spin-orbit Breit operators; the spin-
symmetric parts are proportional to the total spin S and do not permit singlet-triplet transitions.
Since $J=1$ for ${ }^{1} P$ states and J is still a good quantum number we take as our nonrelativistic $2^{3} P$ wave function
$\Psi_{0}\left({ }^{3} P_{1}, m_{J}=1\right)=\sum_{l, m, n=0}^{l+m+n \leq \omega} C_{l m n} U_{l m n}\left({ }^{3} P_{1}, m_{J}=1\right)$
where the $C_{l_{m n}}$ are as determined in Sec. II and

$$
\begin{align*}
& U_{l m n}\left({ }^{3} P_{1}, m_{J}=1\right) \\
& \quad=\frac{1-P_{12}}{4 \pi \sqrt{2}} \frac{1}{\sqrt{2}}\left[S_{0}^{(1)} T_{1}^{(1)}\left(\vec{r}_{1}\right)-S_{1}^{(1)} T_{0}^{(1)}\left(\vec{r}_{1}\right)\right] u_{l m n}(1,2) . \tag{27}
\end{align*}
$$

The perturbed wave function is expanded as
$\tilde{\Psi}_{1}^{(i)}\left({ }^{1} P_{1}, m_{J}=1\right)=\sum_{l, m, n=0}^{l+m+n \leqslant \omega} \tilde{C}_{l m n}^{(i)} \tilde{U}_{l m n}\left({ }^{1} P_{1}, m_{J}=1\right)$
where
$\tilde{U}_{l m n}\left({ }^{1} P_{1}, m_{J}=1\right)=\frac{1+P_{12}}{4 \pi \sqrt{2}} S_{0}^{(0)} T_{1}^{(1)}\left({ }_{\mathrm{r}_{1}}\right) u_{l m n}(1,2)$.
We compute the action of the operators on the unsymmetrized ${ }^{1} P$ basis functions:

TABLE VI. Second-order energies which do not contribute to the fine structure.

ω	$\begin{gathered} E_{2}^{(4,4)} \\ \left(2 \alpha^{4} \mathrm{Ry}\right) \end{gathered}$	$\begin{gathered} E_{2}^{(5,5)} \\ \left(2 \alpha^{4} \mathrm{Ry}\right) \end{gathered}$	$\begin{gathered} E_{2}^{(6,6)} \\ \left(2 \alpha^{4} \mathrm{Ry}\right) \end{gathered}$	$\begin{gathered} E_{2}^{(7,7)} \\ \left(2(m / M)^{2} \mathrm{Ry}\right) \end{gathered}$	$\begin{gathered} E_{2}^{(4,5)} \\ \left(2 \alpha^{4} \mathrm{Ry}\right) \end{gathered}$
1	-0.019 941220294	-252.301 04025	-89.151341771	-0.067 054443540	-0.509 63466684
2	-0.028 765953476	-349.313 29468	-108.81860313	-0.121394 680800	0.038090731754
3	-0.033 335808370	-442.93474819	-133.13685157	-0.142 26638401	-0.103141 283917
4	-0.035 906828850	-534.405 18929	-155.75170850	-0.160 86402532	-0.040 353494222
5	-0.037393840859	-621.794 445183	-177.72674572	-0.180 66291046	-0.073 261738297
6	-0.038 073570418	-708.113 03496	-199.266 65329	-0.191570 09043	-0.055 513108990
7	-0.038 343778493	-793.054 98805	-220.517116 05	-0.196151 00274	-0.062 513658090
8	-0.038477869851	-877.32706951	-241.565 72019	-0.200 10859314	-0.055928749109
9	-0.038 543199087	-960.906 70283	-262.464 30003	-0.20282756719	-0.059 430409098
10	-0.038567915521	-1044.056101	-283.246 29360	-0.203 75113051	-0.057 381527590
11	-0.038579 766222	-1126.807270	-303.937823 07	-0.204 26730621	-0.058454 129847
12	-0.038586551825	-1209.289343	-324.558 33479	-0.204 65623276	-0.057551914 63
ω	$\begin{gathered} E_{2}^{(4,6)} \\ \left(2 \alpha^{4} \mathrm{Ry}\right) \end{gathered}$	$\begin{gathered} E_{2}^{(4,7)} \\ \left(2 \alpha^{2}(m / M) \mathrm{Ry}\right) \end{gathered}$	$\begin{gathered} E_{2}^{(5,6)} \\ \left(2 \alpha^{4} \mathrm{Ry}\right) \end{gathered}$	$\begin{gathered} E_{2}^{(5,7)} \\ \left(2 \dot{\alpha}^{2}(m / M) \mathrm{Ry}\right) \end{gathered}$	$\begin{gathered} E_{2}^{(6,7)} \\ \left(2 \alpha^{2}(m / M) \mathrm{Ry}\right) \end{gathered}$
1	0.297444545402	0.033581361651	149.92973978	1.1800156183	-0.668956889 07
2	0.017125440447	0.053384471485	194.06234359	-0.128252515 86	-0.020 398608316
3	0.092956846436	0.062084852339	241.74753288	0.45387320008	-0.320 34471178
4	0.064126858647	0.067951065502	287.23317483	0.068616519845	-0.13415181682
5	0.082165221912	0.072383341337	331.04952162	0.36674508879	-0.287 35666850
6	0.074066349412	0.074449032058	374.16812384	0.16766397664	-0.18946948595
7	0.077953863661	0.075196222464	416.65267365	0.28733461578	-0.249909 27377
8	0.074878198038	0.075703313069	$458: 76859078$	0.19883387604	-0.206 03970981
9	0.076754952587	0.075996409786	500.56136776	0.26048715418	-0.237101855 03
10	0.075798997017	0.076080170556	542.13022282	0.22142423545	-0.21762196628
11	0.076376705093	0.076120936920	583.50910174	0.24714117276	-0.230525 26783
12	0.07595157996	0.076149073589	624.74977888	0.2292796784	-0.221626 0101

$$
\begin{align*}
& \tilde{H}_{1}^{(1)} \frac{1}{\sqrt{2}}\left[S_{0}^{(1)} T_{1}^{(1)}\left(\overrightarrow{\mathrm{r}}_{1}\right)-S_{1}^{(1)} T_{0}^{(1)}\left(\vec{r}_{1}\right)\right] u_{l m n}(1,2) \\
&=\frac{1}{4} \alpha^{2} Z u_{l m n}(1,2) S_{0}^{(0)} \sqrt{2}\left[\frac{1}{r_{1}^{3}} T_{1}^{(1)}\left(\vec{r}_{1}\right)-\frac{l}{2 r_{12}^{2}}\left(\frac{1}{r_{1}^{3}}+\frac{1}{r_{2}^{3}}\right)\left[T_{1}^{(1)}\left(\vec{r}_{1}\right)\left(\overrightarrow{\mathrm{r}}_{1} \cdot \overrightarrow{\mathrm{r}}_{2}\right)-T_{1}^{(1)}\left(\vec{r}_{2}\right) r_{1}^{2}\right]\right], \tag{30}
\end{align*}
$$

and

$$
\begin{align*}
\tilde{H}_{1}^{(2)} \frac{1}{\sqrt{2}} & {\left[S_{0}^{(1)} T_{1}^{(1)}\left(\vec{r}_{1}\right)-S_{1}^{(1)} T_{0}^{(1)}\left(\vec{r}_{1}\right)\right] u_{l m n}(1,2) } \\
& =\frac{1}{4} \alpha^{2} \sqrt{2} S_{0}^{(0)} u_{l m n}(1,2) \frac{1}{r_{12}^{3}}\left[T_{1}^{(1)}\left(\vec{r}_{1}\right)-T_{1}^{(1)}\left(\vec{r}_{2}\right)+\frac{1}{2}\left(\frac{m}{r_{1}^{2}}+\frac{n}{r_{2}^{2}}-\frac{\kappa \sigma}{2 r_{1}}-\frac{\kappa}{2 r_{2}}\right)\left[T_{1}^{(1)}\left(\vec{r}_{1}\right)\left(\vec{r}_{1} \cdot \vec{r}_{2}\right)-T_{1}^{(1)}\left(\vec{r}_{2}\right) r_{1}^{2}\right]\right] . \tag{31}
\end{align*}
$$

It should be pointed out here that the plus signs preceding " $1 / r_{2}^{3}$ " in the $\tilde{H}_{1}^{(1)}$ equation and " $\frac{1}{2}$ " in the $\tilde{H}_{1}^{(2)}$ equation, respectively, are reversed, incorrectly, in Hambro's paper. (His final results are, hawever, correct.) These computations suffice for obtaining the transition matrix elements

$$
\left(\tilde{M}_{1}^{(i)}\right)_{k^{\prime}, k}
$$

where
$\left(\tilde{M}_{1}^{(i)}\right)_{k^{\prime}, k}=\left\langle\tilde{U}_{i^{\prime} m^{\prime} n^{\prime}}\left({ }^{1} P_{1}, m_{J}=1\right)\right| \tilde{H}_{1}^{(i)}\left|U_{l m n}\left({ }^{3} P_{1}, m_{J}=1\right)\right\rangle$.

The $\left(\tilde{M}_{1}^{(i)}\right)_{k^{\prime}, k}$ so calculated differ from the $\left(M_{1}^{(i)}\right)_{k^{\prime}, k}$ of the ${ }^{3} P$ case only in some sign changes and overall multiplicative factors. Also needed are the matrix elements of H_{0} and of unity between ${ }^{1} P$ basis functions. These again are the same as the corresponding ${ }^{3} P$ quantities save for a sign change preceding all the exchange integrals.

Having computed these matrix elements, we can solve for the $\tilde{X}_{k}^{(i)}$ in the inhomogeneous Schrödinger equation (22) for a given ω and thence obtain the $\tilde{E}_{2}^{(i, j)}$ as described in Sec. III. The total shift of the $2^{3} P_{1}$ level is then given by $\left(\tilde{E}_{2}\right)_{J=1}=\tilde{E}_{2}^{(1,1)}+\tilde{E}_{2}^{(2,2)}$

TABLE VII. ${ }^{3} P$ contributions to the helium fine structure.

(i, j)	$E_{2}^{(i, j) a}$	$\Delta \nu_{01}\left(\frac{1}{2} \alpha^{4} \mathrm{Ry}\right)$	$\Delta \nu_{12}\left(\frac{1}{2} \alpha^{4} \mathrm{Ry}\right)$
$(1,1)$	$-0.6653(46)$	$-0.499(3)$	0
$(1,2)$	$0.67476(24)$	$1.0121(4)$	0
$(1,3)$	$-0.047608(1)$	$0.59510(1)$	$-0.095216(2)$
$(1,4)$	$-0.135528(24)$	$0.27106(5)$	$0.5421(1)$
$(1,5)+(1,6)$	$0.174(4)$	$-0.348(8)$	$-0.696(16)$
$(2,2)$	$-1.1420(17)$	$-0.857(1)$	0
$(2,3)$	$0.08212(18)$	$-1.027(2)$	$0.1642(4)$
$(2,4)$	$0.185863(14)$	$-0.37173(3)$	$-0.74345(6)$
$(2,5)$	$0.107252(46)$	$-0.21450(9)$	$0.99447(7)$
$(2,6)$	$-0.248618(17)$	$-0.0367(2)$	
$(3,3)$	$-0.00611(4)$	$-0.1146(8)$	$0.158406(1)$
$(3,4)$	$-0.0132005(1)$	$-0.396015(3)$	$-0.59802(72)$
$30[(3,5)+(3,6)]-2(2,6)$	$0.919502(37)$	$0.91950(4)$	$\left(\frac{1}{2} \frac{m}{M} \alpha^{2} \mathrm{Ry}\right)$
$12[(3,5)+(3,6)]-4(2,5)$	$-0.59802(72)$		$-0.933(2)$
		$\left(\frac{1}{2} \frac{m}{M} \alpha^{2} \mathrm{Ry}\right)$	$1.2792(2)$
$(1,7)$	$0.2333(4)$	$-0.4666(8)$	$-0.259442(1)$
$(2,7)$	$-0.319795(39)$	$0.63959(8)$	$-0.155(8) \alpha^{4} \mathrm{Ry}$
$(3,7)$	$0.0216202(1)$	$0.648606(3)$	$-0.515(4) \alpha^{4} \mathrm{Ry}$
	Totals	$+0.4108(4) \frac{m}{M} \alpha^{2} \mathrm{Ry}$	$+0.043(1) \frac{m}{M} \alpha^{2} \mathrm{Ry}$
		$=5.062(38) \mathrm{MHz}$	$=-0.413(79) \mathrm{MHz} \mathrm{b}$

[^0]$+2 \tilde{E}_{2}^{(1,2)}$. Table VIII presents our results for the $\tilde{E}_{2}^{(i, j)}$ due to ${ }^{1} P$ intermediate states for $\omega=1$ to ω $=10$.

VII. ${ }^{3} D$ INTERMEDIATE-STATE CONTRIBUTIONS

The operators with nonvanishing matrix elements between ${ }^{3} D$ and ${ }^{3} P$ states are the spin-symmetric parts of the spin-dependent Breit operators, that is, $H_{1}^{(1)}, H_{1}^{(2)}$, and $H_{1}^{(3)}$ as presented in Sec. II. We shall evaluate the perturbation on the $2^{3} P_{2}$ level by ${ }^{3} D_{2}$ states so that we take

$$
U_{l m n}\left({ }^{3} P_{2}, m_{J}=2\right)=\frac{1-P_{12}}{4 \pi \sqrt{2}} S_{1}^{(1)} T_{1}^{(1)}\left(\vec{r}_{1}\right) u_{l m n}(1,2),
$$

as before. With

$$
\begin{align*}
& T_{2}^{(2)}\left(\vec{r}_{1}, \overrightarrow{\mathbf{r}}_{2}\right) \\
&=\left(\sqrt{2} S_{0}^{(1)}\left\{T^{(1)}\left(\vec{r}_{1}\right),\left\{T^{(1)}\left(\vec{r}_{1}\right), T^{(1)}\left(\vec{r}_{2}\right)\right\}{ }^{(1)}\right\}_{2}^{(2)}\right. \\
&\left.-S_{1}^{(1)}\left\{T^{(1)}\left(\vec{r}_{1}\right),\left\{T^{(1)}\left(\overrightarrow{\mathbf{r}}_{1}\right), T^{(1)}\left(\vec{r}_{2}\right)\right\}^{(1)}\right\}_{1}^{(2)}\right) / \sqrt{3}, \tag{33}
\end{align*}
$$

then the " D-part" of

$$
\begin{align*}
H_{1}^{(1)} S_{1}^{(1)} & T_{1}^{(1)}\left(\vec{r}_{1}\right) u_{l m n}(1,2) \\
& =\frac{1}{4} \alpha^{2} Z \sqrt{3} \frac{l}{r_{12}^{2}}\left(\frac{1}{r_{2}^{3}}-\frac{1}{r_{1}^{3}}\right) T_{2}^{(2)}\left(\overrightarrow{\mathrm{r}}_{1}, \overrightarrow{\mathrm{r}}_{2}\right) u_{l m n}(1,2) . \tag{34}
\end{align*}
$$

A note of explanation is in order here. It will be noted that $T_{2}^{(2)}\left(\vec{r}_{1}, \overrightarrow{\mathbf{r}}_{2}\right)$ is essentially a ${ }^{3} D$ RussellSaunders term with $J=2, m_{J}=2$ constructed from the odd-parity configuration $2 p 3 d$. The operation of the $H_{1}^{(i)}$ on the $2^{3} P$ basis functions produces terms containing products of P-type spherical tensors. These products can be decomposed by methods of vector-coupling algebra ${ }^{16}$ into components which are pure S, P, and D respectively, and it is the latter which we project out as the sole contributor to our matrix elements. Proceeding with $H_{1}^{(2)}$, we obtain that the D part of

$$
\begin{align*}
& H_{1}^{(2)} S_{1}^{(1)} T_{1}^{(1)}\left(\vec{r}_{1}\right) u_{l m n}(1,2) \\
&=-\frac{3}{4} \alpha^{2} \sqrt{3} \frac{1}{r_{12}^{3}}\left(\frac{m}{r_{1}^{2}}-\frac{\kappa \sigma}{2 r_{1}}+\frac{\kappa}{2 r_{2}}-\frac{n}{r_{2}^{2}}\right) \\
& \times T_{2}^{(2)}\left(\overrightarrow{\mathbf{r}}_{1}, \overrightarrow{\mathbf{r}}_{2}\right) u_{l m n}(1,2), \tag{35}
\end{align*}
$$

and

$$
\begin{align*}
H_{1}^{(3)} S_{1}^{(1)} T_{1}^{(1)}\left(\overrightarrow{\mathrm{r}}_{1}\right) u_{l m n}(1,2) & (D \text { part }) \\
=-\frac{1}{4} \alpha^{2} \sqrt{3}\left(\frac{2}{r_{12}^{5}}\right) & {\left[T_{2}^{(2)}\left(\overrightarrow{\mathrm{r}}_{1}, \overrightarrow{\mathrm{r}}_{2}\right)\right.} \\
& \left.+T_{2}^{(2)}\left(\overrightarrow{\mathrm{r}}_{2}, \overrightarrow{\mathrm{r}}_{1}\right)\right] u_{l m n}(1,2) . \tag{36}
\end{align*}
$$

We will expand the ${ }^{3} D$ intermediate states in two ways. One way is to multiply the usual Hylleraas expansion by the ${ }^{3} D_{2}$ form $T_{2}^{(2)}\left(\vec{r}_{1}, \vec{r}_{2}\right)$. The other way divides this tensor by $r_{1} r_{2}$, so that we can match the P expansions (Secs. II and V) term by term and use integrals of the same order. The latter expansion has the feature that the lowest-order term is no longer a $2 p 3 d$ configuration, but with the factor $\left(r_{1} r_{2}\right)^{-1}$ it seems to better reflect the singularities in the $H_{1}^{(i)}$ than the former expansion. Hence we develop the intermediate D states as

$$
\begin{equation*}
\Psi_{P}^{(i)}\left({ }^{3} D_{2}, m_{J}=2\right)=\sum_{l, m, n=0}^{l+m+n \leqslant \omega} Y_{l m n}^{(i)} V_{l m n}^{P}\left({ }^{3} D_{2}, m_{J}=2\right), \tag{37}
\end{equation*}
$$

with

$$
\begin{equation*}
V_{l m n}^{P}\left({ }^{3} D_{2}, m_{J}=2\right)=\frac{1-P_{12}}{4 \pi \sqrt{2}} \frac{T_{2}^{(2)}\left(\vec{r}_{1}, \overrightarrow{\mathrm{r}}_{2}\right)}{\left(r_{1} r_{2}\right)^{2-P}} u_{l m n}(1,2) . \tag{38}
\end{equation*}
$$

The integrals involved in deriving the required matrix elements can be expressed in terms of the A and B integrals in much the same way as is done in Appendix B for the ${ }^{3} F$ case. One then finds, for example,

TABLE VIII. ${ }^{1} P$ intermediate-state contributions.

	$E_{2}^{(1,1)}$	$E_{2}^{(2,2)}$	$E_{2}^{(1,2)}$
ω	$\left(\alpha^{4} \mathrm{Ry}\right)$	$\left(\frac{1}{4} \alpha^{4} \mathrm{Ry}\right)$	$\left(\frac{1}{2} \alpha^{4} \mathrm{Ry}\right)$
1	-0.32608315088	-0.18464406408	-0.24472652049
2	-0.33113117424	-0.17588893460	-0.23996980309
3	-0.35006459492	-0.17344598192	-0.24372058992
4	-0.36531335975	-0.17375771510	-0.24774805884
5	-0.37477212085	-0.17336296416	-0.24920673439
6	-0.38109625054	-0.17334632985	-0.25011486610
7	-0.38563909446	-0.17348032543	-0.25076973556
8	-0.38898185016	-0.17357269578	-0.25116326155
9	-0.39153611408	-0.17364436653	-0.25141824426
10	-0.39358110870	-0.17370557577	-0.25160664681

$$
\begin{align*}
\left\langle V_{l^{\prime} m^{\prime} n^{\prime}}^{1}\right| H_{1}^{(1)}\left|U_{l m n}\right\rangle=-\frac{1}{40} \alpha^{2} Z \sqrt{3} \frac{l}{L} & \left(B_{d}(L+2, M+4, N-1)-B_{d}(L+2, M+1, N+2)\right. \\
& +A_{e}\left(L+2, M^{\prime}+3, N^{\prime}\right)+\frac{3}{L+2} B_{e}\left(L+4, M^{\prime}+2, N^{\prime}-1\right) \\
& \left.-A_{e}\left(L+2, M^{\prime}, N^{\prime}+3\right)-\frac{3}{L+2} B_{e}\left(L+4, M^{\prime}-1, N^{\prime}+2\right)\right) \tag{39}
\end{align*}
$$

and similarly for $H_{1}^{(2)}$ and $H_{1}^{(3)}$.
The action of H_{0} on the ${ }^{3} D$ basis functions is given by

$$
\begin{align*}
H_{0} \frac{u_{l m n}(1,2)}{r_{1} r_{2}} T_{2}^{(2)}\left(\overrightarrow{\mathrm{r}}_{1}, \overrightarrow{\mathrm{r}}_{2}\right)=\frac{u_{l m n}(1,2)}{r_{1} r_{2}} T_{2}^{(2)}\left(\overrightarrow{\mathrm{r}}_{1}, \overrightarrow{\mathrm{r}}_{2}\right)(& \left(-\frac{1}{8}\left(\kappa^{2} \sigma^{2}+\kappa^{2}\right)+\frac{1}{r_{1}}\left[\frac{1}{4} \kappa \sigma(2 m+4+l)-2\right]+\frac{1}{r_{2}}\left[\frac{1}{4} \kappa(2 n+2+l)-2\right]\right. \\
& -\frac{1}{r_{1}^{2}} \frac{1}{2}(m-1)(m+l+4)-\frac{1}{r_{2}^{2}} \frac{1}{2}(n-1)(n+2+l)+\frac{1}{r_{12}} \\
& -\frac{1}{r_{12}^{2}} \frac{1}{2} l(2 l+m+n+6)+\frac{r_{1}}{r_{12}^{2}} \frac{1}{4} \kappa \sigma l+\frac{r_{2}}{r_{12}^{2}} \frac{1}{4} \kappa l \\
& \left.-\frac{r_{2}^{2}}{r_{1} r_{12}^{2}} \frac{1}{4} \kappa \sigma l-\frac{r_{1}^{2}}{r_{2} r_{12}^{2}} \frac{1}{4} \kappa l+\frac{r_{2}^{2}}{r_{1}^{2} r_{12}^{2}} \frac{1}{2} l(m-1)+\frac{r_{1}^{2}}{r_{2}^{2} r_{12}^{2}} \frac{1}{2} l(n-1)\right) \\
& -\frac{u_{l m n}(1,2)}{r_{1} r_{2}} T_{2}^{(2)}\left(\vec{r}_{2}, \vec{r}_{1}\right) \frac{l}{r_{12}^{2}} \tag{40}
\end{align*}
$$

The matrix elements of unity and H_{0} can then be
expressed as

$$
\begin{equation*}
\left\langle V_{l^{\prime} m^{\prime} n^{\prime}}^{1}\right| I\left|V_{l m n}^{1}\right\rangle=-\frac{1}{10} \frac{1}{L+2}\left(B_{d}(L+4, M+3, N+1)+A_{e}\left(L+4, M^{\prime}+2, N^{\prime}+2\right)+\frac{3}{L+4} B_{e}\left(L+6, M^{\prime}+1, N^{\prime}+1\right)\right) \tag{41}
\end{equation*}
$$

and a similar sum of 42 terms for

$$
\left\langle V_{l^{\prime} m_{n^{\prime}}}^{1}\right| H_{0}\left|V_{l m n}^{1}\right\rangle .
$$

Having computed the matrix elements for $P=1$, those for $P=2$ follow with little extra effort. For the transition matrix elements of the $H_{1}^{(i)}$ for $P=2$, we simply raise by one the second and third indices in each A and B integral occurring in the corresponding expression for $P=1$. These indices are each increased by two in going from the $P=1$ to the $P=2$ matrix elements of unity. Finally, we get the new H_{0} matrix elements from the old by raising each of the last two indices in every A or B integral by two and by replacing the multiplicative factors m and n by $m+1$ and $n+1$, respectively.
The perturbation equation to be solved now is quite similar in form to that for the ${ }^{1} P$ case.
Tables IX and X give the second-order energies for $P=2$ (undivided basis) and $P=1$, respectively. The convergence of the $\tilde{E}_{2}^{(i, j)}$ as a function of ω is clearly better for $P=1$ than for $P=2$, although the total shift of the $2^{3} P_{2}$ level, given by Eq. (19), does in fact have a reasonable convergence for $P=2$, not inconsistent with that for $P=1$. We use the $P=1$ results for subsequent calculations.
There is also a perturbation of the $2^{3} P_{1}$ level due to ${ }^{3} D_{1}$ intermediate states, but this can be ex-
tracted simply from the $J=2$ result by Racah al. gebra. ${ }^{16}$ The shift of the $J=1$ level is found to be

$$
\begin{gather*}
\left(\tilde{E}_{2}\right)_{J=1}=\frac{5}{9}\left(\tilde{E}_{2}^{(1,1)}+\tilde{E}_{2}^{(2,2)}+9 \tilde{E}_{2}^{(3,3)}+2 \tilde{E}_{2}^{(1,2)}\right. \\
\left.-6 \tilde{E}_{2}^{(1,3)}-6 \tilde{E}_{2}^{(2,3)}\right) \tag{42}
\end{gather*}
$$

from which the corrections to the values of the larger and smaller fine-structure intervals can be readily obtained.

VIII. ${ }^{1} D$ INTERMEDIATE-STATE CONTRIBUTIONS

The operators with nonvanishing matrix elements between ${ }^{1} D$ and ${ }^{3} P$ states are precisely the operators $\tilde{H}_{1}^{(1)}$ and $\tilde{H}_{1}^{(2)}$ encountered in the ${ }^{1} P$ case. Since J must be 2 for ${ }^{1} D$ states, we again use for the unperturbed basis wave function $U_{l m n}\left({ }^{3} P_{2}, m_{J}=2\right)$ and as in the ${ }^{3} D$ case we use ${ }^{1} D$ expansions of both "divided" and "undivided" types:

$$
\begin{equation*}
\Psi_{p}^{(i)}\left({ }^{1} D_{2}, m_{J}=2\right)=\sum_{l, m, n=0}^{l+m+n \leqslant \omega} Z_{l m n}^{(i)} W_{l m n}^{p}\left({ }^{1} D_{2}, m_{J}=2\right) \tag{43}
\end{equation*}
$$

where

$$
\begin{align*}
& W_{l m n}^{p}\left({ }^{1} D_{2}, m_{J}=2\right) \\
& \quad=\frac{1+P_{12}}{4 \pi \sqrt{2}} S_{0}^{(0)}\left\{T^{(1)}\left(\vec{r}_{1}\right),\left\{T^{(1)}\left(\vec{r}_{1}\right), T^{(1)}\left(\vec{r}_{2}\right)\right\}^{(1)}\right\}_{2}^{(2)} \\
& \quad \times u_{l m n}\left(1,2 \vdots\left(r_{1} r_{2}\right)^{p-2} .\right. \tag{44}
\end{align*}
$$

TABLE IX. ${ }^{3} D$ intermediate-state contributions using the no division basis $(P=2)$.

ω	$\begin{aligned} & 10^{3} E_{2}^{(1,0)} \\ & \left(\frac{3}{2} \alpha^{4} \mathrm{Ry}\right) \end{aligned}$	$\begin{aligned} & 10 E_{2}^{(2,2)} \\ & \left(\frac{3}{8} \alpha^{4} \mathrm{Ry}\right) \end{aligned}$	$\begin{gathered} 10^{4} E_{2}^{(3,3)} \\ \left(\frac{3}{8} \alpha^{4} \mathrm{Ry}\right) \end{gathered}$
1	-1.36665285012	-0.11052205462	-0.196 78790247
2	-0.710 76200431	-0.134 68177827	-0.29221369555
3	-0.59361287699	-0.15652765711	-0.38907884077
4	-0.54986006048	-0.174 04417604	-0.473872926 60
5	-0.533 24609044	-0.186 92858873	-0.543953979 09
6	-0.533176 24663	-0.196 77045060	-0.60367524772
7	-0.54348265129	-0.204 39882243	-0.654 69717954
8	-0.55450942742	-0.210 42370873	-0.698473932 14
9	-0.565 54778104	-0.215 26131757	-0.73621676651
10	-0.57544343335	-0.21920129509	-0.76892727206
	$10^{2} E_{2}^{(1,2)}$	$10^{4} E_{2}^{(1,3)}$	$10^{2} E_{2}^{(2,3)}$
ω	($\frac{3}{4} \alpha^{4} \mathrm{Ry}$)	($\frac{3}{4} \alpha^{4} \mathrm{Ry}$)	($\frac{3}{8} \alpha^{4} \mathrm{Ry}$)
1	0.26942185546	0.95420175399	-0.045682986 246
2	0.23193293578	0.97623593299	-0.060 560051902
3	0.22137648183	0.93595077289	-0.074 518644393
4	0.21344571543	0.89929600979	-0.085877848210
5	0.20661167124	0.86541136194	-0.094484107572
6	0.20352901571	0.85174527935	-0.10123438510
7	0.20256007280	0.84883757039	-0.106 54123868
8	0.20224337910	0.85004133459	-0.11074305770
9	0.20221596645	0.85260327554	-0.114097395 21
10	0.20226676500	0.85531178600	-0.116 79750233

TABLE X. ${ }^{3} D$ intermediate-state contributions using the division basis $(P=1)$:

ω	$\begin{gathered} 10^{3} E_{2}^{(1,1)} \\ \left(\frac{3}{2} \alpha^{4} \mathrm{Ry}\right) \end{gathered}$	$\begin{gathered} 10 E_{2}^{(2,2)} \\ \left(\frac{3}{8} \alpha^{4} \mathrm{Ry}\right) \end{gathered}$	$\begin{gathered} 10^{4} E_{2}^{(3,3)} \\ \left(\frac{3}{8} \alpha^{4} \mathrm{Ry}\right) \end{gathered}$
1	-2.9324596271	-0.16161397818	-0.340 10618553
2	-1.3459704588	-0.193 73064196	-0.509 95138340
3	-0.986 88594959	-0.206 98316125	-0.61772484750
4	-0.813439 77592	-0.21615318919	-0.69167931357
5	-0.72797909818	-0.22152784103	-0.74283105485
6	-0.686479 01055	-0.225 48319354	-0.784 19858346
7	-0.671969372 27	-0.228 49190157	-0.818 64072167
8	-0.66556714027	-0.230 87794084	-0.84786192090
9	-0.663 93161718	-0.232 81573150	-0.872896 59104
10	-0.663847 11110	-0.23441668975	-0.89447117905
	$10^{2} E_{2}^{(1,2)}$	$10^{4} E_{2}^{(1,3)}$	$10^{2} E_{2}^{(2,3)}$
ω	($\frac{3}{4} \alpha^{4} \mathrm{Ry}$)	($\frac{3}{4} \alpha^{4} \mathrm{Ry}$)	($\frac{3}{8} \alpha^{4} \mathrm{Ry}$)
1	0.32809834595	1.2557165969	-0.072 429385476
2	0.27715505977	1.2136297508	-0.095 0832621082
3	0.24464966746	1.0677123413	-0.106 43738444
4	0.22586989197	0.97888320601	-0.113 63233596
5	0.21296140581	0.91615661090	-0.11781780523
6	0.20678960202	0.88718384125	-0.120 77902440
7	0.20417765942	0.87498824293	-0.122 93854764
8	0.20298160639	0.87008670102	-0.124 56640158
9	0.20248268692	0.868 .34756064	-0.125 82242465
10	0.20228639795	0.86791833644	-0.126 80940434

TABLE XI. ${ }^{1} D$ intermediate-state contribution using the no division basis $(p=2)$.

	$10^{3} E_{2}^{(1,1)}$	$10^{2} E_{2}^{(2,2)}$	$10^{3} E_{2}^{(1,2)}$
ω	$\left(\alpha^{4} \mathrm{Ry}\right)$	$\left(\frac{1}{4} \alpha^{4} \mathrm{Ry}\right)$	$\left(\frac{1}{2} \alpha^{4} \mathrm{Ry}\right)$
1	-1.4038368808	-0.15254400696	-1.0543907405
2	-0.77389375910	-0.18546104019	-0.95957335637
3	-0.66099260949	-0.21527312777	-0.94532189335
4	-0.61647422994	-0.23640289629	-0.93127998999
5	-0.59687787293	-0.25053204675	-0.91520468143
6	-0.59529190361	-0.26026163400	-0.91122151674
7	-0.60495398123	-0.26708620357	-0.91355644059
8	-0.61575905898	-0.27196031085	-0.91702300568
9	-0.62674346061	-0.27550027425	-0.92050681678
10	-0.63663960890	-0.27811261105	-0.92346045618

Now the $L=2$ components arising from the action of the $\tilde{H}_{1}^{(i)}$ are found to be

$$
\begin{align*}
\tilde{H}_{1}^{(1)} S_{1}^{(1)} & T_{1}^{(1)}\left(\vec{r}_{1}\right) u_{l m n}(1,2) \quad(D \text { part) } \\
= & \frac{1}{4} \alpha^{2} Z \sqrt{2} S_{0}^{(0)} \frac{l}{r_{12}^{2}}\left(\frac{1}{r_{1}^{3}}+\frac{1}{r_{2}^{3}}\right) \\
& \times\left\{T^{(1)}\left(\vec{r}_{1}\right),\left\{T^{(1)}\left(\overrightarrow{\mathrm{r}}_{1}\right), T^{(1)}\left(\overrightarrow{\mathrm{r}}_{2}\right)\right\}^{(1)}\right\}_{2}^{(2)} u_{l m n}(1,2), \tag{45}
\end{align*}
$$

and

$$
\begin{align*}
& \tilde{H}_{1}^{(2)} T_{1}^{(1)}\left(\overrightarrow{\mathrm{r}}_{1}\right) S_{1}^{(1)} u_{l m n}(1,2) \text { (} D \text { part) } \\
&=-\frac{1}{4} \alpha^{2} \sqrt{2} S_{0}^{(0)}\left\{T^{(1)}\left(\overrightarrow{\mathrm{r}}_{1}\right),\left\{T^{(1)}\left(\overrightarrow{\mathrm{r}}_{1}\right), T^{(1)}\left(\overrightarrow{\mathrm{r}}_{2}\right)\right\}^{(1)}\right\}_{2}^{(2)} \\
& \times \frac{1}{r_{12}^{3}}\left(\frac{m}{r_{1}^{2}}-\frac{\kappa \sigma}{2 r_{1}}+\frac{n}{r_{2}^{2}}-\frac{\kappa}{2 r_{2}}\right) u_{l m n}(1,2) . \tag{46}
\end{align*}
$$

These results bear a close similarity to the corresponding ${ }^{3} D$ quantities and in fact the matrix elements $\left\langle W_{l^{\prime} m^{\prime} n^{\prime}}\right| \tilde{H}_{1}^{(i)}\left|U_{l m n}\right\rangle$ differ from the $\left\langle V_{l^{\prime} m^{\prime} n^{\prime}}^{P}\right| H_{1}^{(i)}\left|U_{l m n}\right\rangle$ only by a scale factor and a few sign changes between the A and B integrals. Like-
wise, the overlap integral for the ${ }^{1} D$ basis functions is found easily from the ${ }^{3} D$ inner product by reversing the signs of the exchange integrals therein. Moreover, it should be evident that the action of H_{0} on the (unsymmetrized) $W_{l m n}^{1}$ is the same as that computed for H_{0} on $V_{l m n}^{1}$ (unsymmetrized) in the ${ }^{3} D$ case, with $V_{l m n}^{1}$ simply replaced by $W_{l m n}^{1}$. Then the matrix element of H_{0} between ${ }^{1} D$ basis functions is readily obtained from that between ${ }^{3} D$ basis functions by merely changing the signs of the exchange integrals A_{e}, B_{e} appearing in the latter.
Using these matrix elements, we may proceed as before to determine the coefficients in the expansions for $\psi_{p}^{(i)}$ and from this the second-order energies. The results are displayed in Tables XI and XII for $p=2$ and $p=1$, respectively. The convergence as a function of ω for both cases is qualitatively the same as that observed in the case of the ${ }^{3} D$ intermediate states previously encountered. As in the ${ }^{1} P$ calculation, only the $J=L$ level is shifted with the same expression arising for $\left(E_{2}\right)_{J=2}$ in the ${ }^{1} D$ case as for $\left(\tilde{E}_{2}\right)_{J=1}$ in the ${ }^{1} P$ case.

TABLE XII. ${ }^{1} D$ intermediate-state contributions using the division basis ($p=1$).

	$10^{3} E_{2}^{(1,1)}$	$10^{2} E_{2}^{(2,2)}$	$10^{3} E_{2}^{(1,2)}$
ω	$\left(\alpha^{4} \mathrm{Ry}\right)$	$\left(\frac{1}{4} \alpha^{4} \mathrm{Ry}\right)$	$\left(\frac{1}{2} \alpha^{4} \mathrm{Ry}\right)$
1	-2.9854714761	-0.20484894448	-1.2655336251
2	-1.4351118042	-0.24446623144	-1.1622459123
3	-1.0737987115	-0.26359964530	-1.0798035858
4	-0.89241931788	-0.27406421114	-1.0218232848
5	-0.79864958010	-0.27906016511	-0.97430883876
6	-0.75252637315	-0.28191377777	-0.95068821222
7	-0.73561393183	-0.28364532333	-0.94045588635
8	-0.72801731193	-0.28476535740	-0.93581148938
9	-0.72578460947	-0.28551725834	-0.93392932518
10	-0.72539468183	-0.28603836624	-0.93324549658

Thus, only the smaller interval is shifted in value by ${ }^{1} D$ intermediate states in second-order perturbation theory.

IX. ${ }^{3} F$ INTERMEDIATE-STATE CONTRIBUTIONS

The only operator with nonvanishing matrix elements between ${ }^{3} F$ and ${ }^{3} P$ states is the spin-spin operator $H_{1}^{(3)}$. Since the only transitions conserving J are those for which $J=2$, we take
$U_{l m n}\left({ }^{3} P_{2}, m_{J}=2\right)$ as before, and we have one perturbation wave function to consider, which we write as

$$
\begin{equation*}
\psi^{(3)}\left({ }^{3} F_{2}, m_{J}=2\right)=\sum_{l, m, n}^{l+m+n} \leqslant \omega \tilde{Z}_{l m n}^{(3)} \tilde{W}_{l m n}\left({ }^{(} F_{2}, m_{J}=2\right) . \tag{47}
\end{equation*}
$$

The form of \tilde{W} is suggested by the operation of $H_{1}^{(3)}$ on U and is discussed by Schwartz, ${ }^{17}$
$H_{1}^{(3)} S_{1}^{(1)} T_{1}^{(1)}\left(\overrightarrow{\mathrm{r}}_{1}\right) u_{l m n}(1,2) \quad$ (F part)

$$
\begin{equation*}
=\frac{1}{4} \alpha^{2}\left(-\frac{6}{r_{12}^{5}}\right)\left(\frac{7}{5}\right)^{1 / 2}\left[\left(\frac{1}{21}\right)^{1 / 2} S_{1}^{(1)} X_{1}^{(3)}-\left(\frac{5}{21}\right)^{1 / 2} S_{0}^{(1)} X_{2}^{(3)}+\left(\frac{5}{7}\right)^{1 / 2} S_{-1}^{(1)} X_{3}^{(3)}\right] u_{\imath m n}(1,2), \tag{48}
\end{equation*}
$$

where

$$
\begin{align*}
X_{M}^{(3)}= & \left\{\left\{T^{(1)}\left(\overrightarrow{\mathrm{r}}_{1}\right), T^{(1)}\left(\overrightarrow{\mathrm{r}}_{1}\right)\right\}^{(2)}, T^{(1)}\left(\overrightarrow{\mathrm{r}}_{1}\right)\right\}_{M}^{(3)} \\
& +\left\{\left\{T^{(1)}\left(\overrightarrow{\mathrm{r}}_{2}\right), T^{(1)}\left(\overrightarrow{\mathrm{r}}_{2}\right)\right\}^{(2)}, T^{(1)}\left(\overrightarrow{\mathrm{r}}_{1}\right)\right\}_{M}^{(3)} \\
& -2\left\{\left\{T^{(1)}\left(\overrightarrow{\mathrm{r}}_{1}\right), T^{(1)}\left(\overrightarrow{\mathrm{r}}_{1}\right)\right\}^{(2)}, T^{(1)}\left(\overrightarrow{\mathrm{r}}_{2}\right)\right\}_{M}^{(3)} . \tag{49}
\end{align*}
$$

Hence we choose \tilde{W} to be

$$
\begin{align*}
& \tilde{W}_{l m n}\left({ }^{3} F_{2}, m_{J}=2\right) \\
&= \frac{\left(1-P_{12}\right)}{4 \pi \sqrt{2}}\left[\left(\frac{1}{21}\right)^{1 / 2} S_{1}^{(1)} \tilde{X}_{1}^{(3)}-\left(\frac{5}{21}\right)^{1 / 2} S_{0}^{(1)} \tilde{X}_{2}^{(3)}\right. \\
&\left.+\left(\frac{5}{7}\right)^{1 / 2} S_{-1}^{(1)} \tilde{X}_{3}^{(3)}\right] u_{l m n}(1,2) \tag{50}
\end{align*}
$$

where

$$
\begin{align*}
\tilde{X}_{M}^{(3)}= & \left\{\left\{T^{(1)}\left(\overrightarrow{\mathrm{r}}_{1}\right), T^{(1)}\left(\overrightarrow{\mathrm{r}}_{1}\right)\right\}^{(2)}, T^{(1)}\left(\overrightarrow{\mathrm{r}}_{1}\right)\right\}_{M}^{(3)} \\
& +\varphi\left\{\left\{T^{(1)}\left(\overrightarrow{\mathrm{r}}_{2}\right), T^{(1)}\left(\overrightarrow{\mathrm{r}}_{2}\right)\right\}^{(2)}, T^{(1)}\left(\overrightarrow{\mathrm{r}}_{1}\right)\right\}_{M}^{(3)} \\
& +\xi\left\{\left\{T^{(1)}\left(\overrightarrow{\mathrm{r}}_{1}\right), T^{(1)}\left(\overrightarrow{\mathrm{r}}_{1}\right)\right\}^{(2)}, T^{(1)}\left(\overrightarrow{\mathrm{r}}_{2}\right)\right\}_{M}^{(3)} \tag{51}
\end{align*}
$$

and φ and ξ will be specified later. Looking at $\tilde{X}_{M}^{(3)}$, we discover that it represents a state of total orbital angular momentum 3 constructed via $L-S$ coupling from $2 p 3 d$ and $1 s 4 f$ two-electron configurations. As such it is an odd-parity object, as it must be to allow for nonvanishing transitions between states of different L and/or S, but with the same J. The bracketed part of the expression for $\tilde{W}_{l m n}$ is then the coupling of $L=3$ with $S=1$ to obtain a state with total angular momentum $J=2$ and m_{J} $=2$.

Now the coefficients ϕ and ξ are not a priori
determined, nor are they to be regarded as variational parameters to be optimized. Under the circumstances, it seems reasonable to take $\phi=1$, $\xi=-2$ as dictated by the operation of $H_{1}^{(3)}$ on the $2^{3} P$ basis functions, but we have also carried out the calculations with $\phi=0, \xi=-1$ for the sake of comparison. In point of fact, we should take $\phi=0$ or $\xi=0$ in $\tilde{W}_{l m n}$ and treat $\xi(\phi)$ as $\xi_{l m n}\left(\phi_{l m n}\right)$, so that we have in effect twice as many coefficients to solve for in the perturbation equation as were required for the other intermediate states for a given ω. However, this has been done and the results are very little different from those obtained with the choice $\phi=1, \xi=-2$, so we proceed along these latter lines.

Using the general results derived in Appendix B, we find, e.g., that the matrix element of the spinspin operator between ${ }^{3} P$ and ${ }^{3} F$ basis functions is

TABLE XIII. ${ }^{3} F$ intermediate-state contributions.

	$10^{3} E_{2}^{(3,3)}$	
	$\xi=-2, \varphi=1$	$\left(\frac{14}{5} \alpha^{4} \mathrm{Ry}\right)$
ω	-0.36189639177	-0.47531537046
1	-0.47697878743	-0.61647867358
2	-0.59965349682	-0.76322224644
3	-0.70972110772	-0.89165989091
4	-0.80644239861	-0.99815569634
5	-0.89680169469	-1.08671906458
6	-0.98067125919	-1.16054146726
7	-1.05404688402	-1.22242658793
8	-1.11962961974	-1.27465545881
9	-1.18002196767	-1.31908315805
10		

$$
\begin{align*}
& \left\langle\tilde{W}_{l^{\prime} m^{\prime} n^{\prime}}\right| H_{1}^{(3)}\left|U_{l m n}\right\rangle \\
& =-\frac{3}{2} \alpha^{2}\left(\frac{7}{5}\right)^{1 / 2} \frac{2}{105}\left\{3 A_{d}(L-3, M+8, N+2)-6 B_{d}(L-3, M+7, N+3)\right. \\
& +3(1+\varphi)\left(A_{d}(L-3, M+6, N+4)+\frac{3}{L-3} B_{d}(L-1, M+5, N+3)\right) \\
& +(\xi-2 \varphi)\left[3 B_{d}(L-3, M+5, N+5)+\frac{1}{L-3}\left(A_{d}(L-1, M+4, N+4)\right.\right. \\
& \left.\left.+\frac{3}{L-1} B_{d}(L+1, M+3, N+3)\right)\right] \\
& -2 \xi\left(3 A_{d}(L-3, M+6, N+4)+\frac{2}{L-3} B_{d}(L-1, M+5, N+3)-\frac{3}{2} B_{d}(L-3, M+7, N+3)\right) \\
& +\varphi\left(3 A_{d}(L-3, M+4, N+6)+\frac{2}{L-3} B_{d}(L-1, M+3, N+5)\right) \\
& -3\left[B_{e}\left(L-3, M^{\prime}+5, N^{\prime}+5\right)+B_{e}\left(L-3, M^{\prime}+3, N^{\prime}+7\right)-2 A_{e}\left(L-3, M^{\prime}+4, N^{\prime}+6\right)\right. \\
& +\frac{1}{L-3}\left(5 A_{e}\left(L-1, M^{\prime}+4, N^{\prime}+4\right)+\frac{15}{L-1} B_{e}\left(L+1, M^{\prime}+3, N^{\prime}+3\right)\right. \\
& \left.\left.-6 B_{e}\left(L-1, M^{\prime}+3, N^{\prime}+5\right)\right)\right] \\
& -\xi\left(3 A_{e}\left(L-3, M^{\prime}+6, N^{\prime}+4\right)+3 A_{e}\left(L-3, M^{\prime}+4, N^{\prime}+6\right)\right. \\
& \left.+\frac{1}{L-3}\left[9 B_{e}\left(L-1, M^{\prime}+5, N^{\prime}+3\right)+2 B_{e}\left(L-1, M^{\prime}+3, N^{\prime}+5\right)\right]\right) \\
& +2 \varphi\left(3 A_{e}\left(L-3, M^{\prime}+6, N^{\prime}+4\right)-\frac{3}{2} B_{e}\left(L-3, M^{\prime}+7, N^{\prime}+3\right)\right. \\
& \left.+\frac{2}{L-3} B_{e}\left(L-1, M^{\prime}+5, N^{\prime}+3\right)\right) \\
& -(\varphi-2 \xi)\left[3 B_{e}\left(L-3, M^{\prime}+5, N^{\prime}+5\right)+\frac{1}{L-3}\left(A_{e}\left(L-1, M^{\prime}+4, N^{\prime}+4\right)\right.\right. \\
& \left.\left.\left.+\frac{3}{L-1} B_{e}\left(L+1, M^{\prime}+3, N^{\prime}+3\right)\right)\right]\right\} . \tag{52}
\end{align*}
$$

Turning our attention next to the effect of H_{0} on the ${ }^{3} F$ basis functions, we may write

$$
\begin{align*}
H_{0} \tilde{X}_{M}^{(3)} u_{l m n}(1,2)=u_{l m n}(1,2) & \left(\sum _ { i = 1 } ^ { 1 3 } r _ { 1 } ^ { p i } r _ { 2 } ^ { q _ { i } } r _ { 1 2 } ^ { S _ { i } } \left[d_{1 i}\left\{\left\{T^{(1)}\left(\overrightarrow{\mathrm{r}}_{1}\right), T^{(1)}\left(\overrightarrow{\mathrm{r}}_{1}\right)\right\}^{(2)}, T^{(1)}\left(\overrightarrow{\mathrm{r}}_{1}\right)\right\}_{M}^{(3)}\right.\right. \\
& \left.+\xi d_{2 i}\left\{\left\{T^{(1)}\left(\overrightarrow{\mathrm{r}}_{1}\right), T^{(1)}\left(\overrightarrow{\mathrm{r}}_{1}\right)\right\}^{(2)}, T^{(1)}\left(\overrightarrow{\mathrm{r}}_{2}\right)\right\}_{M}^{(3)}+\phi d_{3 i}\left\{\left\{T^{(1)}\left(\overrightarrow{\mathrm{r}}_{2}\right), T^{(1)}\left(\overrightarrow{\mathrm{r}}_{2}\right)\right\}^{(2)}, T^{(1)}\left(\overrightarrow{\mathrm{r}}_{1}\right)\right\}_{M}^{(3)}\right] \\
& \left.\left.+\frac{\phi l}{r_{12}^{2}}\left\{\left\{T^{(1)}\left(\overrightarrow{\mathrm{r}}_{2}\right), T^{(1)}\left(\overrightarrow{\mathrm{r}}_{2}\right)\right\}\right\}^{(2)}, T^{(1)}\left(\overrightarrow{\mathrm{r}}_{2}\right)\right\}_{M}^{(3)}\right) \tag{53}
\end{align*}
$$

TABLE XIV. Final extrapolations for second-order contributions to $2{ }^{3} P$ helium fine structure from intermediate state symmetries other than ${ }^{3} P$.

Intermediate state	Extrapolated quantities ${ }^{\text {a }}$ b	$\begin{gathered} \left(E_{2}\right)_{1} \\ \left(\alpha^{4} \mathrm{Ry}\right) \end{gathered}$	$\begin{gathered} \left(E_{2}\right)_{2} \\ \left(\alpha^{4} \mathrm{Ry}\right) \end{gathered}$	$\Delta \nu_{01}$ (MHz)	$\begin{gathered} \Delta \nu_{12} \\ (\mathrm{MHz}) \end{gathered}$
${ }^{1} P$	$\left(E_{2}\right)_{1}$	-0.70408(198)		6.568(18)	-6.568(18)
${ }^{3} D$	$\left(E_{2}\right)_{1},\left(E_{2}\right)_{2}$	-0.002855(84)	-0.008 04(19)	0.027(1)	$0.048(2)$
${ }^{1} D$	$E_{2}^{(1,1)}=-0.00072526(5)$				
	$E_{2}^{(1,2)}=-0.00093279(5)$		-0.002378(1)		$0.02218(1)$
	$E_{2}^{(2,2)}=-0.0028780(22)$				
${ }^{3} F$	$E_{2}^{(3,3)}=-0.0017(3)$		-0.004 8(8)		0.045(8)

${ }^{\text {a }}$ Expressions for $\left(E_{2}\right)_{J}$ for given symmetries are given in the text.
${ }^{\mathrm{b}}$ Units of the various $E_{2}^{(i, j)}$ are as displayed in Tables XI-XIII.
where the variables indexed by the subscript " i " are defined in the following tabulation:

i	p_{i}	q_{i}	s_{i}	$d_{j i}(j=1,2,3)$	
1	-1	0	0	$\frac{1}{4} \kappa \sigma[2(m-j)+l+10]-2$	
2	0	-1	0	$\frac{1}{4} \kappa[2(n+j)+l]-2$	
3	-2	0	0	$-\frac{1}{2} m(m+l+9-2 j)$	
4	0	-2	0	$-\frac{1}{2} n(n+l+2 j-1)$	
5	0	0	-2	$-\frac{1}{2} l(2 l+m+n+8)+l d_{j}^{\prime}$	
6	0	0	0	$-\frac{1}{8} \kappa^{2}\left(\sigma^{2}+1\right)$	
7	0	0	-1	1	
8	1	0	-2	$\frac{1}{4} \kappa \sigma l$	
9	0	1	-2	$\frac{1}{4} \kappa l$	
10	-2	2	-2	$\frac{1}{2} m l$	
11	2	-2	-2	$\frac{1}{2} n l$	
12	-1	2	-2	$-\frac{1}{4} \kappa \sigma l$	
13	2	-1	-2	$-\frac{1}{4} \kappa l$	

For $i=5, d_{j}^{\prime}$ is given by

$$
\begin{equation*}
d_{1}^{\prime}=\xi, \quad d_{2}^{\prime}=(3+2 \phi) / \xi, \quad d_{3}^{\prime}=2 \xi / \phi . \tag{54}
\end{equation*}
$$

Each matrix element $\left\langle\tilde{W}_{l^{\prime} m^{\prime} n^{\prime}}\right| H_{0}\left|\tilde{W}_{l m n}\right\rangle$ can then be expressed as the sum of 478 terms. As a byproduct of this calculation, the inner product of the ${ }^{3} F$ basis functions is extracted as a linear combination of $27 A$ and B integrals.

There is now one equation to be solved for the perturbation wave function and one energy $E_{2}^{(3,3)}$ to be derived from this wave function. Table XIII indicates the results for $E_{2}^{(3,3)}$ for two choices of the pair of parameters ξ and ϕ. Although the results in column 2 of that table are uniformly lower than those in column 1 for a given ω, the conver-
gence rates are comparable and, in fact, the extrapolated value from the latter column is lower than that from the former. There being no compelling argument in favor of the choice $\xi=-1$, $\phi=0$, we will use the results for $\xi=-2, \phi=1$ to calculate the ${ }^{3} F$ second-order contributions in the next section.

X. RESULTS

As in Sec. V, the second-order energies are extrapolated according to two types of convergence and a weighted average is obtained. For the ${ }^{3} D$ and ${ }^{1} P$ cases it is advantageous to extrapolate the expressions for the total level shifts rather than to extrapolate individual $E_{2}^{(i, j)}$ and then sum them. This gives results that are consistent with those that would be obtained by the latter method, and in addition avoids minor irregularities inherent in those results. For the same reason we choose to extrapolate the $E_{2}^{(i, j)}$ individually and then sum them in the case of ${ }^{1} D$ intermediate states. When this is done, the ${ }^{1} D$ contribution is found to be remarkably accurate for the case of the divided basis functions. The ${ }^{3} F$ energies exhibit a slow exponen-

TABLE XV. The second-order contributions to the fine structure of $2^{3} P$ helium. (D and ${ }^{3} F$ intermediate states do not contribute to ν_{01}.)

Intermediate state	ν_{01} (MHz)	Interval (MHz)
${ }^{3} P$	5.062 ± 0.038	-0.413 ± 0.079
${ }^{1} P$	6.568 ± 0.018	-6.568 ± 0.018
${ }^{3} D$	0.027 ± 0.001	0.048 ± 0.002
${ }^{1} D$		0.02218 ± 0.00001
${ }^{3} \mathrm{~F} F$	$\underline{11.657 \pm 0.042}$	-6.866 ± 0.081
Total		

TABLE XVI. Theoretical contributions to the fine-structure of $2^{3} P$ helium in MHz. The values of $\alpha^{-1}, c, R_{\infty}$ and m / M are $137.035987(29)(0.21 \mathrm{ppm}),{ }^{\mathrm{a}}$ $2.99792458(12) \times 10^{10} \mathrm{~cm} \mathrm{sec}^{-1}(0.004 \mathrm{ppm}),{ }^{\text {a }} 109737.314 \mathrm{~cm}^{-1}(0.009 \mathrm{ppm}){ }^{\mathrm{b}}$ and 1.370934×10^{-4}, respectively. Thus $\frac{1}{2} \alpha^{2} c R_{\infty}=87.59428 \mathrm{GHz}(0.42 \mathrm{ppm})$.

Interval	$\alpha^{4} m c^{2}$	$\alpha^{5} m c^{2}$	$(m / M) \alpha^{4} m c^{2}$	Second order	$\alpha^{6} m c^{2}$	$\nu_{\text {theory }}$	$\nu_{\text {expt }}$	$\nu_{\text {theory }}-\nu_{\text {expt }}$
ν_{01}	$\begin{gathered} 29564.577 \\ \pm 0.006 \\ (0.21 \mathrm{ppm}) \end{gathered}$	54.708	$\begin{aligned} & -10.707 \\ & \quad \pm 0.00044 \\ & (0.015 \mathrm{ppm}) \end{aligned}$	$\begin{aligned} & 11.657 \\ & \pm 0.042 \\ & (1.42 \mathrm{ppm}) \end{aligned}$	$\begin{aligned} & -3.331 \\ & \quad \pm 0.0039 \\ & \quad(0.13 \mathrm{ppm}) \end{aligned}$	$\begin{aligned} & 29616.904 \\ & \pm 0.043 \\ & (1.44 \mathrm{ppm}) \end{aligned}$	$\begin{gathered} 29616.864^{\mathrm{c}} \\ \pm 0.036 \\ (1.2 \mathrm{ppm}) \end{gathered}$	$0.040=1.35 \mathrm{ppm}$
ν_{12}	$\begin{aligned} & 2317.203 \\ & \pm 0.0018 \\ & (0.76 \mathrm{ppm}) \end{aligned}$	-22.548	$\begin{aligned} & 1.952 \\ & \pm 0.00088 \\ & (0.39 \mathrm{ppm}) \end{aligned}$	$\begin{aligned} & -6.866 \\ & \pm 0.081 \\ & (35 \mathrm{ppm}) \end{aligned}$	$\begin{aligned} & 1.542 \\ & \pm 0.0068 \\ & (3.0 \mathrm{ppm}) \end{aligned}$	$\begin{aligned} & 2291.283 \\ & \pm 0.081 \\ & (35 \mathrm{ppm}) \end{aligned}$	$\begin{aligned} & 2291.1966^{\mathrm{d}} \\ & \pm 0.005 \\ & (2.2 \mathrm{ppm}) \end{aligned}$	$0.087=37 \mathrm{ppm}$
ee Ref. 18. ee Ref. 19.					ef. 1. ef. 2.			

tial decrease with ω that makes inferior any attempt to fit the behavior of the $E_{2}^{(3,3)}$ to an inverse power law. Thus the extrapolated $E_{2}^{(3,3)}$ is obtained directly by the first of these two methods.

We show in Table XIV the extrapolated secondorder level shifts $\left(E_{2}\right)_{J}(J=1,2)$ and the resulting contributions to ν_{01} and ν_{12} for ${ }^{1} P,{ }^{3} F$, and ${ }^{1,3} D$ (divided basis) intermediate-state symmetries. [This involves a conversion from $\alpha^{4} R$ to MHz which uses $\alpha^{-1}=137.035987(29)^{18}$ and R $\left.=109737.3143 \mathrm{~cm}^{-1}(0.009 \mathrm{ppm}) .^{19}\right]$ It is to be noted that the ${ }^{1} P$ contribution is almost 40% larger than the shift calculated by Pekeris et al. ${ }^{20}$ due to the effect of the $2^{1} P_{1}$ state alone. That the ${ }^{1} P$ contribution is much larger than that from ${ }^{3} D$ is plausible in view of the fact that the intermediate states making the greatest contribution in each case are $2^{1} P_{1}$ and $3(2 p 3 d)^{3} D$. The energy of the former state is -2.123 a.u. while that of the latter is -0.559 a.u. ${ }^{21}$ so the energy denominator in the expression for the second-order energy perturbation is smaller and the contribution larger for $2{ }^{1} P$ than for $3^{3} D$. Furthermore, $3(2 p 3 d)^{1} D$ is less than 1% lower in energy than $3^{3} D$, and their respective contributions are not very different. The correction to ν_{12} due to ${ }^{3} F$ states seems to us to be somewhat high, but again the greater closeness of the $2^{3} P$ level in helium to $4^{3} F$ as compared to $3(2 p 3 d)^{1,3} D$ is reflected in a larger value for the ${ }^{3} F$ correction than for either the ${ }^{1} D$ or the $E_{2}^{(3,3)}$ component of the ${ }^{3} D$ correction.
Combining the calculations involving the five intermediate state symmetries to obtain the final respective contributions to the intervals ν_{01} and ν_{12}, we get the results shown in Table XV. These second-order results can then be incorporated with the other theoretical contributions referred to earlier in this paper to yield the total theoretical values for the splittings ν_{01} and ν_{12} through order $\alpha^{6} m c^{2}$, as shown in Table XVI. It is seen that the agreement between theory and experiment is quite good in the case of the larger interval ν_{01}, and certainly much better than in the ν_{12} case. One reason for this last fact is that the ν_{12} splitting depends more strongly and more predominantly than ν_{01} on the most uncertain energies, $E_{2}^{(1,5)}$ and $E_{2}^{(1,6)}$, from the ${ }^{3} P$ states. Even if the second-order calculation for ν_{12} were to be greatly improved, it is highly unlikely that an output value of α could be derived to an accuracy of better than 2 ppm by comparison of the theoretical to the experimental ν_{12}.

However, if this is done for the larger interval ν_{01}, α can be determined to an accuracy of 0.94 ppm . We obtain the results $\alpha^{-1}=137.03608(13)$, which is in good agreement with other determinations ${ }^{5,18,22-28}$ of α^{-1} (see Fig. 1). It should be re-

FIG. 1. Various determinations of the finestructure constant α (including this calculation).
marked that contributions of order $\alpha^{7} m c^{2}$ may affect the output α at the fraction of a ppm level, so these contributions should be at least estimated in the near future. We are planning further improvements on the above findings by including terms with, e.g., $\left(r_{1}+r_{2}\right)^{1 / 2}$ or $\log \left(r_{1}+r_{2}\right)$ in the expansions of the ${ }^{3} P$ and ${ }^{1} P$ wave functions. This should enable us to improve the precision of our α determination toward the 0.5 ppm level or so.

ACKNOWLEDGMENTS

We would like to thank Professor Vernon Hughes for his enduring support and encouragement for our project, and Lars Hambro for the use of his computer programs at the outset of this undertaking. In addition, we are grateful to Professor Stanley Brodsky and Professor Sidney Drell for their hospitality while one of us (M.L.) visited the Stanford Linear Accelerator Center and used the IBM 370/168 computer there.

APPENDIX A

Many integrals ${ }^{7}$ are needed to calculate the matrix elements of the $H_{1}^{(i)}$ and H_{0}. The major integrals are
$A(L, M, N)=\int \frac{d \tau_{1}}{4 \pi} \int \frac{d \tau_{2}}{4 \pi} e^{-a r_{1}} e^{-b r_{2}} r_{1}^{M-2} r_{2}^{N-2} r_{12}^{L-2}$,

$$
\begin{align*}
B(L, M, N)=\int \frac{d \tau_{1}}{4 \pi} \int & \frac{d \tau_{2}}{4 \pi} e^{-a r_{1}} e^{-b r_{2}} r_{1}^{M-2} \\
& \times r_{2}^{N-2} r_{12}^{L-2} \cos \theta_{12} \tag{A2}
\end{align*}
$$

There are two types of A and B integrals. $A_{d}(L, M, N)$ and $B_{d}(L, M, N)$ are the direct integrals for $a=\kappa \sigma, b=\kappa . \quad A_{e}(L, M, N)$ and $B_{e}(L, M, N)$ are the exchange integrals for $a=b=\frac{1}{2} \kappa(1+\sigma)$. The computer calculates these integrals by the use of recursion relations:

$$
\begin{align*}
A(L, M, N)= & A(L-2, M+2, N)+A(L-2, M, N+2) \\
& -2 B(L-2, M+1, N+1) \tag{A3}
\end{align*}
$$

and

$$
\begin{align*}
B(L, M, N)=\frac{L-2}{L+2} & {[B(L-2, M+2, N)} \\
& +B(L-2, M, N+2) \\
& -2 A(L-2, M+1, N+1)] \tag{A4}
\end{align*}
$$

These relations may be obtained with

$$
\begin{equation*}
r_{12}^{2}=r_{1}^{2}+r_{2}^{2}-2 r_{1} r_{2} \cos \theta_{12} \tag{A5}
\end{equation*}
$$

and

$$
\begin{align*}
\int \frac{d \Omega_{1}}{4 \pi} & \int \frac{d \Omega_{2}}{4 \pi} \sin ^{2} \theta_{12} r_{12}^{L} \\
& =-\frac{2}{L+2} \int \frac{d \Omega_{1}}{4 \pi} \int \frac{d \Omega_{2}}{4 \pi} \cos \theta_{12} \frac{r_{12}^{L+2}}{r_{1} r_{2}} \tag{A6}
\end{align*}
$$

If we define

$$
\begin{equation*}
F(M, N ; \alpha, \beta)=\int_{0}^{\infty} d r e^{-\alpha r} r^{M-1} \int_{r}^{\infty} d s e^{-\beta s} s^{N-1} \tag{A7}
\end{equation*}
$$

then we may show

$$
\begin{align*}
& A(2, M, N)=\frac{M!N!}{a^{M+1} b^{N+1}}, \tag{A8}\\
& B(2, M, N)=0 \tag{A9}\\
& A(1, M, N)=F(M+1, N ; a, b)+F(N+1, M ; b, a),
\end{align*}
$$

$$
\begin{align*}
B(1, M, N)=\frac{1}{3}[& F(M+2, N-1 ; a, b) \tag{A10}\\
& +F(N+2, M-1 ; b, a)] . \tag{A11}
\end{align*}
$$

The F integrals are calculated using

$$
\begin{align*}
F(M, 1 ; \alpha, \beta)= & \frac{1}{\beta} \frac{(M-1)!}{(\alpha+\beta)^{M}}, \tag{A12}\\
F(M, N ; \alpha, \beta)= & \frac{(M+N-2)!}{\beta(\alpha+\beta)^{M+N-1}} \\
& +\frac{N-1}{\beta} F(M, N-1 ; \alpha, \beta) . \tag{A13}
\end{align*}
$$

The recursion relations above are valid for A integrals for $L \geqslant 1, M \geqslant 1, N \geqslant 1$ and for B integrals with $L \geqslant 1, M \geqslant 2, N \geqslant 2$.

The lowest-order term in the expansion

$$
\begin{equation*}
r_{12}^{-2}=\frac{1}{2 r_{1} r_{2}} \ln \frac{r_{1}+r_{2}}{\left|r_{1}-r_{2}\right|}+\cdots \tag{A14}
\end{equation*}
$$

appears in the A and B integrals when $L=0$. Thus

$$
\begin{align*}
& A_{d}(0, M, N)=\frac{1}{2}\left[F_{L A}(M, N)+F_{L B}(N, M)\right], \tag{A15}\\
& A_{e}(0, M, N)=\frac{1}{2}\left[F_{L C}(M, N)+F_{L C}(N, M)\right], \tag{A16}\\
& B_{d}(0, M, N)=\frac{1}{4}\left[F_{L A}(M+1, N-1)+F_{L A}(M-1, N+1)\right. \\
&\left.+F_{L B}(N+1, M-1)+F_{L B}(N-1, M+1)\right] \\
&-\frac{1}{2}[F(M, N ; \kappa \sigma, \kappa)+F(N, M, \kappa, \kappa \sigma)], \tag{A17}
\end{align*}
$$

$$
\begin{align*}
B_{e}(0, M, N)=\frac{1}{4}[& F_{L C}(M+1, N-1)+F_{L C}(M-1, N+1) \\
& \left.+F_{L C}(N+1, M-1)+F_{L C}(N-1, M+1)\right] \\
& -\frac{1}{2}[F(M, N ; \delta, \delta)+F(N, M ; \delta, \delta)] \tag{A18}
\end{align*}
$$

where $\delta=\frac{1}{2} \kappa(1+\sigma)$. The F_{L} integrals are

$$
\begin{align*}
F_{L}(M, N ; \alpha, \beta)= & \int_{0}^{\infty} d r e^{-\alpha r} r^{M-1} \\
& \times \int_{r}^{\infty} d s e^{-\beta s} s^{N-1} \ln \frac{s+r}{s-r} \tag{A19}
\end{align*}
$$

and

$$
\begin{align*}
& F_{L A}(M, N)=F_{L}(M, N ; \kappa \sigma, \kappa), \\
& F_{L B}(M, N)=F_{L}(M, N ; \kappa, \kappa \sigma), \tag{A20}\\
& F_{L C}(M, N)=F_{L}(M, N ; \delta, \delta) .
\end{align*}
$$

The F_{L} integrals may be written as sums of products of various functions. ${ }^{7}$

For the A and B integrals with $M=0, N \geqslant 1$ and $M \geqslant 1, N=0$ when $L \geqslant 1$ we need $F(M, N ; \alpha, \beta)$ for $N=0$ and $N=-1$.
$F(M,-N ; \alpha, \beta)=\frac{(M-N-1)!}{N(\alpha+\beta)^{M-N}}-\frac{\beta}{N} F(M,-N+1 ; \alpha, \beta)$.
(A21)
Equation (A21) can be obtained by partial integration. The $F(M, 0 ; \alpha, \beta)$ is evaluated by truncating an infinite series expansion:
$F(M, 0 ; \alpha, \beta)=\frac{(M-1)!}{(\alpha+\beta)^{M}} \sum_{J=0}^{\infty} \frac{1}{M+J}\left(\frac{\alpha}{\alpha+\beta}\right)^{J}$.
$F(M,-1 ; \alpha, \beta)$ is then obtained by application of (A21), for $M \geqslant 2$.

The B integrals with $L=0, M=1, N \geqslant 1$ and L $=0, M \geqslant 1, N=1$ require the calculation of $F_{L}(M, 0$; $\alpha, \beta)$ and $F_{L}(0, N ; \alpha, \beta)$ where $M, N \geqslant 2$. The $F_{L}(0$, $N ; \alpha, \beta$) can be written as an infinite series of products much like the usual F_{L} integrals, and can be truncated after 200-300 terms to yield values accurate to 30 decimal places or more, at least for those values of N of interest to us ($N \leqslant 35$). The $F_{L}(M, 0 ; \alpha, \beta)$ are written as integrals over the interval from 0 to ∞ by a change of variables in the original integration between 0 and 1 . By truncating the integrals at $\chi=70$ and numerically integrating by Gaussian quadrature between $\chi=0$ and $\chi=70$ results are obtained that are good to 30 decimal places for $M \leqslant 35$.

APPENDIX B

The integrals which arise in the evaluation of matrix elements in the case of ${ }^{3} F$ intermediate states are of the form
$I_{i, j, k ; i^{\prime}, j^{\prime}, k^{\prime}}(\mu, \nu, \lambda)=\iint \frac{d v_{1} d v_{2}}{(4 \pi)^{2}} r_{1}^{\mu} r_{2}^{\nu} r_{12}^{\lambda} e^{-a r_{1}-b r_{2}}$

$$
\begin{equation*}
\times\{i, j, k\}_{M}^{(3) *}\left\{i^{\prime}, j^{\prime}, k^{\prime}\right\}_{M}^{(3)} \tag{B1}
\end{equation*}
$$

where

$$
\{i, j, k\}_{M}^{(3)}=\left\{\left\{T^{(1)}\left(\overrightarrow{\mathrm{r}}_{i}\right), T^{(1)}\left(\overrightarrow{\mathrm{r}}_{j}\right)\right\}^{(2)}, T^{(1)}\left(\overrightarrow{\mathrm{r}}_{k}\right)\right\}_{M}^{(3)}
$$

and $i, j, k, i^{\prime}, j^{\prime}, k^{\prime}$ can each assume the values 1
or 2. Now, if $i=k$, e.g., then

$$
\begin{aligned}
\{i, j, k\}_{M}^{(3)} & =\{i, k, j\}_{M}^{(3)} \\
& =\left(\frac{2}{3}\right)^{1 / 2}\left\{T^{(2)}\left(\overrightarrow{\mathrm{r}}_{i}\right), T^{(1)}\left(\overrightarrow{\mathrm{r}}_{j}\right)\right\}_{M}^{(3)},
\end{aligned}
$$

which derives from the relation

$$
\left\{T^{(1)}, T^{(k)}\right\}^{(k+1)}=[(k+1) /(2 k+1)]^{1 / 2} T^{(k+1)} .
$$

If, in addition, $i=j$, then another application of
this relation yields

$$
\{i, j, k\}_{M}^{(3)}=(2 / 5)^{1 / 2} T_{M}^{(3)}\left(\overrightarrow{\mathrm{r}}_{i}\right) .
$$

Therefore, we have

$$
\begin{align*}
\{i, j, k\}_{M}^{(3)} & =(2 / 3)^{1 / 2}\left\{(4 \pi / 5)^{1 / 5} r_{i}^{2} Y^{(2)}\left(\theta_{i}, \phi_{i}\right),(4 \pi / 3)^{1 / 2} r_{j} Y^{(1)}\left(\theta_{j}, \phi_{j}\right)\right\}_{M}^{(3)} \tag{B2a}\\
& =(4 \pi / 3)(2 / 5)^{1 / 2} r_{i}^{2} r_{j}\left|l_{i}=2, l_{j}=1, L=3, m_{L}=M\right\rangle, \quad i=k \neq j, \tag{B2b}
\end{align*}
$$

and

$$
\begin{align*}
\{i, j, k\}_{M}^{(3)} & =(2 / 5)^{1 / 2}(4 \pi / 7)^{1 / 2}(4 \pi)^{1 / 2} r_{i}^{3} Y_{M}^{(3)}\left(\theta_{i}, \phi_{i}\right) Y_{0}^{(0)}\left(\theta_{3-i}, \phi_{3-i}\right) \tag{B3a}\\
& =4 \pi(2 / 35)^{1 / 2} r_{1}^{3}\left|l_{1}=3, l_{2}=0, L=3, m_{L}=M\right\rangle, \quad i=k=j=1, \text { e.g. } \tag{B3b}
\end{align*}
$$

As a result, $I_{i, j, k ; i^{r}, j^{r}, k^{\prime}}(\mu, \nu, \lambda)$ is proportional to

$$
\begin{align*}
& \iint d r_{1} d r_{2} r_{1}^{\mu+2} r_{2}^{\nu+2} r_{i} r_{j} r_{k} r_{i}, r_{j}, r_{k^{\prime}} e^{-a r_{1}-b r_{2}} \\
& \quad \times\left\langle l_{1}, l_{2}, 3, M\right| r_{12}^{\lambda}\left|l_{1}^{\prime}, l_{2}^{\prime}, 3, M\right\rangle . \tag{B4}
\end{align*}
$$

Now r_{12}^{λ} can be expanded as

$$
\begin{equation*}
r_{12}^{\lambda}=\sum_{l=0}^{\infty} R_{\lambda l}\left(r_{1}, r_{2}\right) P_{l}\left(\cos \theta_{12}\right), \tag{B5}
\end{equation*}
$$

where $R_{\lambda l}\left(r_{1}, r_{2}\right)$ involves hypergeometric functions
and is described in the work of Sack. ${ }^{29}$ Furthermore, we may write, following Judd, ${ }^{14}$

$$
\begin{align*}
& P_{l}\left(\cos \theta_{12}\right)=\frac{4 \pi}{2 l+1} \sum_{m} Y_{m}^{(l)} *\left(\theta_{1}, \phi_{1}\right) Y_{m}^{(l)}\left(\theta_{2}, \phi_{2}\right) \\
&=C^{(l)} \cdot C^{(l)} \tag{B6}\\
& 2
\end{align*}
$$

using the spherical-harmonic addition theorem and the definition of the scalar product of tensor operators. The subscripts 1 and 2 refer to electrons 1 and 2 , respectively. Thus for the angular integration we get successively

$$
\begin{align*}
& \left\langle l_{1}, l_{2}, 3, M\right| r_{12}^{\lambda}\left|l_{1}^{\prime}, l_{2}^{\prime}, 3, M\right\rangle=\sum_{l=0}^{\infty} R_{\lambda l}\left\langle l_{1}, l_{2}, 3, M\right| C^{(l)} \cdot C^{(l)}{ }_{2}\left|l_{1}^{\prime}, l_{2}^{\prime}, 3, M\right\rangle \\
& =\sum_{l=0}^{\infty} R_{\lambda l}(-1)^{l_{1}^{\prime}+l_{2}+3}\left\{\begin{array}{l}
l_{1}^{\prime} l_{2}^{\prime} 3 \\
l_{2} l_{1} l
\end{array}\right\}\left\langle l_{1}\left\|C^{(l)}\right\| l_{1}^{\prime}\right\rangle\left\langle l_{2}\left\|C^{(l)}\right\| l_{2}^{\prime}\right\rangle \\
& =(-1)^{l_{1}^{+} l_{1}+1} \sum_{l=0}^{\infty} R_{\lambda l}\left[\left(2 l_{1}+1\right)\left(2 l_{1}^{\prime}+1\right)\left(2 l_{2}+1\right)\left(2 l_{2}^{\prime}+1\right)\right]^{1 / 2}\left\{\begin{array}{lll}
l_{1}^{\prime} & l_{2}^{\prime} & 3 \\
l_{2} & l_{1} & l
\end{array}\right\}\left(\begin{array}{lll}
l_{1} & l & l_{1}^{\prime} \\
0 & 0 & 0
\end{array}\right)\left(\begin{array}{lll}
l_{2} & l & l_{2}^{\prime} \\
0 & 0 & 0
\end{array}\right) . \tag{B7}
\end{align*}
$$

In the above, the object enclosed by braces is a $6-j$ symbol, while those within parentheses are $3-j$ symbols. The reduced (double-bar) matrix elements of $C^{(1)}$ indicate the use of the WignerEckart theorem in this derivation. ${ }^{14}$
Since a $3-j$ symbol like

$$
\left(\begin{array}{lll}
l_{1} & l & l_{1}^{\prime} \\
0 & 0 & 0
\end{array}\right)
$$

vanishes unless $\left(l_{1}+l+l_{1}^{\prime}\right)$ is even and l_{1}, l, and l_{1}^{\prime} satisfy a triangular condition, only a few terms will remain in the infinite sum above. We may then apply the relation

$$
\begin{equation*}
\iint d \Omega_{1} d \Omega_{2} r_{12}^{\lambda} P_{l}\left(\cos \theta_{12}\right)=(4 \pi)^{2} R_{\lambda l} /(2 l+1) \tag{B8}
\end{equation*}
$$

to the final expression above to recast the angular matrix element in (B4) in the form

$$
\iint \frac{d \Omega_{1} d \Omega_{2}}{(4 \pi)^{2}} r_{12}^{\lambda} f\left(\theta_{12}\right)
$$

Finally, through use of such identities as
$\iint \frac{d \Omega_{1} d \Omega_{2}}{(4 \pi)^{2}} r_{12}^{\lambda} \sin ^{2} \theta_{12}=\frac{-2}{\lambda+2} \iint \frac{d \Omega_{1} d \Omega_{2}}{(4 \pi)^{2}} \frac{r_{12}^{\lambda+2}}{r_{1} r_{2}} \cos \theta_{12}$
(B9a)
and

$$
\begin{aligned}
& \iint \frac{d \Omega_{1} d \Omega_{2}}{(4 \pi)^{2}} r_{12}^{\lambda} \sin ^{2} \theta_{12} \cos \theta_{12} \\
& =\frac{-2}{\lambda+2} \iint \frac{d \Omega_{1} d \Omega_{2}}{(4 \pi)^{2}} \frac{r_{12}^{\lambda 2}}{r_{1} r_{2}} \\
&
\end{aligned}
$$

(B9b)
obtained by performing partial integrations, we may express $I_{i, j, k ; i^{0}, j^{\circ}, k^{\circ}}(\mu, \nu, \lambda)$ solely in terms of the A and B integrals described in Appendix A.

The integrals $I_{i, j, k ; i^{\prime}, j^{\prime}, k^{\prime}}$ are invariant under permutations of the i, j, k among themselves and/ or the $i^{\prime}, j^{\prime}, k^{\prime}$ among themselves, leaving only six integrals to be actually computed. As an example, let us calculate $I_{1,1,1 ; 2,2,2}(\mu, \nu, \lambda)$. The angular matrix element appearing in (B4) is then

$$
\begin{align*}
\left\langle l_{1}=3, l_{2}=0,3, M\right| r_{12}^{\lambda}\left|l_{1}^{\prime}=0, l_{2}^{\prime}=3,3, M\right\rangle & =\sum_{l=0}^{\infty} R_{\lambda l}(7)\left\{\begin{array}{lll}
0 & 3 & 3 \\
0 & 3 & l
\end{array}\right\}\left(\begin{array}{lll}
3 & l & 0 \\
0 & 0 & 0
\end{array}\right)^{2} \\
& =7 R_{\lambda 3}\left(\frac{1}{7}\right)(\sqrt{1 / 7})^{2}=\frac{1}{7} R_{\lambda 3} \\
& =\iint \frac{d \Omega_{1} d \Omega_{2}}{(4 \pi)^{2}} r_{12}^{\lambda} P_{3}\left(\cos \theta_{12}\right) . \tag{B10}
\end{align*}
$$

The constant of proportionality in (B4) is a product of the numerical factors appearing in (B2b) and/or (B3b) multiplying 4π. In this example, it is the square of the factor in (B3b), namely $\frac{2}{35}$. So we have

$$
\begin{align*}
I_{1,1,1 ; 2,2,2}(\mu, \nu, \lambda) & =\frac{2}{35} \iint d r_{1} d r_{2} r_{1}^{\mu+2} r_{2}^{\nu+2} r_{1}^{3} r_{2}^{3} e^{-a r_{1}-b r_{2}} \iint \frac{d \Omega_{1} d \Omega}{(4 \pi)^{2}} r_{12}^{\lambda} \cos \theta_{12}\left(1-\frac{5}{2} \sin ^{2} \theta_{12}\right) \\
& =\frac{2}{35} \iint \frac{d v_{1} d v_{2}}{(4 \pi)^{2}} r_{1}^{\mu+3} r_{2}^{\mu+3} e^{-a r_{1}-b r_{2}}\left(\cos \theta_{12} r_{12}^{\lambda}+\frac{5}{\lambda+2} \frac{r_{12}^{\lambda+2}}{r_{1} r_{2}}+\frac{15 \cos \theta_{12}}{(\lambda+2)(\lambda+4)} \frac{r_{12}^{\lambda+4}}{r_{1}^{2} r_{2}^{2}}\right) \\
& =\frac{2}{35}\left(B(\lambda+2, \mu+5, \nu+5)+\frac{5}{\lambda+2} A(\lambda+4, \mu+4, \nu+4)+\frac{15}{(\lambda+2)(\lambda+4)} B(\lambda+6, \mu+3, \nu+3)\right) . \tag{B11}
\end{align*}
$$

To conclude, we enumerate here the remaining five cases:

$$
\begin{align*}
& I_{1,1,1 ; 1,1,1}(\mu, \nu, \lambda)=\frac{2}{35} A(\lambda+2, \mu+8, \nu+2) \tag{B12}\\
& I_{1,1,1 ; 1,1,2}(\mu, \nu, \lambda)=\frac{2}{35} B(\lambda+2, \mu+7, \nu+3) \tag{B13}\\
& I_{1,1,1 ; 1,2,2}(\mu, \nu, \lambda)=\frac{2}{35}\left(A(\lambda+2, \mu+6, \nu+4)+\frac{3}{\lambda+2} B(\lambda+4, \mu+5, \nu+3)\right) \tag{B14}\\
& I_{1,1,2 ; 1,1,2}(\mu, \nu, \lambda)=\frac{2}{35}\left(A(\lambda+2, \mu+6, \nu+4)+\frac{2}{3(\lambda+2)} B(\lambda+4, \mu+5, \nu+3)\right) \tag{B15}\\
& I_{1, \lambda, 2 ; 1,2,2}(\mu, \nu, \lambda)=\frac{2}{35}\left(B(\lambda+2, \mu+5, \nu+5)+\frac{1}{3(\lambda+2)} A(\lambda+4, \mu+4, \nu+4)+\frac{1}{(\lambda+2)(\lambda+4)} B(\lambda+6, \mu+3, \nu+3)\right) \tag{B16}
\end{align*}
$$

Note added in proof. In the previous work by Lewis and Serafino all the second-order contributions to the $2^{3} P$ helium fine structure have been calculated in order to complete the theoretical evaluation of the fine-structure splitting through order $\alpha^{6} m c^{2}$. In such a way separate theoretical results have been obtained for the larger and smaller intervals ν_{01} and ν_{12}, respectively, with
the determination of the former being accurate to 1.4 ppm . This in turn allows the fine structure constant α to be determined to an accuracy of 0.94 ppm by comparing theory to experiment.

It is our aim here to complete these calculations by including the corresponding results for the interval ν_{02} between the highest- and lowest-lying levels of the $2^{3} P$ state. Using the equation

$$
\Delta \nu_{02}=3 \sum_{i, j=1}^{2} E_{2}^{(i, j)}-42\left[E_{2}^{(1,3)}+E_{2}^{(2,3)}\right]+99 E_{2}^{(3,3)}-6 \sum_{i=1}^{2} \sum_{j=4}^{7} E_{2}^{(i, j)}+18 \sum_{j=4}^{7} E_{2}^{(3, j)}
$$

for the second-order contribution to ν_{02} together with the values of the $E_{2}^{(i, j)}$ from the previous work, we find that $\Delta \nu_{02}=4.649(115) \mathrm{MHz}$ from intermediate ${ }^{3} P$ states alone, while the total secondorder contribution is $4.791(115) \mathrm{MHz}$. The other theoretical contribution to ν_{02} can be taken over quite readily from the corresponding results for
ν_{01} and ν_{12} by addition. Combining all these contributions, we obtain the net result through order $\alpha^{6} m c^{2}$

$$
\nu_{02}=31908.187(116) \mathrm{MHz}
$$

which determination is thus accurate to 3.6 ppm .
*Research supported in part by the National Science Foundation under Contract No. MPS75-02376.
${ }^{1}$ A. Kponou, V. W. Hughes, C. E. Johnson, S. A. Lewis, and F. M. J. Pichanick, Phys. Rev. Lett. 26, 1613 (1971).
${ }^{2}$ S. A. Lewis, F. M. J. Pichanick, and V. W. Hughes, Phys. Rev. A 2, 86 (1970).
${ }^{3}$ Charles Schwartz, Phys. Rev. 134, A1181 (1964).
${ }^{4}$ M. L. Lewis and P. H. Serafino, Bull. Am. Phys. Soc. 18, 1510 (1973).
${ }^{5}$ Michael L. Lewis, Atomic Physics 4, edited by G. zu Putlitz, E. W. Weber, and A. Winnacker (Plenum, New York, 1975), p. 105.
${ }^{6}$ M. L. Lewis, P. H. Serafino, and V. W. Hughes, Phys. Lett. 58A, 125 (1976).
${ }^{7}$ L. Hambro, Phys. Rev. A 5, 2027 (1972); Phys. Rev. A 6, 865 (1972); Phys. Rev. A 7, 479 (1973).
${ }^{8}$ M. Douglas and N. M. Kroll, Ann. Phys. (N.Y.) 82, 89 (1974).
${ }^{9}$ J. Daley, M. Douglas, L. Hambro, and N. M. Kroll, Phys. Rev. Lett. 29, 12 (1972).
${ }^{10}$ G. A raki, M. Ohta, and K. Mano, Phys. Rev. 116, 651 (1959).
${ }^{11}$ H. A. Bethe and E. E. Salpeter, Quantum Mechanics of One- and Two-Electron Atoms (Springer, Berlin, 1957), p. 181.
${ }^{12}$ E. A. Hylleraas, Z. Phys. 48, 469 (1928); 54, 347 (1929).
${ }^{13}$ E. A. Hylleraas and J. Midtdal, Phys. Rev. 103, 829 (1956).
${ }^{14}$ B. R. Judd, Operator Techniques in Atomic Spectros-
copy (McGraw-Hill, New York, 1963).
${ }^{15}$ Charles Schwartz, Methods in Computational Physics (Academic, New York, 1963), Vol. 2, p. 241.
${ }^{16}$ M. E. Rose, Elementary Theory of Angular Momentum (Wiley, New York, 1957).
${ }^{17}$ C. Schwartz, Phys. Rev. 123, 1700 (1961).
${ }^{18}$ P. T. Olsen and E. R. Williams, Atomic Masses and Fundamental Constants 5, edited by J. H. Sanders and A. H. Wapstra (Plenum, New York, 1976), p. 538.
${ }^{19}$ T. W. Hänsch, M. H. Nayfeh, S. A. Lee, S. M. Curry, and I. S. Shahin, Phys. Rev. Lett. 32, 1336 (1974).
${ }^{20}$ C. L. Pekeris, B. Schiff, and H. Lifson, Phys. Rev. 126, 1057 (1962).
${ }^{21}$ A. K. Bhatia, Phys. Rev. A 6 6, 2498 (1972).
${ }^{22}$ E. R. Cohen and B. N. Taylor, J. Phys. Chem. Ref. Data 2, 663 (1973).
${ }^{23}$ P. J. Mohr, Atomic Physics 5, edited by R. Marrus, M. Prior, and H. Shugart (Plenum, New York, 1977), p. 37.
${ }^{24}$ D. E. Casperson et al., Phys. Rev. Lett. 38, 956 (1977); 38, 1504 (1977).
${ }^{25}$ P. Cvitanovic and T. Kinoshita, Phys. Rev. D 10, 4007 (1974).
${ }^{26}$ R. S. Van Dyck, Jr., P. B. Schwinberg, and H. G. Dehmelt, Phys. Rev. Lett. 38, 310 (1977).
${ }^{27}$ S. Calmet et al., Rev. Mod Phys. 49, 21 (1977).
${ }^{28}$ V. W. Hughes and T. Kinoshita, in Muon Physics, edited by V. W. Hughes and C. S. Wu (Academic, New York, 1977), Vol. I.
${ }^{29}$ R. A. Sack, J. Math. Phys. 5, 245 (1964); 5, 252 (1964); 5, 260 (1964).

[^0]: ${ }^{\text {a }}$ Units as in Table V .
 ${ }^{\mathrm{b}}$ Values of α (and c) and the Ryberg constant $R\left(=R_{\infty}\right)$ are taken from Refs. 18 and 19, respectively. We take $m / M=1.370934 \times 10^{-4}$ (see Ref. 22). Hence, e.g., $\alpha^{4} R c=4.664515 \mathrm{MHz}$.

