
PHYSICAL REVIE% A VOLUME 18, NUMBER 8 SEPTEMBER 1978

Second-order contributions to the fine structure of helium from all intermediate states'

Michael L. Lewis and Paul H. Serafino
Gibbs Laboratory, Physics Department, Yale University, Pew Haven, Connecticut 06520

(Received 4 August 1976; revised manuscript received 7 July 1977)

For the theoretical assessment of the 2'P helium fine structure to become comparable to the precision
measurements that have been made, it is necessary that the theory be calculated through order a~me . In
particular, the second-order contribution from the Breit and mass-polarization operators must be evaluated to
an accuracy of 1% or so. In this work, for each of five possible intermediate state symmetries the Dalgarno-
Lewis method is used to obtain the first-order perturbed wave function, from which the second-order energy
follows by integrat&on. Both the perturbed and unperturbed wave functions are expanded in Hylleraas-type
series with a progressively larger number of terms, the second-order energies being computed at each stage;
up to 455 terms are used for 'P intermediate states and up to 286 for 'P, D, 'D, and 'F. The sequence of
second-order energy results for each symmetry is extrapolated to the limit of an infinite number of basis
functions to arrive at a final result. The P, 'P, and 'D states will contribute to both the larger and the
smaller fine-structure intervals vo, and v», respectively, while 'I' and 'D states affect only v». The total
theoretical result, up to order a mc, for vo, is much more accurate than that for v», allowing the fine-
structure constant 0, to be determined very precisely by comparison of theory to experiment, with the result
a ' = 137.036 08(13), good to 0.94 ppm,

I. INTRODUCTION

Owing to the theoretical framework embodied in
the Breit and Bethe-Salpeter equations and to the
precise experiments carried out at Yale,"the ac-
curate theoretical determination of the fine struc-
ture of helium-4 in the 2 'P~ states has been a sub-
ject of great interest for many years. For one
thing, it provides one more check on the consis-
tency of quantum electrodynamics. From another
point of view, assuming that quantum electrodyn-
amics is indeed valid, the theoretical and experi-
mental determinations of the fine-structure split-
ting can be combined to yield a precise value Of the
fine-structure constant. Specifically, given the
precision of the experiment (1.2 ppm for the 1arger
interval v„), the fine-structure constant can be
determined to better than 1 ppm if the theoretical
splitting is accurate to I ppm or better, which en-
tails computations of order ~'mc'.

Such a theor=tical undertaking is comprised of
four separate tasks. The first is the calculation of
the fine-structure splitting to fir'st order with the
Breit operators and the mass-polarization oper-
ator, achieved by Schwartz' to an accuracy of
about 0.2 pprn. Second, the splitting is calculated
to second order with these operators to an accur-
acy of better than 1/„ it is this aspect which is in
fact the major concern of our research, ' ' since
the pioneering work by Hambro' only determined
~ to 3 ppm. Third, a higher-order operator must
be derived from quantom electrodynamics, a task
that has been accomplished by Douglas and Kroll. '
Fourth, the expectation value of this operator must
be computed to 1/~ precision; this Daley et al. ' have

succeeded in doing. Small corrections also must
be made to account for nuclear recoil. The ano-
malous moment of the electron contributes a term
of leading order z'mc' in addition. "' We have
then for the 2'&~ helium energy level E~, apart
from the leading anomalous moment term, the for-
mal expression

1E =E +a (H ) +a (H H )+a'(H ) +
Eo -Ho

where E, is the nonrelativistic energy level, II4 is
the Breit interaction, and H, is the operator of
Douglas and Kroll.

In this paper' we will first calculate the major
part of the second-order contribution to the fine
structure, namely, that due to intermediate states
of '& character. The method used for obtaining
the second-order energies circumvents the need
to sum over all intermediate states, and is de-
scribed in Sec. III. Second-order contributions
from the other possible symmetries, namely, 'p',
'D, 'D, and 'I, are not negligible and these are
treated in the remainder of the paper. To apply
the second-order method, we need the nonrelativ--
istic 2'P eigenvalue and eigenfunctions to some
order of approximation, as well as matrix ele-
ments of the Breit operators between the 'P basis
functions and the intermediate states. The cal-
culation of these quantities for each intermediate
state symmetry is described in the subsequent sec-
tions, beginning w'ith the 'P case.

II. FINE-STRUCTURE OPERATORS

The reduction of the Breit equation" to small
components results in the six operators that con-
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TABLE I. Nonrelativistic 2 & energy eigenvalues.

+p (R.U. )

1
2
3
4
5
6
7
8
9

10
11
12

10
20
35
56
84

120
165
220
286
364
455

—2.129471 787 9
—2.132 678 402 0
—2.133085 039 2
—2.133 140 222 3
—2.133157 595 1
—.2.133 162 287 6
—2.133 163 594 2
—2.133 163 981 5
-2.133 164 106 9
—2.133 164 153 1
—2.133 164 172 5
-2.133 164 1814

tribute to the second-order energy. In addition,
the mass-polarization operator mixes with the
other operators and contributes to the fine struc-
ture. The Schrodinger Hamiltonian for helium
(Z =2) is

1 2 1 2IJ =-—'I7 ——'I7 - - — +0 2 1 & 2
1 3 12

The nonrelativistic wave function +o is needed to
calculate the matrix elements of the Breit oper-
ators. The variational method is used to derive
this wave function. +o is the solution of

&o+o=&o+o

where E, is the zeroth-order energy, while the
approximation used for +o is the Hylleraas-like
basis"'"

The C, „are coefficients that are obtained by the
variational method and P» interchanges coordi-
nates r, and x„while r, indicates the P character
of +o. This type of wave function was used by
Schwartz' in the calculation of the major contribu-
tion to the helium fine structure. With 286 terms
in p, the first-order fine structure was calculated
to 100 ppm. Schwartz changed the basis by replac-
ing C, „by C,„„+D, „(r,+r, )' '

Th. is new basis
better describes the behavior of the helium wave
function near the nucleus. With 439 terms Schwartz
achieved better than 4-ppm accuracy in the first-
order fine structure.

The variational principle is equivalent to finding

gc such that

6&@,~If, -g, (@,) =O.

In matrix form we obtain

(5)

g (1 2) =r rrrrr e «z1~ e «2~2
lmn & 1 2 12 r

N N

gc c ((rr Irr,.lrr „&z„,(rr Irr-&)) o. =
m=1 q=l

where N = —, (&v+1)(~+2)((() +3) is the number of
terms in the expansion of +o. The eigenvalue
problem is solved by an iterative method and the
results are shown in Table I. The wave function

yc is written in terms of spherical tensors" T22(r)
where, for example,

T',"(r,) =-(x, +iy, )/W2, (6)

(7)

][to

l+m+ tl ~ 4) The screening constants determined by Schwartz
were used:

where

P1
U r ~m~ny e-~(yr1/2 -~~2/2

l rrrn 42.~2 1 1 2 12 (4)

K =4.6j.9 99994516372,

g = 0.289 999 999 10593 .
Thus

rr u, „(1,2)z,'(r, ) =u, „(1,2)r",'(r, )(-—,'(a'g +a')+ —[-,'zo(4+2m +)) —z]+—[—,'«(2+2m+() —z]
1 2

lnl 1 n———(m +3+i) —— (n+1+l)—
~l 2 2.

j. l &1 Kgl
+——

2
—(2l +4+ m+n) +
2

Kl . +2 Kgl ~ &1 Kl +2 &l &1 nl

+ u, „(1,2) 9,"(r, )
12

The matrix elements are given in terms of a number of integrals described in Appendix A. Thus we have
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in general

(II,)„=&II, ...„.iB.IV,.„)
=2( &&(-1( {J +{{)[Ag(L+2, M+4, N+2) —B (L+2,M'+3, N'+3)]

+[—,'{{(y(4+2m+1)-Z] [A„(L, +2,M+3, N+2) —B,(L+2,M'+2, N'+3)]

+[,'1{(2—+2n+l)-Z] [A~(L+2,M +4,N +1) —B,(L +2, M' +3, ¹ +2)]
——,'m(m +3+l) [A~(L +2, M +2,N+2) B,(-I. +2,M'+1, ¹ +3)]
——2'n(n+1+1) [A„(L+2,M+4, N) B,(L—+2,M'+3, N'+1)]

+A2(L +1,M +4, N +2) —B,(L +1,M' +3, ¹ +3)

——,
' l(2l +4+ m + n) [A~(L&M +4,N +2) -B,(L,M'+3, N' +3)]

+~xol [A~(L&M + 5,N+2) —B,(L,M' +4, ¹ +3)]

+~{(l[A„(L,M +4,N+3) B,(L—&M'+3, N'+4)]
—~{{{)'l[A~(L, M'+ 3,N +4) —B,(L,M' +2, N' + 5)]

—~{{i[A„(L&
M + 6

&
N + 1) -B,(L &

M' + 5, ¹ + 2)]

+ —,'ml [A~(L,M+2, N+4) —B,(L,M' +1,N& +5)]

+—,
' nl [A~(L, M +6,N) —B,(L, M' + 5,N'+ 1)]

+l[B,(I.,M+3, N+3) -A, (L,M +2,N +4)]], (10)

where I. = / +l', M = m + m', K = n + n', M' = m + n'
and ¹

=n+ m'.
Kith the wave function calculated from the vari-

ational principle above, one can find the matrix
elements of the six Breit operators (which ele-
ments are needed in both the first- and second-
order perturbation calculations):

( ) 1 0'1+0'2 r1X P1 r2 P2H1=4n Z
2

~ 3 +
1 2

() 3 nl 2 ( 1 ) (p p )
81 =-—e4 2 3

{) 1 1
~

(+1 12)(n2 12)
3 &1'&2 2
12 12

(» &, 1 ",'(» 'P)P
)12 12

II' =='n'(p~+p') II' = 'Zwn'[5')(-r )+5'(r )]

and the mass-polarization operator

B',"= (m /M) p, p, (12)

and

and defining, for a vector v, 1&„=T~(",(v) and v,
=T2'(v) =v„we obtain

where m is the electron mass and M is the helium
nuclear mass. II,' contains spin-orbit terms; II,'
presents spin-other-orbit contributions. Spin-spin
terms are present in&,'~ while B, includes the ef-
fect of the retardation of the electromagnetic field.
The relativistic increase of mass is given in II,'
and the contact interaction is present in +1.

%ith the use of. the spinors

B(,1) n(1) n(2) u, „„(1,2) T,'"(r, )

2 On'Z n(—1)n(2)u, „(1,2) T(')(r,),+1 1 y 31 /212 i y23 y 31

1
[n(1)p(2) +p(1) n(2)]u, „(1,2) T1(1)(r,)(,) 1 1 l(r, xr,)., (13)

The matrix element following from II(,' n(1) n(2)u, „(1,2) T1h(r, ) is
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(11,') =( ~' n(2)n(2)n, „(1,2)212(r, ) 11,' " n(1)n(2)n, „„(1,2)rn(r, ))

=
(4 )2 &(I -P») n(l) n(2)u, ,„,„,(1,2) T2t'~(r, ) )Ht,"~n(1)n(2) u, „„(1,2) T2tn(r, )&

, n —[A~(L+2,M+12N+2) —(l/L) B,(L +2,M'+3, N') —(I'/L) B,(L +2,M', N'+3)]. (14)

The general matrix elements of the other six
operators are computed in like fashion as outlined
elsewhere by Hambro. ' The resulting expressions
range in complexity from a single term for H~~@,

which vanishes unless n =n' = 0, to 225 terms for
Moreover the kinds of integrals appearing in

these matrix elements demand various further
computations depending on the operator being ex-
amined. Although the general integrals encountered
can be computed recursively up to a point, many
special cases arise when one or more of the vari-
ables x» x» and r» are raised to their lowest al-
lowed powers in the integrands.

As an illustration, integrals involving ~» occur
in the matrix elements of four of the seven oper-
ators and -this class of integrals must be computed
separately as a special case. Integrals containing
more negative powers of x» generally diverge
individually, but these always occur in combin-
ations which cancel the divergences to yield a fin-
ite result. This is how the matrix elements of lip',
for example, are rendered finite in spite of the
presence of an t'»' factor in the operator. Further-
more, in&~@ matrix elements there are integra-
tions over all space, for both the coordinate spaces
f rl and r2 of terms that behave as r12 2

approaches zero. These again require special con-
sideration, as described in Appendix A under the
subject of I'~ integrals one of whose arguments is
zero.

III. SECOND-ORDER METHOD

In order to calculate the second-order correc-
tions to the 2 'p~ helium energy 1.evels, it is hardly
feasible to compute the well-known sum over in-
termediate states, since the latter are not at hand.
Instead, one returns to the inhomogeneous Schrod-
inger equation for the first-order perturbed wave
function +~:

(H, -E,) e, =-(H, -E, )e„ (15)

where +, is the nonrelativistic hebum 2 & eigen-
function and go its eigenvalue. Further, Il, is the
perturbation Hamiltonian and E, its expectation val-
ue in the (normalized) state 21 0.

Once this equation is solved for g„ the second-
order energy is given by an integral involving +,
and other knowns. If &, is decomposed into a sum

of oyerators H,', then in fact there are second-
order energies Et,'~~ given by any of four (two, if
i =j) different expressions:

d.'"&e.Ie.&
= -&~',"IH. -E.l~',"&

&@(2)(H E (g(i)&

[Hti) E(t) )g(i)&

&q,(() ~H(/) E(J) (@ )

eP = g Xt'„'„u,„„(1,2),
l,m en=0.

(17)

with U, „as in Sec. II. If we take 4, and &0 as
determined for a given (2) (see Sec. II) together
with the expansion for 4,' above using the same
(2) (this is not necessary, but is convenient for our
purposes), Eq. (15) becomes

N~)

P X',"[&Il„.i H, iu, & -E,(~)&Il„.I U„&]

A~)
= -P C, ((2)) & P, ,

I H,"' -E';~
I U, & (18)

0-1

for k' = l, 2, 3, . . . ,N((d) and N((d) = +(&v+1)(&u

+ 2) ((2)+ 3). In the above, the indices (l, m, n) have
been mapped bijectively into the set of indices k.

This last set of equations can be construed as
a matrix equation for the column vector X with a
special feature. This is that the matrix (H, -E,)
has 0 as an eigenvalue in the chosen basis, and
so is de facto singular. If we set X," = 0 and
solve the matrix equation remaining after the
first row and first column of (H, -E,) are deleted,
then we will have a consistent set of N(~) -1
equations to be solved for the N((2)) -1X, ,
k = 2, 3, . . . ,N(~). Since det(H, E,) & 0 now, t—here
is a unique solution for these X„; they may in
fact be inserted into the k'=1 equation to check
for consistency and for roundoff errors.

Doing this for each i, we may then obtain mixed
(i&j) and, unmixed second-order energies for
given ~. If both H,' and H", are spin indepen-
Ident, then F.,'~ shifts each fine-structure level
by the same amount and so does not affect the
,splittings. Otherwise E2'~' is extrapolated by sev-

' Restricting ourselves for the time being to I in-
termediate states, we expand g,' with the same
basis functions as for +0.

t+ m+I «fd
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eral methods" to infinite &, and the total second-
order spin-dependent shift of the 2'P level is
then given by

(~) p(Eo.i), 2+g(')) (19)

For the 'P intermediate states, we shall do the
above calculatioris for J'= 2 to obtain (Z,),. The
level shifts for J=O and J=1 are derived from
the J= 2 result by the Wigner-Eckart theorem, and
the change in the fine-structure intervals f01lows
easily by subtraction.

IV. TEST OF METHOD

Hambro has shown that a simple test of this
method of calculating second-order energies can
be made. The nonrelativistic Hamiltonian is Ho
= T+ V, where T is the kinetic and V is the poten-
tial energy. If T and V are considered perturba-
tions,

X,")=V and SC")=r
then the virial theorem can be used to show the
first-order energies:

V, for & = 1-to += 12. In addition, Table VI shows
those second-order energies which do not affect
the fine-structure splittings.

We have extrapolated the second-order results in
Table V to infinite or. FoQowing Schwartz, suc-
cessive differences between second-order ener-
gies as a function of & are fitted to both exponen-
tial and inverse power types of behavior. This
yields a best value for the (constant) ratio and in-
verse power, respectively, with an uncertainty in
each case; these can then be used to obtain the in-
dividual extrapolated results. The final extrapo-
lated result is a weighted average of the two al-
ready obtained, being closer to that one which has
smaller uncertainty and best fits the data.

In some cases, we did not extrapolate the indi-
vidual E2j'~', but instead took certain propitious
combinations of several of them as they occur in
the expressions for the changes in the larger and
smaller fine-structure intervals. These express-
ions are

2

p 3 ~ ZNQJ) 50(Z(lf3) + Z(2f3))
Ol ~ 2 2 2

jeg el
2 7

+75m&"3& —2 E«»+3O~E~3»
2 2 2

and one can further show that the second-order en-
ergies are

E&1.» g g &2.» —g2 Ot 2 Os

The results of this test calculation are shown in
Tables II and III.

j ~l ga4

8(Z&)I»+ Z &me») + 24Z &~I».
12 2 2 2

2 7

4 g g Z(4,J) 12g Z(3, y)

j =lan=4

g a4

(20)

(21)

V. FINAL SECOND-ORDER EXTRAPOI.ATIONS

FOR P INTERMEDIATE STATES

For the 'P intermediate states, the first-order
energies are presented in Table IV and the spin-
dependent second-order energies are given in Table

The behavior of most of the E," &' as a function of
+ is either smooth or so rapidly convergent as to
yield extrapolations accurate to 0.5% or better.
The exceptions are 8"&1' E" ' and E2"' E""'
and E2'"" demonstrate a smooth but slow' conver-
gence with u), reflecting the pole-type singularities

—E $~ (a.u.) @(,e ~a, ~

TABLE Q. Firs t-order test calculation. TABLE IU. Second-order test calculation.

z('c=-z('s=-z(, 2 e=z(,2 s (a.u.)

1
2
3
4
5
6

- 7
8
9

10
11
12

-2.155 799276 4
-2.134 972 042 3
—2.133033 796 6
—2.133-102 833 5
—2.133138 930 5
—2.133155707 2
-2.133161252 4
—2.1331631144
—2.133163755 0
-2.133163993 8
-2.133164 093 6
-2.133164 140 0

2.182 126 765 0
2.137265 682 6
2.132982 554 0
2.133065444 7
2.183 120 265 9
2.133149 126 7
2.133158 910 7
2.133162 247 2
2.133163403 1
2.133163834 6
2.133164 014 8
2.133164 098 5

1
2
3
4
5
6
7
8
9

10
11
12

—1.801314478
-2.088 199826
-2.128 536 110
-2.132450 237
—2.132 976 961
-2.133092 204
—2.133 137444
-2.133 153794
-2.133 159927
—2.1.33 162 283
-2.133 163254
-2.133163696
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of +y and H,"', while E,""' shows neither rapid
nor smooth convergence, pointing to the influence
of the 6-function type of singularity appearing in
If. (n&y

The extrapolated results are shown in Table VII,
where we obtain the total second-order contribu-
tion from 'P intermediate states as 5.062(38) and
-0.413(79) MHz for v» and v», respectively.
Some of the individual error estimates forthe E,"' '

may be somewhat optimistic and others more or
less conservative, but in any case only four or
five of the E,"'~' significantly affect the total un-
certainty. Furthermore, our results for those en-
ergies for which Hambro obtained improved val-
ues are not inconsistent with his results, and we
have used co = 10 preliminary extrapolations to an-
ticipate the e = 11 and co = 12 values for our E2'~'
quite successfully, as a check on internal consis-
tency of the method.

These results, together with those for the other
intermediate states should allow n to be deter-
mined to 1 ppm or better. The other contributions
are discussed in the sections following.
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VI. P INTERMEDIATE-STATE CONTRIBUTIONS

We now complete the second-order calculation
by computing the effects of 'P, 'D, 'D, and 'I' in-
termediate states. Of these symmetries, only the
first two contribute to both the fine-structure in-
tervals v„and v»,. the last two only affect v».

The second-order method has been described
for 'P states already and its application to symme-
tries other than 'P is not much different. The ma-
jor difference arises in the solution of the inhomo-
geneous Schrodinger equation for the ith perturba-
tion wave function,
x(~)

Q%"[(U IH. lU ) —&.(~)(U IU )]
A=y
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Here we have expanded 4~,'&(L, S,j, m~ =j) as
N~)

X ' U„(L,S,j,m~ = j'),
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where 0—(L,m, n) with t, m, n & 0 and f+ m+n & g,
and N(e) = —,'(++ l)(e+ 2)(&u+ 3). Furthermore,

(L S j m —j) 12 e nary/2 e-K 2/2r1+ (-1)'P
tmn s „r r i'

4

&& r»r, r2 Y'(L, S1,j,m~ = j)
(24)

with I(: and cr as before and Y a spherical tensor
representing an L-S coupling state of total angular
momentum J, projection m~, and odd parity. Now

/
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(1) 2 +1 ~2 rl pl r2. p20 = —o. Z1 4 2

~(2) ~ 2 (Tl &2 . rl r2)&

(25)

These are the spin-antisymmetric parts of Hl'
and II,', the spin-orbit Breit operators; the spin-

no equations are to be deleted in (22) because the
matrix (Ho —Zo) is nonsingular, and so the prob-
lem reduces to the one of inverting an N(~) by
N(&u) matrix.

In addition, we have new integrals appearing in
the case of D and I" symmetries involving spheri-
cal tensors more complicated than the Tt'i(r, ) en-
countered previously. The calculation of these in-
tegrals is not too difficult but we nevertheless indi-
cate as an example in Appendix B how the 'I' inte-
gra1.s are reduced to the A and B integrals intro-
duced earlier in this paper. We proceed now to ex-
amine the effect of 'P intermediate states.

The operators with nonvanishing matrix elements
between 'P and 'P states are

4'0( P „m~ = 1) = Q C, „U, „(P„m~ = 1)
l, m, n=p

(26)

where the C, „are as determined in Sec. II and

U, „(P„m~=1)

(27)

The perturbed wave function is expanded as
l+ m+ n~&

+'i'('P»mz =1)= Q Ci'~nUt n('P»mz =1) (28)
l, m, n=p

where

U, „('P„m~ =1)= " S~~Tig(r, )u, „(1,2). (29)
4m' 2

We compute the action of the operators on the
unsymmetrized 'P basis functions:

symmetric parts are proportional to the total spin
S and do not permit sing1. et-triplet transitions.
Since J=1 for 'P states and J is still a good quan-
tum number we take as our nonrelativistic 2 'P
wave function

l+m+n~&

TABLE VI. Second-order energies which do not contribute to the fine structure.

E(4, 4)
2

(2e' Ry)
E (5p 5)

2

(204 Ry)

E(6y 6)
2

(2+4 Ry)

E(7P 7)
2

2
(2(m/m) Ry)

E(4y 5)
2

(2+4 Ry)

1
2

3

5
6
7
8,
9

10
11
12

1
2

3

5
6
7
8
9

10
11
12

-0.019 941 220 294
-0.028 765 953 476
—0.033 335 808 370
-0.035 906 828 850
—0.037 393 840 859
-0.038 073 570418
-0 ~ 038 343 778 493
-0.038 477 869 851
-0.038 543 199087
-0.038 567 915 521
-0.038 579 766 222
-0.038 586 551 825

E(4y 6)
2

(2c 4 Ry)

0.297 444 545 402
0.017 125 440447
0.092 956 846436
0.064 126 858 647
0.082 165 221 912
0.074 066 349 412
0.077 953 863 661
0.074 878 198 038
0.076 754 952 587
0.075 798 997 017
0.076 376 705 093
0.075 951 579 96

—252.301 040 25
—349.313294 68
—442.934 748 19
-'534.405 189 29
—621.794 445 183
-708.113034 96
-793.054 988 05
-877.327 069 51
—960.906 702 83

—1 044.056 101
-1126.807 270
—1 209.289 343

E(4t 7)
2

(2z (m/M) Ry)

0.033 581 361 651
0.053 384 471 485
0.062 084 852 339
0.067 951 065 502
0.072 383 341 337
0.074 449 032 058
0.075 196222 464
0.075 703 313 069
0.075 996409 786
0.076 080 170 556
0.076 120 936 920
O. 076 149 073 589

-89.151341 771
—108.818 603 13
—133.136 851 57
-155.751 708 50
—177.726 745 72
—199.266 653 29
-220.517 11605
-241.565 720 19
—262.464 300 03
—283.246 293 60
-303.937 823 07
—324.558 334 79

E (5g 6)
2

(2+4 Ry)

149.929 739 78
194.062 343 59
241.747 532 88
287.233 174 83
331.049 521 62
374.168 123 84
416.652 673 65
458;768 590 78
500.561 367 76
542.130 222 82
583.509 10174
624.749 778 88

-0.067 054 443 540
—0.121 394 680 800
—0.142 266 384 01
—0.160 864 025 32
-0.180 662 91046
-0.191579 ~9043
-0.196 151002 74
-0.200 108 593 14
—0.202 827 567 19
-0.203 751 13051
-0.204 267 306 21
-0.204 656 232 76

E(5y 7)
2

(2' (m/M) Ry)

1.180 015 618 3
—0.128 252 515 86

0.453 873 200 08
0.068 616 519 845
0.366 745 088 79
0.167 663 976 64
0.287 334 615 78
0.198 833 876 04
0.260 487 154 18
0.221 424 235 45.
0.247 141 172 76
0.229 279 678 4

-0.509 634 666 84
0.038 090 731 754

-0.103 141283 917
-0.040 353 494 222
—0.073 261 738 297
-0.055 513 108 990
-0.062 513 658 090
-0.055 928 749 109
-0.059 430 409 098
-0.057 381 527 590
-0.058 454 129 847
—0.057 551 914 63

E (6~ 7)
2

(20 (m/M) Ry)

-0.668 956 889 07
—0.020 398 608 316
-0.320 344 71178
-0.134 151816 82
—0.287 356 668 50
—0.189469 485 95
-0.249 909 273 77
—0.206 039 709 81
—0.237 101855 03
-0.217 621 966 28
-0.230 525 267 83

0.221 626 010 1
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2

= —n'Zu, „(1,2)S00'V2 —,T,''(r,)-, —,+ —, [T,"(r,)(r, r,) -T,'(r,)r',], (30)

and

= —a'v'2Si,"u, „(1,2), Ti,''(r, ) -T",.'(r,)+ ——,+ —,-
2

—
2

[T~p(r,)(r, ~ r,) —Ti,''(r, )r', ] . (31)

It should be pointed out here that the plus signs
preceding "1/r', " in the H~,' equation and"-,'" in the
H,' equation, respectively, are reversed, incor-
rectly, in Hambro's paper. (Hts final results are,
however, correct. ) These computations suffice
for obtaining the transition matrix elements

(MP)», »,

where

(M',")„,, =(U, .„('P„m =1)~HP~U, „('P„~ =1)).
(32)

I

The (M~,'~)» „so calculated differ from the (M~,'~)»»
of the 'P case only in some sign changes and over-
all multiplicative factors. Also needed are the ma-
trix elements of 00 and of unity between 'P basis
functions. These again are the same as the cor-
responding 'P quantities save for a sign change
preceding all the exchange integrals.

Having computed these matrix elements, we can
solve for the X(" in the inhomogeneous Schrodinger
equation (22) for a given ~ and thence obtain the
E(,' ~ as described in Sec. III. The total shift of the
2'P, level is then given by (E,)~=,= g" + Z,"~

TABLE VD; 3I' contributiohs to the helium fine structure.

g(&,j) a
Ot(21 0.4 Ry) 6 @&2(~n Ry)

(1~ 1)
(1 2)
(1,3)
(1~4)

(1,5)+(1,6)
(2, 2)
(2, 3)
(2 4)
(2 5)
(2, 6)
(3 3)
(3 4)

30[(3,5)+ (3,6)] —.2(2, 6)
12[(3,5)+ (3, 6)] -4(2, 5)

(1~ 7)
(2 7)
(3 7)

-0.665 3(46)
0.674 76 (24)

-0.047 608(1)
-0.135528(24)

0.174(4)
-1.142 0(17)

0.082 12(18)
0 ~ 185863(14)
0.107252(46)

-G.248 618(17)
-0,006 11(4)
-0.013200 5(1)

0.919502(37)
-0,598 02(72)

0,233 3(4)
-0.319795(39)

0.021620 2 (1)

Totals

-0.499(3)
1.012 l(4)
0.595 10(1)
0.27106(5)
0.348(8)

-0.857(1)
-1.027(2)
-0.371 73(3)
-0.214 50(9)

-0 ~ 1146(8)
. -0.396 015(3)

0.91950(4)

—e» Ry)2M )
-0.466 6 (8)

0.639 59(8)
0.648 606 (3)

-0.515(4) &4 Ry

+0.410 8(4) —n2 Ry
m
M

= 5.062(38) MHR

0
0

—0.095 2 16(2)
0 ~ 542 1(1)

-0.6 96(16)
0

0 ~ 164 2(4)
-0.743 45(6)

0.994 47(7)
-0.036 7(2)

0.158 406{1)

-0 ~ 598 02(72)

—0.933(2)
1.279 2(2)

-0.259 442(1)

-0.155(8)&4 Ry

+0.043(1)—Q 2 RyM

= -0.413(79) MHK '
~ Units as iri Table V.

Values of ~ (and c) and the Rgberg constant R (=R„)are taken from Refs. 18 and 19,re-
spectively. We take m/M=1. 370934 &10 (see. Ref. 22). Hence, e.g. , &4Rc=4.664 515 MHz.
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+ 2E,".Table VIII presents our results for the
E~,'~ due to 'P intermediate states for (d = 1 to +
= 10. 3 2 1 m ~cr K n=--a'v S +

4 r» r', 2r, 2r, r',

VII. 3D INTERMEDIATE-STATE CONTRIBUTIONS

The operators with nonvanishing matrix elements
between 'B and 'P states are the spin-symmetric
parts of the spin-dependent Breit operators, that
is, H~,'), 0,', and 0,' as presented in Sec. II. We

shall evaluate the perturbation on the 2'P, level by
'D, states so that we take

~ T~',~(r„r,)u, „(I,2),

O',"S'PT",~(r,) u, „(I,2) (D part)

(35)

as before. With

then the "D-part" of

+ T~f(r„r,)]u, „„(l,2) . (36)

We will expand the 'D intermediate states in two
ways. One way is to multiply the usual Hylleraas
expansion by the 'D, form T~22~(r„r2) The. other
way divides this tensor by r, r„so that we can
match the P expansions (Secs. II and V) term by
term and use integrals of the same order. The lat-
ter expansion has the feature that the lowest-order
term is no longer a 2P3d configuration, but with
the factor (r,r,) ' it seems to bettez reflect the
singularities in the 0,' than the former expansion.
Hence we develop the intermediate D states as

12 2 1

(34)

l+$5+tt~» CO

l, m, n=o

A note of explanation is in order here. It will be
noted that TP~(r„r,) is essentially a 'D Russell-
Saunders term with J = 2, m~ = 2 constructed from
the odd-parity configuration 2P3d. The operation
of the H,' on the 2'P basis functions produces
terms containing products of P-type spherical
tensors. These products can be decomposed by
methods of vector-coupling algebra" into compo-
nentswhicharepureS, P, and D respectively, and
it is the latter which we project out as the sole
contributor to our matrix elements. Proceeding
wit) 0&,'), we obtain t at the D part of

with

(37)

lmfl 2y eT 4~~ ~ (r r )2 E lmfl

'The integrals involved in deriving the required
matrix elements can be expressed in terms of the
A and B integrals in much the same way as is done
in Appendix B for the 'E case. One then finds, for
example,

TABLE VDI. ~P intermediate-state contributions.

g(i, i)2'

(n' Ry)

g(2. 2)

(4&' Hx)

&(~,~)2'

(2' &x)

10

-0.326 083 150 88
—0.331131174 24
—0.350 064 594 92
—0.365 313359 75
—0.374 772 120 85
—0.381096 250 54
-0.38$ 639 094 46
—0.388 981 850 16
—0.391536 114 08
-0.393 581 108 70

-0.184 644 064 08
-0.175888 934 60
—0.173445 981 92
-0.173 757 715 10
—0.173362 964 16
-0.173346 329 85
-0.173480 325 43
-0.173 572 695 78
—0.173644 366 53
-0.173 705 575 77

-0.244 726 520 49
—0.239 969803 09
-0.243 720 589 92
-0.247 748 058 84
—0.249 206 734 39
—0.250 114 866 10
-0.250 769 735 56
-0.251 163261 55
-0.251418244 26
-0.251606 646 81
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(V', „.~~B', "~N, j= ——,'„««'Z42 (B«(—L«2, M«4, N — ) —B (L+2, M+1, N+2)

+AB(L+ 22M'+ 32N')+ B (L+4, M'+ 221)lt —1)

—B,(L+ 2, M', ¹«2)— B(L+,4, M' 1, N'+ 2)),L+2

and similarly for H('& ~&d H,"&.
The action of H, on the D basis functions is given by

H 'm" ' 7,"'(r„F2)= ™' T("(r—„r,) ——(t('o'' t(') +—[—,'t(o(2m+ 4+ l) —2] + —[—,'t((2n+ 2+ l) —2]
1

1 2 1 2 1

1 1 1 1 1
2, - —(m —1)(m+ i+4) —,— (n——1)(n+ 2+ l)+

2 12

1 1 1 r2 1—l(2l+ m+ n+ 6)+ 2' —t(o'l+ —,'——t(l
+12 4

(39)

—««1-- . ', —«l«, ', )(«« —1)+—, , —1(« —1))r,r'„4 r,r'„4 r',r'„2 r „'r'„2
itimn(12 2) (2&l~ 2- ~r '12

The matrix elements of unity and H, can then be
expressed as

(40)

(P, .;.~~1 ~~)«l .) = —
(4 2

B,(L+4, M+ 2, N+()««(. (L«4M'+2N'«2)+
4 B.(4+ 4, M'+1 N'+1)) (41)

and a similar sum of 42 terms for

(~ t «mI«Hn«o
I limn) ~

Having computed the matrix elements for P = 1,
those for P = 2 follow with little extra effort. For
the transition matrix elements of the H, " for
P = 2, we simply raise by one the second and third
indices in each A and B integral occurring in the
corresponding expression for P= 1. These in-
dices are each increased by two in going from tl..e

P = 1 to the P = 2 matrix elements of unity. Fi-
nally, we get the new H, matrix elements from
the old by raising each of the last two indices in
every A or B integral by two and by replacing the
multiplicative factors m and n by rn+ 1 and n+1,
r espectively.

The perturbation equation to be solved now is
quite similar in form to that for the 'P case.
Tables IX and X give the second-order energies
for P= 2 (undivided basis) and P= 1, respectively.
The convergence of the E2'~' as a function of v
is clearly better for P = 1 than for P = 2, although
the total shift of the 2'P, level, given by E(l. (19),
does in fact have a reasonable convergence for
P = 2, not inconsistent with that for P = 1. We use
the P = 1 results for subsequent calculations.
There is also a perturbation of the O'P, level due
to D 1 intermediate states, but this can be ex-

tracted simply from the J= 2 result by Racah al-
gebra. " The shift of the J= 1 level is found to be

(B ) 5 (B(l,1) E(2, 2) 9B(3,3) 2B(l 2)
2Iel=l 9 ~ 2 2 2 2

6B (1,3& 6E(2 3))
2

from which the corrections to the values of the
larger and smaller fine-structure intervals can be
readily obtained.

VIII. ~ D INTERMEDIATE-STATE CONTRIBUTIONS

The operators with nonvanishing matrix elements
between 'D and 'P states are precisely the opera-
tors Hi(1) a d Hl(2) encountered ln the 1P case. Since
J must be 2 for 'D states, we again use for the
unperturbed basis wave function Ut„„('P„m~ = 2)
and as in the 'D case we use 'D expansions of both
"divided" and "undivided" types:

l+m+n «cu" ('2)Dm~=2)= Q Zt('&„W, „(LD„m~=2),
l, m, A=0

(43)
where

&8„„('D„m,= 2)

1+p z(()&(T(2)(p ) (T(t)(f ) T«(1)(p ))(t)](2)
4m

xit„„„(122)(3.,y;)3 '.
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TABLE IX. D intermediate-state contributions using the no division basis (P=2).

1
2
3
4
5
6
7
8
9

10

1
2
3

5

7
8
9

10

10'S2

(+ tx Ry)

-1.366 652 850 12
—0.710 762 004 31
—0.593 612 876 S9
—. 0.549 860 060 48
—0.533 246 090 44
—0.533 176 246 63

0.543482 65129
-0.554 509 427 42
-0.565 547 781 04
—0.575443 433 35

]p 2@ie2)

(-u Ry)

0.269 421 855 46
0.231 932 935 78
0.221 376 481 83
0.213445 71543
0.206 611671 24
0.203 529 015 71
0.202 560 OV2 80
0.202 243 379 10
0.202 215 966 45
0.202266 76500

10K(2,2)
2

(g &4 Ry)

-0.110522 054 62
-0.134681 778 27
—0.156 527 657 11
-0.174 044 176 04
-0.186 928 588 73
-0.196 770 450 60
-0.204 398 822 43
-0.210 423 708 V3
—0.215 261 317 57
—0.219201 295 09

yp 4@1,2)

(
3 GI4 Hy)

0.954 201 753 99
0.976 235 932 99
0.935950 772 89
0.899296 009 79
0.865411361 94
0.851745 2 79 35
0.848 837 570 39
0.850 041 334 59
0.852 603 275 54
0.855 311786 00

) p4gP, 3)

(304 8 )

-0.196 787 902 47
—0,292 213695 55
—0.389078 840 77
—0.473 872 926 60
-0.543 953 979 09
—0.603 675 247 72
—0.654 697 179 54
-0.698473 932 14
—0.736 216 766 51
—0,768 927272 06

) p2@2,2)

(-', ' Ry)

-0.045682 986 246
-0.060 560 051 902
—0.074 518 644 393
-0.085 877 848 210
-0.094484 107 572
-0.101234 385 10
-0.106 541238 68
-0.110743 057 70
-0.114097 395 21
—0.116 797 502 33

TABLE X. D intermediate-state contributions using the division basis (P=1).

1
2
3

5
6
7
8
9

10

1
2
3
4
5
6
7
8
9

10

) p2g(1, 1)

(3~4 R )

—2.932459 627 1
—1.345 970 458 8
-0.986 885 949 59
-0.813439 775 92
—0.727 979 098 18
—0.686 479 010 55
-0.671 969 372 27
-0.665 567 140 27
—0.663 931617 18
-0.663 847 11110

yp2@(1 2)

(-,
' 0" Ry)

0.328 098 345 95
0.277 155 059 77
0.244 649 667 46
0.225 869 891 97
0.212 961405 8$
0.206 789 602 02
0.204 177 659 42
0.202 981606 39
0.202 482 686 92
0.202 286 397 95

) pE(2, 2)

(73&4 Ry)

-0.161613 978 18
—0.193 730 64196
-0.206 983 16125
-0.216 153 18919
—0.221 527 84103
—0.225 483 19354
-0.228 491 90157
—0.230 8V 7 940 84
-0.232 81573150
—0.234 416 689 75

ip4@(1~ 2)

(
3 (z4 Hy)

1.255 716 596 9
1.213 629 750 8
1.067 712 3413
0.978 883 206 01
0.916 156 610 90
0.887 18384125
0.874 988 242 93
0.870 086 70102
0.868.347 560 64
0.867 918336 44

y p4g(& I 2}

(~3n4 Ry)

—0.340 106 18553
—0.509 95138340
-0.617 724 847 50
—0.691679 313 57
-0.742 831054 85
-0.784 198 58346
—0.818 640 72167
—0.847- 861 920 90
—0.872 896 59104
-0.894 471 17905

Zp2Z('N

(3 n4 Hy)

—0.072 429 385476
—G.0S5 083 262 108 2
-0.106 43738444
-0 113632 335 S6
-0.117817805 23
—0.120 779 02440
-0.122 938 547 64
—0.124 566401 58
—0.125 822424 65
—0.126 809404 34
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TABLE XI. D intermediate-state contribution using the no division basis (P = 2).

1
2
3
4
5

7
8
9

10

ip3E(1~ ()
2

(ct! Ry)

—1.403 836 880 8
-0.773 893 759 10
-0.660 992 609 49
—0.616474 229 94
-0.596 877 872 93

,-0.595 291 903 61
—0.604 953 98123
—0.615 759 058 98
—0.626 743 46D 61
-Q.636 639 608 9D

ip2@(2.s

(~ &y)

-0.152 5&4 006 96
-0.185461040 19
—0.215 273 127 77
—0.236 402 896 29
-0.250 532 046 75
—0.260 261634 00
—0.267 086 203 57
-0.271 960 31085
-0.275 500 274 25
—0.278 11261105

i()3E(),2)

(-: &' ~y)

-1.054 390 9'40 5
-0.959 573 356 37

- —0.945 321893 35
-0.931279 989 99
-0.915204 68143
—0.911221 516 74
—0.913 556 440 59
-0.917023 005 68
-0.920 506 816 78
—0.923 460456 18

Now the L = 2 components arising from the action
of the H,"' are found to be

H)")S)("T,")(r,)u,„„(l,2} (D part)

= —a'Z~S") +
1 $ 1 1

y y

x{T(»(r ) {T(')(r ) T(')(r )p')}(2)u „(l,2),
(45)

H,"'T(')(r, )S(')u,„„(l,2) (D part)

1~2'�(o){T(1)(r) {T(1)(r) T(1)(r ))(1))(2)

1 m a'a' nx, , — +, — u, „(l 2).
12 1 1 2 2

These results pear a close similarity to the cor-
responding 'D quantities and in fact the matrix
elements (W, ,„,„,~H()" ~U, g differ from the
(V,,„,„,~HI"

~
U,~„) only by a scale factor and a few

sign changes between the A and 8 integrals. Like-

wise~ the overlap integral for the 'D basis functions
is found easily from the 'D inner product by re-
versing the signs of the exchange integrals therein.

Moreover, it should be evident that the action
of H, on the (unsymmetrized} W',„„is the same as
that computed for H, on VI„„(unsymmetrized) in
the 'D case, with V', „simply replaced by W',„„.
Then the matrix element of II, between 'D basis
functions is readily obtained from that between
'D basis functions by merely changing the signs
of the exchange integrals A„S,appearing in the
latter.

Using these matrix elements, we may proceed
as before to determine the coefficients in the ex-
pansions for. ())~(

' and from this the second-order
energies. The results are displayed in Tables XI
and XII for p = 2 and p = 1, respectively. The con-
vergence as a function of ~ for both cases is quali-
tatively the same as that observed in the case of
the 'D intermediate states previously encountered.
As in the 'P calculation, only the J= L level is
shifted with the same expression arising for
(E,)~, in the 'D case as for (E,)~., in the 'I) case.

TABLE XO. 'D intermediate-state contributions using the division basis (p=-1}„

1P3g {igi)
2

(0!4 Q,y)

ip2@(2,2)

(c &y)

103&(i,g
2

I'z 0.4 H,y)

2

6
7
8
9

10

-2.985471476 1
—1.435 111804 2
-1.073 798 7115
-0.892 419 317 88
-0.798 649 580 10
—0.752 526 373 15
—0.735613 93183
—0.728 017 31193
—0.725 784 609 47
-0.725 394 681 83

-0.204 848 944 48
—0.244 466 23144
—0.263 59964530
-0-.274 064 21114

. —Q.279 060 16511
—0 28191377777
-0.283 645 323 33
—0.284 765 35740
—0.285 517 258 34
-0.286 038 366 24

-1.265 533625 1
—1.162 245 9123
—1.079 803 585 8
-1.021 823 284 8
-0.974 308 838 76
—0.950 688 212 22
-0.940 455 886 35
—0.935 81148938
—0.933 929 325 18
-0.933 245496 58
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Thus, only the smaller interval is shifted in value
by 'D intermediate states in second-order pertur-
bation theory.

IX. 3F INTERMEDIATE-STATE CONTRIBUTIONS

The only operator with nonvanishing matrix ele-
ments between 'E and 'I' states is the spin-spin
operator Hy Since the only transitions conserv-
ing J are those for which J= 2, we take

U, „('P„m~ = 2) as before, and we have one
perturbation wave function to consider, which
we write as

l+m+n ~ cv

g"&('F„m, = 2) = g S&'„&„W,„„('F„m, = 2).

(4 I)
The form of W is suggested by the operation of

H,"' on U and is discussed by Schwartz, "

H,&3&S,&) &TI)&(r,)u,„„(1,2) (F part)

'Q
5 'Sy +y 2

'SQ X2 +
7

~ ] X3 +f ~P 2
y

48

where

+ f(T())(r ) T())(r )) &2& T&))(r )) (&&

2((T&»(z, ), T&»(z )) &», T&»(r )) &'&. (49)

Hence we choose W to be

W, „('F2,m~=2)

(50)

where

determined, nor are they to be regarded as vari-
ational parameters to be optimized. Under the
circumstances, it seems reasonable to take &= 1,
f = -2 as dictated by the operation of H&3) on the
2'P basis functions, but we have also carried out
the calculations with P = 0, $ = -1 for the sake of
comparison. In point of fact, we should take (&) =0
or ( = 0 in W, „and treat $(Q) as $(„„($)„), so that
we have in effect twice as many coefficients to
solve for in the perturbation equation as were re-
quired for the other intermediate states for a given

However, this has been done and the results are
very little different from those obtained with the
choice Q = 1, $ = —2, so we proceed along these
latter lines.

Using the general results derived in Appendix B,
we find, e.g. , that the matrix element of the spin-
spin operator between 'I' and 'I ba is functions is

X(3 =QT(z'( «r ) T&"(
«r ))&2& T( )( «r ))( TABLE XHI. ~E intermediate-state contributions.

+ pgT&z)( r ) T&z&( r ))&2) T&z&( r ))(3&

t ((T(1)(«r ) T(1)( r ))(2) T(1)( «z' ))(3)

1(Pg(3 ~ 3)

{~4Q4 H,y)
(=-1 y=0

and &0 and $ will be specified later. Looking at
X&", we discover that it represents a state of total
orbital angular momentum 3 constructed via .L-S
coupling from 2p3d and 1s4f two-electron configu-
rations. As such it is an odd-parity object, as it
must be to allow for nonvanishing transitions be-
tween states of different I, and/or S, but with the
same J. The bracketed part of the expression for
S', „ is then the coupling of I.=3 with S=l to obtain
a state with total angular momentum J=2 and m~
=2.

Now the coefficients Q and & are not a priori
10

-0.361896 39177

—0.476 978 787 43

—0.599653496 82

-0.709 721 107 72

—0.806 442 398 61

—0.896 801694 69

—0.980 671259 19
—1.054 046 884 02

-1,119629 619 74

—1.180 021967 67

-0.475 315370 46

—0.616 478 673 58

—0.763 222 246 44

—0 89165989091
-0.998 155 696 34

-1.086 719064 58

—1.160 541467 26

—1.222 426 58.7 93

—1.274 655458 81
—1.319083 158 05
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7 2/2 2
3A~(L —3,M + 8,X+ 2) —6B„(L—3,M + 7,N+ 3)

5 105

+ 3(1+ 4 )(A (L —3,M + 6, N + 4) + — B (L —1,M + 5, N + 5})
3

d

+(5 —24) 38,(I—S,M+, 5,N+5)+ (A, (L —1,M+4, N+4)1
d

+ B~(L+ 1,M+ 3, N+ 3)
3

—25(SA~(L —3,M+6, N+4)+ B~(L —1,M+5, N+3) ——B~(L — , 3MV+3N})+,
2 3

L —3 ~ ' ' 2-"

+'4 SA (L —S,M+4, N+6)+
3 B (L —1,M+S, N+5))

2
3

- 3 B,(L —3,M'+ 5, N'+ 5)+ B,(L —3,M'+ 3,N'+ '7) —2A, (L —3,M'+ 4,¹+6)1, , 15

—SB(I—I,M '+ 3,,¹ .+ 5 ))

5 (3A,(L —3,M'+ 6,¹+4)+ 3A,(I—3,M'+4, N'+, 6)

+ 3[SB,(l -1,M'+5, N'+3)+SB,(I—1,M'+3, ¹+5,)])

+2y 3g, L-3,m'+6, X'+4 ——a, L —3,m'+ V, Z'+3

+
3 B (L -1,M'+ 5, N'+3))

2

—(T —:2(}SB(I—3,M'+5,¹,+.5)+ (A,(L —1,M'+4, N'+4)

3+I IB(lrI,M'r3, ¹+3))

Turning our attention next to the effect of Ho on the 'E basis functions, we may write

N X„''r, „(1,2)=r,„„(12)(err'rPr&4[d,,{{T"'(r), T& &(2}}&&, T&"(r )}'„''

(52)

{(~& &( Pi), ~&2 &( p )j&B&, ~&2)( P ))&5&.&{'((~&2&(r ) ~&2&( ~,))&2& Zr&i&(P )}&3&]

{{I()( r ) I t )( I )}1 ) I ( )( 5 )}( ))
12

(53)
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TABLE XIV. Final extrapolations for second-order contributions to 2 P helium fine structure from intermediate
state symmetries other than 3P.

Intermediate
state Extrapolated quantities ~

(&2)~

(&' Hy)
(E2)2

(a4 H,y)

4 vog

(MHz)
Vj2

(MHz)

fP (E2) g

(E2)&, (Eg2

E2 ~ ' = —0.000 725 26(5)

= —0.000 932 79(5)

@0' = —o oo2s7so(22&

E" "=-0.0017(3)

—0.704 08 (198)

—0.002 855(84) —0.008 04(19)

—0.002 378 (1)

—0.004 8(8)

6.568(18)

0.027(1)

-6.568(18)

0.048(2)

0.022 18(1)

0.045(8)

' Expressions for (E2)z for given symmetries are given in the text.
Units of the various g'~i are as displayed in Tables XI-XIII.

where the variables indexed by the subscript "i"
are defined in the following tabulation:

S ~

1 -1. 0 0

0 -1

d, , ( j=1,2, 3)

—,'~o[2(m —j)+ J+ 10]—2

—,'~[2(n+ j)+ l] —2

0 -2
5 0 0

6 0 0

0 ,'m(m-+-f+ 9 —2j)

0 —2n(n+ I+ 2j —1)

—2 —~l(2l+ m+ n+ 8)+ fd,'

0 -8z'(v'+ 1)

0

8 1

9 0

10 -2
11 2

12 -1
13 2

0 -1
0 -2
1 —2

2 —2

-2 -2 —'nl

2 -2 --'vol
1-2 —4rcl

For i = 5, d,' is given by

d,'= f, d,'= (3+ 2g)/$, d,'= 2)/P. (54)

Each matrix element (W, „,iH, i
W,„„)can then be

expressed as the sum of 478 terms. As a bypro-
duct of this calculation, the inner product of the 'p'
basis functions is extracted as a linear combina-
tion of 27 A and B integrals.

There is now one equation to be solved for the
perturbation wave function and one energy E2' "
to be derived from this wave function. Table XIII
indicates the results for E,"'"for two choices of
the pair of parameters $ and P. Although the re-
sults in column 2 of that table are uniformly lower
than those in column 1 for a given ur, the conver-

gence rates are comparable and, in fact, the ex-
trapolated value from the latter column is lower
than that from the former. There being no com-
pelling argument in favor of the choice $=-1,
/=0, we will use the results for $= —2, /=1 to
calculate the 'p second-order contributions in the
next section.

X. RESULTS

TABLE XV. The second-order contributions to the

fine structure of 2 P helium. (D and ~ intermediate
states do not contribute to t pi, )

In ter mediate
state

Vpg

(MHz)

Interval
Pgg

(MHz)

SP

3D

iD

3E

5.062+ 0.038
6.568+ 0.018
0.027 + 0.001

—0.413+ 0.079
—6.568 + 0.018

0.048 + 0.002
0.022 18 + 0.000 01
0.045 + 0.008

Total 11.657+ 0.042 —6.866 + 0.081

As in Sec. V, the second-order energies are ex-
trapolated according to two types of convergence
and a weighted average is obtained. For the 'D and
'P cases it is advantageous to extrapolate the ex-
pressions for the total level shifts rather than to
extrapolate individual F. ," and then sum them.
This gives results that are consistent with those
that would be obtained by the latter method, and in
addition avoids minor irregularities inherent in
those results. For the same reason we choose to
extrapolate the E(,"~ individually and then sum
them in the case of 'D intermediate states. When
this is done, the 'D contribution is found to be re-
markably accurate for the case of the divided basis
functions. The 'F energies exhibit a slow exponen-
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tial decrease with + that makes inferior any at-
ternpt to fit the behavior of the E2" to an inverse
power law. Thus the extrapolated E," is ob-
t'ained directly by the first of these two methods.

%e show in Table XIV the extrapolated second-
order level shifts (E,)z (J'=-1, 2) and the resulting
contributions to vpy and v» for 'P, 'I", and "D
(divided basis) intermediate-state symmetries.
[This involves a conversion from o.'A to MHz

which uses a ' = 137.035 987(29)" and 8
= 109737.3143 cm ' (0.009ppm). "] It is to be noted
that the 'P contribution is almost 40%%uo larger than

the shift calculated by Pekeris et al."due to the ef-
fect of the 2'P, state alone. That the 'P contribu-
tion is much larger than that from 'D is plausible
in view of the fact that the intermediate states
making the greatest contribution in each case are
2'P, and 3(2p3d)'D. The energy of the former
state is -2.123 a.u. while that of the latter is
-0.559 a.u. ,

"so the energy denominator in the ex-
pression for the second-order energy perturbation
is smaller and the contribution larger for 2'P than
for 3'D. Furthermore, 3(2p3d)'D is less than l%%uo

lower in energy than 3'D, and their respective
contributions are not very different. The correc-
tion to v» due to 'I" states seems to us to be some-
what high, but again the greater closeness of the
2'P level in helium to O'E as compared to
3(2P3d) "D is reflected in a larger value for the
'I' correction than for either the 'D or the E2"
component of the 'D correction.

Combining the calculations involving the five in-
termediate state symmetries to obtain the final
respective contributions to the intervals vp] and

v», we get the results shown in Table XV. These
second-order results can then be incorporated
with the other theoretical contributions referred
to earlier in this paper to yield the total theoret-
ical values fox the splittings v„and v» through
order a'rnc', as shown in Table XVI. It is seen
that the agreement between theory and experiment
is quite good in the case of the larger interval vpy,

and certainly much better than in the v» case. One
reason for this last fact is that the v» splitting de-
pends more strongly and more predominantly than

vp j on the most uncertain energies, E 2 and

E,", from the P states. Even if the second-or-
der calculation for u» were to be greatly im-
proved, it is highly unlikely that an output value of
a could be derived to an accuracy of better than 2

ppm by c~.mparison of the theoretical to the exper-
imental v».

However, if this is done for the larger interval
vp ] Q can be determined to an accuracy of 0.94
ppm. We obtain the results n '= 137.03608(13),
which is in good agreement with other determina-
tions'"'" ~' of o. ' (see Fig. 1). It should be re-
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I vALuES

: Hydrogen fine structure

—: Hydrogen hyperfine structure

:= .' Muonium hyperfine structure

= —:Helium fine structure

Electron anomalous 9-value

PIG. 1. Various deter-
minations of the fine-
structure constant e (in-
cluding this calculation) .

a e c Josephson; y

: Recommended value- l969

=:Recommended value -l972

:=:Recommended value - l97$

I

0.004
l l t i i i i t i i I l i i i I

Q.O05 0.006 Q.007 0.008
l57.0500 +

marked that contributions of order u'mc' may af-
fect the output cy at the fraction of a ppm level, so
these contributions should be at least estimated in
the near future. We are planning further improve-
ments on the above findings by including terms
with, e.g. , (r, +r,)' ' or 1 g(ox, +r,) in the expan-
sions of the 'I' and 'P wave functions. This should
enable us to improve the precision of our n deter-
mination toward the 0.5 ppm level or so.

ACKNOWLEDGMENTS

We would like to thank Professor Vernon Hughes
for his enduring support and encouragement for
our project, and Lars Hambro for the use of his
computer programs at the outset of this undertak-
ing. In addition, we are grateful to Professor
Stanley Brodsky and Professor Sidney Drell for
their hospitality while one of us (M.L.) visited the
Stanford Linear Accelerator Center and used the
IBM 370/168 computer there.

B(L M N) = ' «~ ~~2y

8-2 L-2
COS~y2 ~ (A2)

There are two types of A and 8 integrals.
A~(L, M, N) and B~(L,M, N) are the direct integrals
for a=kg, b =z. A, (L,M, N) and B,(L,M, N) are the
exchange integrals for a=b =~z(1+ v). The com-
puter calculates these integrals by the use of re-
cursion relations:

A (I., M, N) = A (L —2, M + 2, N) + A (I. —2, M, N+ 2)

—2B(L, —2, M+1, N+1) (A3)

B(I., M, N)= [B(L —2, M+2, N)
I —2

I +2

+B(I, -2, M, N+ 2)

—2A (L —2, M+ 1,N+ 1)] . (A4)

These relations may be obtained with
APPENDIX A

Many integrals' are needed to calculate the ma-
trix elements of the H~,'~ and II0. The D:ajor inte-
grals are

'P
~2

= x~+ 9'2 —2'Y~'F2 cos8~2

t

�4&,
d&&,

Sin 6 ~27'~g

(A5)

A (L M N% 1 . 2 «y -&2 N--2 &-2 1 -2g= „„88
4g 4w

I

(Al)
d0, dQ yL+ 2

—' cos8 " . (A6)1+2 &~ 4m
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If we define

S&M, see, p)= f ere-"'re I-'see-'s
0 r

(A7)

and

F/, /((M, N) =F/, (M, N; «g, «),

F//3(M, N}=F1,(M, N; «s «g),

E/, g (M, N) = Fi (M, N; 5, 5) .
(A20)

then we may show

MfNt
A(2sMsN) =

a (A8)

B(2,M, N) =0, (A9)

A (1,M, N) = F(M + 1,N; a, b) + E(N+ 1,M; b, a),
(A10)

B (1,M, N) = —,[F(M + 2, N —1;a, b)

The FI integrals may be written as sums of pro-
ducts of various functions. '

For the A and B integrals with M = 0, N & 1 and
M~ 1, N=O when I. & 1 we need F(M, N; (2, p) for
N=O and N=-1.

(M N ——1)! PM N(2 -P)=
( ))(

' ——F(M N+1;a

(A21)

+E(Ã+ 2, M —1;b, a)] .
The E integrals are calculated using

(A11) Equation (A21) can be obtained by partial integra-
tion. The F(M, O; a, P) is evaluated by truncating
an infinite series expansion:

F(M, 1;~,P)=—1 (M —1)!
(A12)

F(Ms 0!»p) = (M —1)! "
1

c(+ ", , M+@ n+P (A22)

(M+ N —2)!F(M»1» P) =
~ )u. ~-1p(c(+

+ E(M, N —1; o(, P) . (A13)
N —1

The recursion relations above are valid for A in-
tegrals for I & 1,M& 1,N& 1 and for 8 integrals
with I & 1,M & 2, N& 2.

The lowest-order term in the expansion

1 x +y'
y 2- 1 2 + ~ ~ ~

2r, r, !r, r2(- (A14)

B,(0, M, N) = g [E1c(M+ 1,N —1) + El,c (M —1,N+ 1)

+ E1,c (N + 1, M —1)+ F~c (N —1,M + 1)]

—2 [E(M, N; 5, 5) + F(N, M; 5, 5)],
(A18)

appears in the A. and 8 integrals when I.=0. Thus

A3(0, M, N) = 2 [E1/((M, N) + F/ s(N, M)], (A15)

A, (0, M, N)=2 [F1c(M,N)+Etc(N, M)], (A16)

B„(0,M, N) = 3 [F1,„(M+ 1,N —1)+ F//& (M —1,N+ 1)

+ F1 (& (N+ 1,M —1)+ F13 (N —1,M + 1)]

——, (F(M, N; «g, (&) + E(N, M, ((, (& g )],
APPEND]X 8

The integrals which arise in the evaluation of
matrix elements in the case of 'F intermediate
states are of the form

/ k'('s/'ek
(f"(d~2 r~rvP e-ar, -kr,
(4 )2 1 2 12

&((3,q, uf„")*(3',q, a ] &„&

F(M, -1;a, P) is then obtained by application of
(A21), for M~ 2.

The 8 integrals with L =0, M=1, ¹ 1 and L
= 0, M~ 1,N= 1 require the calculation of F1,(M, 0;
a, P) and E~(O, N; a, P) where M, ¹ 2. The E~(0,
N; a., P) can be written as an infinite series of pro-
ducts much like the usual I"z, integrals, and can be
truncated after 200-300 terms to yield values ac-
curate to 30 decimal places or more, at least for
those values of N of interest to us (N ~35). The
E~(M, 0; n, P) are written as integrals oyer the in-
terval from 0 to ~ by a change of variables in the
original integration between 0 and 1. By truncating
the integrals at X = 70 and numerically integrating
by Gaussian quadrature between X = 0 and X = 70
results are obtained that are good to 30 decimal
places for M ~35.

where 5 = —2'(&(1+ g). The F1, integrals are
where

jb](3&((rZ&1)(r)rZ&1)(r)j(2)rZ(1)(r)](3)
F,(M, ¹ (3, P) = dr e-""r"-'

0

S+g
x ps'-~s" 'ln

r s-r
(A19)

and i,j,k, i', j', k' can each assume the values 1
or 2. Now, if i=&, e.g. , then

(2)1/2(T(2) (r ) rfs(1) (r )] (3&



MICHAEL L. LE%IS AND PAUL H. SEH, AFINO

which derives from the relation

(I'»1& y'»3&}»)&+1&= [(y+ 1)/(2/+ 1)j1/2T»3+1&

If, in addition, i =j, then another application of

this relation yields

(
. . ~}(3 & (2/5)1/2 Z» 3 & (r )

Therefore, we have

(2,j,u}„"'=-(2/3)' '((4x/5)"'~; r(2'(8„y»), (4v/3)"2~, y"'(8 y )}"'

j /2}(3&(2/5)1 /2(4&&/7)1 / 2(4&»)l/223/'(3&(8$)y'(0&(8$)

=4»(2/35)'/'21 Il, =3, l, =O, I.=s, m =M&, i=&=j= 1, e.g.

(BSa)

As a result, I, ». » /. 3, (l», , v, X) isproportionalto and is described in the work of Sack." Further-
more, we may write, following Judd, "

x &l„l„S,M IH, Il,', l'„s,m& .

Now r» can be expanded as

(B4)
P,(cos8„)=

1 Q 1""*(8„(t),)F(»& (8„(t),)
+ m

C(l) . C(l)
1 2

r"„=g R„,(2 „r,)P,(cos8»),
l=0

where R1(»„&r )2involves hypergeometric functions

using the spher ical- harmonic addition theor em
and the definition of the scalar product of tensor
operators. The subscripts 1 and 2 refer to elec-
trons 1 and 2, respectively. Thus for the angular
integration. we get successively

l2 3 I I2». Ill ll 3 le& = + R1» &11 l.» if
I

&'"1 ~
l-"0

gI )I(-1)'1'2" ' ' &l, II C ' "
ll 1,'& & 1211 C ' "

ll12&
l=0 l, l, l

= (-1)""Q R„»[(21,+ l)(2l,' + l)(2l, + l)(2l,' + 1)j

(BV)

In the above, the object enclosed by braces is a
6-j symbol, while those within parentheses are
3-j symbols. The reduced (double-bar) matrix
elements of C'" indicate the use of the %igner-
Eckart theorem in this derivation. '

Since a 3-j symbol like
dQ, dQ, , -2 dQ, dQ,

(4&&)2 12 12
&) + 2 (4»»)2

rx +2

cos
gynicrlr2

(B9a)

Finally, through use of such identities as

&0 oat
vanishes unless (l, +l+l,') is even and l„ l, and

E,' satisfy a triangular condition, only a few terms
will remain. in the infinite sum above. We may then.

apply the relation

dQ, dQ' ., ' r» sin 8» cos8»
4v)2 12

-2 dQ, dQ

X+ 2 (4&/)2 2,r2

Q, dQ, r"„P(»cso8„) = (4&»)'R»/(21 + 1) (B8)

r2
X 1 + CosO&2, BobX+4 " r,r,

to the final expression above to recast the angular
matrix element in (B4} in the form

obtained by performing partial integrations, we
may expl ess I» / 3, »y /y 3g ($»~ v& X) solely in terms
of the A and B integrals described in Appendix A.
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The integrals I, & ~. , &, „, are invariant under permutations of the i,j,k among themselves and/
or the i', j', 0' among themselves, leaving only six integrals to be actually computed. As an example,
let us calculate I, .. ., ,(il, v, X). The angular matrix element appearing in (84) is then

os s t'3I 0'I'

osf &oooi

=mls(-')(~17 )'=-' I~) 4

d,Ql dQ2
rl2 PB(cos882) .

(4wj

The constant of proportionality in (84) is a product of the numerical factors appearing in (82b) and/or (Bsb)
multiplying 4v. In this example, it is the s(luare of the factor in (Bsb), namely». So we have

(Blo)

I„„,,...,.(u, v, &) = 2
y, I +2+m2y3y3e-a tl-bt2 dQ, dQ

rl2 cosel2 (1 ——sill 882)

dVldV2 ~+3 w 3 "at -br
(4)T)' ' ' " " X+ 2 r r (X+ 2)(A. + 4) r' r'

l 2 ~~+3~w 3 e "atl-br2 COSe +—

2 5 15B(5+ 8, 8+ 5, v+ 5) + — v( (8+ 4, 8 v 4, v+ 4) + B(5 + 5, 8+ 5, v+ 5)) .

(811)
To conclude, we enumerate here the remaining five cases:

1414 14

leis l4

...(p, , v, X) =—' A(X+2, g+8, v+2),

...(il, v, &) = —' B(X+2, p, + 7, v+ 3),
2 3...(V, v, 8)= B(X+8, 8+8, v+4)+ -B(1+4,8+5, v+8))

(812)

(als)

2 2I, . (V, v, h)= B(l v8, )v+5, vv4)v- B(4,8 45+, v 8v))+ (a15)

2 1I, 8. ..2(p, , X) = B(%+2, ii+5, v+5)+ —. ---, A(A+4, ii+4, v+4)+ . B(A+6, p+3, v+3)
3(A. + 2) 1+2 X+4) 4

(a16)

Note added in Proof. In the previous work by
Lewis and Serafino all the second-order contrjbu-
tions to the 2'P helium fine structure have been
calculated in order to complete the theoretical
evaluation of the fine-structure splitting through
order a nze2. In such a way separate theoretical
results have been obtained for the larger and
smaller intervals vpl and v», respectively, with

the determination of the former being accurate to
1.4 opm. This in turn allows the fine structure
constant n to be determined to an accuracy of
0.94 ppm by comparing theory to experiment.

It is our aim here to complete these calculations
5y including the corresponding results for the in-
terval pp2 between the highest- and lowest-lying
levels of the 2'P state. Using the equation

2 7 7E(i, g) 42 E(l,3)+@(2,3) +99@(3,3) 6 @(~,y)
2 2 2 + 2~l -"1 =4

for the second-order contribution to vp2 together
with the values of the E2"~) from the previous
work, we find that ~v4~ =4.649(l].5) MHz from in-
termediate 'P states alone, while the total second-
order contribution is 4.791(115)MHz. The other
theoretical contribution to v» can be taken over
quite readily from the corresponding results for

ppl and v» by addition. Combining all these con-
tributions, we obtain the net result through order
Q mc

v04 = Sl 908.187(116) MHz

which determination is thus accurate to 3.6 ppm.
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