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Energy and yolarizability of atoms in a weak magnetic field: H3 drogenic atoms
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The ground-state wave function of a hydrogenic atom is approximated by Qs(H) = exp{ —[k(x '+ y
'

+ sz )"]"r j, and the expectation value of the Hamiltoman, including diamagnetic and spin-orbit terms in a
magnetic field H„ is minimized with respect to k, s, and p so as to determine these H, -dependent
parameters, and the energy is evaluated. In the presence of an infinitesimal electric field $„ in the t
direction, the wave function is taken to be Q&&(H)(1 y bt + cpt), where p = (x '+ y '+ sz ')'". The energy
is minimized with respect to b and c, and the coefficient of 8, is identified as —(1/2)a„ the polarizability
component, which contains diamagnetic and weakly spin-dependent terms. Comparison with experiments of
Castner and Lee on donors in Si is briefly discussed.

I. INTRODUCTION

Increasing the concentration of donor impurities
(Nn} in Si leads to a semiconductor-metal transi-
ti.on at X~- 10"donors per cm'. Castner et ul. '
measured the low-frequency dielectric constant
in these samples on the low-N~ side of the transi-
tion, 'and observed onset of a "dielectric catastro-
phe" attributed to the large polarizability a of
these spatially extended donors. This observation
led them to perform low-frequency magneto-capaci-
tance measurements at low temperatures in low-
%~ samples, in analogy to magneto-resistance
studies on the high-N~ side, which they have in-
terpreted as indicating a reduction in rx(H) of weak-
ly interacting donors by a static magnetic field. '

A great deal of theoretical work has been done on
the energies of atoms and donor impurities' in the
effective-mass approximation (EMA) in the pres-
ence of a magnetic field. Much of this work in
recent years has dealt with the high-field regime,
i.e., where the magnetic energy is large compared
with the Coulomb energy, and where transport
properties are strongly affected by the field. Very
little theory exists for optical properties such as
dipole matrix elements, oscillator strengths,
etc.4; surprisingly, a calculation of the magnetic
field dependence of n even for the hydrogen atom
does not seem to have been reported for weak field.

Section II contains a calculation of the ground-
, state energy and polarizability for a hydrogenic

impurity atom in the EMA by means of variational
methods. In the weak-field limit the calculation
is done analytically; it is extended approximately

by numerical methods into the intermediate-field
regime. A bri|.f discussion is given in Sec. III.

gc(H, ) = exp —[k(x'+y'+sz')' s]' s, (2)

where k=—1+~, p-=1+A., s=—1-o are expected to be
close to unity and dependent on 8,. Calculating the
expectation value of Ho and normalizing, we obtain

II. THE HYDROGENIC ATOM

An approximate Hamiltonian' far the ground-
state hydrogenic impurity in a constant magnetic
fieM H, can be expressed in the EMA as

H =- V+--—Q+y)+g . (
-e''

» 2 h» x+y'
2&a* r 4 r3

Here c is the dielectric constant, ae—= aSs/m*ez,
m* is the scalar effective mass, k'=- ca~'H, /m*c',
and 8 = )JsH,/m*c, where p, s is the Bohr magne-
ton, eS/2mc. The intermediate-field regime is
that for which h = 1. The third term, the diamag-
netic energy, tends to compress the wave function.
The last term arises from the spin-orbit interac-
tion; it would couple the ground stage to excited s
and d states in perturbation theory, and gives rise
to a spin-dependent polarizability. Its effect is
expected to be small. Other spin-dependent terms
are decoupled from the spatial part of the wave
function and are ignored.

We expect the size, shape, and "hardness" of
the wave function to be modified by H„ i.e., it be-
comes compressed, relatively elongated, and ap-
proaches a Gaussian for large H„and accordingly
we choose a trial wave function of the form

ez (k2~}s r(p) 2+s, spr(2p) s t~z . „, l-s '~' 2k'pr(5p) pr(2p)
2&a* 4pI" (3p) k2a 3 (k2~) l —s s 3(k2~)' 3(k2~)'

(3)
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where

i( s
)
's'Im-s, (1

—s)'I' —(1 —s)'s'I

—= 1 —o'/10+' ' ' (4a) ,99

For small H, we may expand Eq. (3) through terms
of second order in/, O', X, 0, x, and their pro-
ducts, and obtain

Eo hm 2g tc qoX= -1+—~——0 —+qz& — +gAe'/2@a* 2 3 3 6

.98

.97

+—+ —'p&(C+ ln2 ——,')
1.5 (4b)

where q =2C - 5+ 21n2, p, = 5 —5 1n2+ ln'2+ C2
+C(2 ln2 —5)+ ~em', j=~~-C- ln2, and C is Euler's
constant, 0.577 . We may now minimize the
energy with respect to variations in X, 0, and K.

It is instructive to perform the variation one,
two, and three parameters at a time. When only.
A. is varied (the most sensitive one, as noted
earlier by Halbo"), we find

= -0.442 6h + 0 2149p. , (5a)

and E, is equal to -(ea/2ea~) (1-aha w —,'P +0.3V35h~).
As will be seen, for H, sufficiently large that an
effect on 0, can be measured, the diamagnetic
term dominates the + term, and here and in the
following the contributions of P' and Ph' to the en-
ergy will be ignored. When both A and 0' are
varied, we obtain

X = -0.5030&a + 0.2665P,

o'=0.5623h +0.1682P,

and &, is equal to -(e'/2&a*)(1 ——,'h v —',p+0.4245h ),
a 15%%uc improvement in the "redistribution" . energy
proportional to h~. When all three parameters
vary, we obtain

X = -0.5803h'+ 2.075VP,

o=—"h'+t p (5c)

~ = -0.1242k' ~ 2.9095P,

and &c is - (e /2&a~)(1 - &h' w 3P + 0.4258k ), another
0.3%%uc improvement. The smallness of the last cor-
rection gives some confidence in the wave function
for small ha. For somewhat larger values of )ta,
where the quadratic expansion is inadequate, Eq.
(3) was numerically minimized with respect to

,96

,95

variations in p and s, and a' was ignored. The re-
sults are shown in Fig. 1 in the solid lines. These
energies are comparable to or lower than those
calculated elsewhere by numerical methods, often
with a large number of parameters.

To calculate the polarizability we follow the
variational method used by Hassd. We introduce
an additional term -eS, t into the Hamiltonjan,
where t stands for x or e and where 8, is'an infi-
nitesimal electric field. We select a trial wave
function

tt, (r) =pc(tf,)(1+bt+ cpt), (6)

where p=—(xa+ya+ sea)~ a and where b and c are in-
finitesimal parameters to be determined variation-
ally. The resulting expression for the energy is
given by Eq. (3) plus a term proportional to P„
the coefficient of which is identified as -20, In
the absence of H, this method gives the exact re-
sult, &u,', for the hydrogen atom. The usefulness
for the present purpose is the elimination of need
for excited-state wave functions. Accordingly we
compute the expectation value of H, —e8,z with
the perturbed wave function Eq. (6), normalize,
and obtain

h

FIG. 1. Lowest atomic energy level (in rydbergs) in
a magnetic field. The solid line is the minimum calcula-
ted from Eq. (3) upon minimizing with respect to p and 8.
The dashed line includes the diamagnetic energy only,

. calculated with an unperturbed wave function. Equation
{4b) fits the solid line closely for & 60.2, and then falls
off slightly less rapidly.
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9 a2"e (—;)'
(k2'}'r(sp)

X
I'(ep)z„+ I'(5P)z„r(5P)r(ep)z„

2~aZ ~CZ —~DZ

(7a)

(Sp+ 1)(2+Ss)I (3p) gz (s) I'(4p)
Bz 40p 3k 2P

E,r(ep) h'-'r(vp)
6(k2~)' 60(k2~)4

(Qp+ 5)(4+ s)r (5p) g (s)I'(6p)
c =

120p Sk2p

E,r(vp) h'r(9p)
6(k2~)' so(k2~)4

2pr(ep)'
15k2& ('

(2P + 1)(4+ s) I'(4P) 2gx(s) I'(5P)
Dx 15p 3k2P

E,r(ep) h'r(ep)
3(k2~)' 15(k2~)'

(9c)

pr(4p)* Irk' (

?

(vb)
4pr(5p)

15k2~ (9d)

(9p+ 5)(2+ Ss) r(5p) g, (s)r(ep)
cz =

120p 3k2P

z~r(vp) h'r(9p)
6(k2')2 60(k2~)'

+——(1-—'c+ ~ )
p r(ep)
15 k2~ ~4

(2p+1)(2+3s)I'(4p) 2g (s)'I'(5p)
1~p 3k2~

E,r(ep) h2r (ep)
3(k2~)' so(k2')'

2p r(5p)—(1-—'(r+ ) .15 28k

(vc)

(vd)

Here ~E, ~- I is the energy in the magnetic field,
E(l. (3) expressed in rydbergs, and

3 „, s"', 1 —s"'
2(1 —s) (1 —sj s?, (s)=—— s'?*—,„—,sinn'

)
30=—1 ——+'' '.
10 (8)

e'= —'@a*'-
(k2~)4r (sp)

Similar expressions ensue for S-LH, in which case
& becomes n',

in which

Zs(s) =
2 (2,)
x lsinn'( )' '

1 —s ~

(1 —s ) slnll
2 1 —s s
0=—1 ——+' ''.

10 (Io)

The approximate expressions (1 —234o+ ) and
(1-—,', o+ ' ' ') are expansions of sinh '[(I —s)/s]'r'
and powers of s and 1 —s in the two cases.

In the limit of small field we may expand to
terms in k2 and g, and obtain

ll 9 3 7O 23m 209 23n" = (—'sa ) 1+—— +1 ——(C+1n2))
6 9 27 9

53 2 14——k +—g
72 45

o 23(& 209 23n'= (—'sa ') 1+—— +1 ——(C+in2))18 9 27 9
(11)

149
@2

113
72 270

100 4 ~2 29—,=—1+-9 + k + g.

Inserting the best values for X, (r, K from E(I. (5c),
we obtain(

C'(22Vsssr'(2(?)& * C(nr)C((2?)&, )-
~aX~CX -~DX

? n = (—'ca*')(1 —2.402k'+ 1.749P),
n'= (—,'«a*') (I —4.3303h' + 1.483P),

n jn = 1 —1.928k' + 0—.266p .
(12)

(Sp+ 1)(4+s)I'(Sp) g (s)I"(4p)
40p 3k2~

E,r(ep) h'r(vp)
6(k2~)' 30(k2~)4

2P I'(4p)' 15k2' (

For larger values of h', where the analytic ex-
pansions are not adequate, the complete equations
and the numerical results leading to Fig. 1 were
evaluated, leading to Fig. 2. The units on the ordi-
nate scale are &a~', and the effect of the + terms
was not included.
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functions are compressed more than for the ground

state, h'ence the overlay is improved, and the di-
pole matrix elements increase. Indeed, Aldrich
and Green found' that the 1s-2p and 1s-3p matrix
elements do increase with h' for smaQ O'. How-

ever, the energy denominators increase also, and

much of the total oscillator strength is in the con-
tinuum so that this counter argument is inconclu-
sive. Third, o'- decreases much more rapidly than

does E, for small k', that is

d ln

. dI2
=-2.4 or -4.3.

2.5
h

.2

Fourth, the wave function becomes nonspherical,
with [(gs)/( g)]~~2 —(1/s)'~2- 1y»hs p ~

P

polarizability is substantially more anisotropic
than this, with n /n" =1 —1.93ha + 0.2'fP for small

H„ thus raising interesting possibilities for the
dielectric behavior upon rotating the magnetic
field. Fish, the magnetic field required to produce
a measurable effect is much reduced from that
required for the hydrogen atom. k=1 for the free
atom means H, = 2.35 &&10 Q, but for the hydr ogenic
atom it is reduced by a factor (m*/m)'/e'. An ef-
fect on n ean readily be seen in Si for H, =10~ Q.
Sixth, the spin-dependent term is

n ~~ (t) —o. '~ (4) =-c' 3 50 "s
2 'm* ' nsc'

,01 =

.001—

This is much larger in the solid than for the pure
atom, but much smaller than the change caused by
the diamagnetic term in realistic cases where the
latl:er can be conveniently measured. That is,
P =&(m*/me')(e2/hc)2h; a value of 10 2 for h' pro-
duces a -4% change in n' from the diamagnetic
term but, if e'm/m" = 500, less than +10 s% from

.01 III. DISCUSSION

FIG. 2. Polarizability of hydrogen calculated parallel
and perpendicular to a magnetic field h. A deviation
from R2 dependence is barely detectable for ~ -0.&.

Units for 0.' are &a*3.

Several points are to be noted. First, n varies
as e'(m/m*)', and can easily be 10' greater than
for a real hydrogen atom. Second, e decreases
with increasing field, as one's intuition would
suggest from the consideration that h (x +y ) acts
to compress the wave function. This result is not
apparent from the standpoint of perturbation theo-
ry; one could argue that the excited-state wave

There are certain similarities between these
results and those of Castner and Lee' in Si doped
with As, P, and Sb. In both cases n decreases
quadratieally with H for small H and then falls off
less rapidly. Also the magnitude of a PI =0) is of
the general. magnitude of those observed by Cast-
ner et aE.,V namely, 6.7x105ao3 for As donors in
Si, 16.2 &&10' for P, and 20.9 && 10' for Sb. If one
approximates Si by a dielectric constant' of I
= 11.4 and a spherical effective mass' of m*=-0.3m,
one obtains a zero field polarizability of 28 x 10'ao3.

Clearly this procedure is inadequate, since there
does exist an important donor dependence unac-
counted for in the simple e/sr potential.
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Even so, the predicted magnetic field dependence
might have turned out to be reasonably correct,
but the'rate of decrease with H' predicted here
turns out to be a factor of i6-23 smaller than that
observed by Castner and Lee' for H~ h along (111).
The agreement with experiment is not improved
with the use of the ¹ing and Sah " approximation
to the wave functions, since the predicted polari-
zabilities are substantially too low.

It is unfortunate that there are no experimental
data for n for the hydrogen atom in a magnetic
field, but considerable experimental ingenuity
and jor larger fields than are now available in ter-
restrial laboratories will be required. Failing
such results, one would like to have data on donors
in single valley, semiconductors where this simple
version of EMA might be deemed applicable. In
this context, it should be noted that even if a donor
in such a system might be well approximated by
an EMA wave function in the abseq, ce of 8, it is
possible, and in the author's view probable that
it will not be well approximated by EMA in the
presence of H (with the possible exception of
"isocoric" impurities"). That is, even if the
amount of central cell wave function is small

enough to exhibit only a negligible effect on ener-
gies, the amount of central cell wave function may
change with 8 at a rate large enough that the re-
normalization of the extended EMA wave function
will have a greater effect on the polarizability
than will the diamagnetically induced shrinkage of
the EMA part of the wave function considered
here.

Consideration of this point, and others connected
with donors in many-valley semiconductors are
now under investigation by N. Lipari and the
author.

Note added in Proof. The results proportional to
the small parameter P are in error. Since they
are negligibly small it does not seem worthwhile
to correct them here. They will be corrected in a
subsequent publication. All of the major conclu-
sions are unaffected.
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