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Modified delta-function potential for hyperfine interactions
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A modification of the Fermi contact interaction is proposed in which the nuclear moment is represented by
a uniformly magnetized spherical shell of radius rp. In effect, the delta function 8(r) in the Fermi
Hamiltonian is replaced by 6(r —rp). The Schrodinger equation for. a hydrogenlike system thus perturbed is
exactly solvable in terms of the Coulomb Green's function. . Negative energy eigenvalues have the form
E„=—Z /2v', with v a nonintegral quantum number. An asymptotic formula is derived for the quantum
defect 5 = v —n. The l = 0 eigenfunctions are multiples of the Whittaker functions: M'„"(2Zr/v) for
r & rp and W'„-" (2Zr/v) for r p rp. Explicit forms are given by expansion of the Whittaker functions to first
order in quantum defect. In the limit rp~0 results pertaining to the original Fermi Hamiltonian are
approached. It is shown that a repulsive delta function maintains the unperturbed Coulomb energy while an
attractive delta function pulls. all bound state energies to —00. Perturbation expansions are discussed and
comparisons made with earlier calculations. It is shown that second-order and higher perturbation energies
diverge as rp~0.

I. INTRODUCTION

The interaction between a nuclear magnetic mo-
ment and an atomic s electron is most simply re-
presented by the Fermi contact operator'

This operator in first-order perturbation theory
accounts quite accurately for atomic hyperfine
splittings. For hydrogenlike systems':

Z'„,~ =amgg, ps»(s I)~(g„(0)~', F =I+s,
F =i ai, (s I)~ =-', [F(E+I)—s(s +I) f(I +I)], -

tr(r) =6(r). (7)

The author has shown some time ago, by reduction
of the Coulomb Dirac equation in the field of a
point nuclear magnetic dipole, that the function A,

is more correctly represented as'

in molecules, notably HD. ' Divergence of second-
order perturbation energies can be circumvented
by replacing the 5-function in (1) by a less singu-
lar function. Let the operator interaction be
accordingly represented in the form

R'=X (ma'/4sr'Q(r), i. =-X(s ~ I) . (8)

For the Fermi operator itself,

(2) 6s(r„r) =r,/(r+r, )2, r, =Ze'/2mc'— . (8)

ig„(0)I' =Z'/nn'a', a =I'/pe' p = m(1 + m/iVf) '.
The hyperfine splitting is given by

h~ v~&~ =d&l„q, -Zt&), q, =~Z&(t +-,')/n~,

~= 8Ãrps»/a'.

For 1s atomic hydrogen (Z =1, n =1, I = 2) the
first-order perturbation calculation gives'

b, vt" = &/h =1420.4847 MHz

compared with the experimental value'

(4)

K v = 1420.405 751 7680(15) MHz . (5)

Better agreement can be attained, of course, when
relativistic, radiative, and nuclear structure cor-
rections are taken into account. '

The Fermi operator is usable, however, only to
first order. Second-order perturbation energies
for a &-function potential diverge to -~ for s
states. ' This singularity has led to difficulties in
calculations of nuclear spin-spin coupling constants

Power and Pitzer' applied this operator in a sec-
ond-order perturbation calculation for atomic hy-
drogen. Gregson, Hall, and Rees9 suggested an
approximation to (8) of the form

. PP (r, r) =e "+/r 0. (9)

Both the Blinder and the Gregson-Hall-Rees oper-
ators have been employed in calculations of the
spin-spin coupling in HD. ' Further discussion of
the Blinder operator has appeared in several re-
cent publications. "

.

In this paper I shall present an alternative mod-
el for the Fermi contact interaction, to be known
as the modified Fermi potential. It will be shown
that the modified Fermi potential leads to a Schro-
dinger equation which is exactly solvable. Thus
the pitfalls inherent in perturbation expansions
can be avoided entirely. Our analysis will also
reveal the explicit origin of the divergences pro-
duced by the usual &-function potential. In a pro-
jected application of the results of this paper, nu-
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clear spin-spin coupling can be reduced to a first-
oxder perturbation effect, without the complication
of divergent self-interactions. " 8g

g(r, r, k) p, —.-p as r (19)

II. MODIFIED FERMI POTENTIAL

In the model which I propose, the nuclear mo-
ment is represented by a uniformly magnetized
spherical shell of radius &p. This corresponds to
a & operator of the form:

rP" (r, r) =6(r r—) (ip)

In common with (8) and (9), the modified Fermi
potential (10) reduces in the limit r, -0 to the
usual Fermi & function, viz. ,

limn (r„r)=6(r).

A hydrogenlike atom perturbed by a modified
Fermi potential is represented by the Schrodinger
equation

k', Ze' 8m 5(r —r }+—gr, VsVss 'I," 0(r) =~4(r}
y 3» ~ .4gy2

(12)

We shall limit our consideration to s states since,
in any event, dipolar and orbital magnetic interac-
tions are dominant for ~&0. It is convenient to
use the modified atomic units k =e =g=1, p =m(1
+m/M) '. In terms of the radial function

P(r) -=(4v) 'r0(r)

and the wave number &, such that

—,'k' = —g'/2v'. (23)

The Green's function is accordingly rewritten as

g(r, r„k) = -(2k) 'I"(1 —v)M„(2kr&)W„(2 kr&) .

which are appropriate as well to the Schrodinger
equation (15). Therefore the latter must have so-
lutions of the form

P (r) = (Xr/2r20)P (r, )g(r, r„k) (20)

provided only that & does not lie in the unperturbed
Coulomb eigenvalue spectrum. The appropriate
Green's function is given by" (cf. Appendix A)

g(r, r„k) = (2ik) 'I'(1 -i v)W2(-2ikr& )

x W)~y~(-2ikr&), (21}

in which r& and r& are, respectively, the lesser
and greater of the variables & and +p,

(22)

and M and 8'are Whittaker functions as defined by
Buchholz. "

Since we shall be conc'erned with negative-energy
solutions to (15), it is expedient. to make the re-
placements

-ik- k, iv- v; Rek&0, Re»0.
The relationship (22) is preserved but now

z =-,'k2
t (14) (24)

the Schrodinger equation can be expressed

k'+, + P(r) = r, P(r, )6(r r,). -8' 2Z A.~ (15)

The parameter ~~ can be either positive or nega-
tive, depending on the sign of the nuclear g factor
and on the spin expectation value. For atomic hy-
drogen, E =0 or 1, ~, =4~ ~p &~ Expressed in
atomic units,

4v " =—gg, ,"=2.160 0708 X 10 '. (16)
AQ 8 JLg p~

We observe now that (15) is isomorphic with the
defining relation for the S-wave Coulomb Green's
function"'4.

Since we shall encounter only Whittaker functions
of order 2, the second index wi11 be suppressed.

The exact eigenfunctions of the Schrodinger
equation (15) are therefore given by

P„(r)=- rz P„(r )I'(1 —v}M„(2kr&)W„(2kr&}. (25)

The eigenvalues (28}have the same form as those
for the unperturbed Coulomb problem except that
the quantum numbers & are nonintegral when ~~+ 0.
From the properties of Green's functions it follows
that P, (r) is continuous across r, but that its first
derivative exhibits a finite discontinuity consistent
with

(
8 2gkm+, + g(r, r, k) =5(r —r,),

p„'(r, +p) —P'„(r„—0)
p„(r,} 2r', ' (26)

g(r, r, k) = rr, c, (r, r„-k) .
The boundary conditions imposed on (17) are

(i7) The last condition is reflected in the Wronskian of
the pair of Whittaker functions, "

(is)r-~mg(r r k)-0 r~* -p ~ r-0—8g
pp gy

aVf W„(z),M, (z})=1/I'(1 —v).

The eigenvalues are determined by a transcen-
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dental equation obtained by setting r =r, in (25).
This can be expressed as

1 =& ZI'(-v)M„(z)W„(z)/z', z =2kr, =2Zr, /v.

For hydrogen, the experimental value (5) implies
&, —& =2.159 S509&&10

For &&&1,

(28)
g(1- v) =1/5+H„~-y+0(&}. (36)

Note that v (or &) depends on the spin quantum
number E and the shell radius &,. No further re-
duction of (28) is possible in the general case. We
may, however, exploit the fact that physically in-
teresting values of ~0 will lie .in the range of about
1 fm (10 "cm), many orders of magnitude smaller
than the Bohr radius (1 fm =1.889Vx10 'a, ). It is
therefore quite adequate (except in one instance
discussed below) to approximate the Whittaker
functions in (28) by their z -0 asymptotic forms.
From formulas given in Buchholz"

M„(z) =ze '~,E,(1 —v;2;z)
=ze '~'[1 +—,'(1 —v)z +O(z')]

=z[l ——,
'

vz +0 (z')],

I'(-v)W„(z) =M„(z)lnz+H„(z),

H„(z) =ze '~'[-1/vz+[$(1- v)+$(1)+$(2)]

+-,'(1 —v)[tI'(2 —v) + y(2) + y (3)]z +O (z2}],

(30}

where18

g(z) -=
d lnl (x)

cfog
, 0(1+x)=4(z)+I/z, 4(1)=-y,

(31)

$(n)=H —y y=0.5772''' H -=1+z+'''+1/n.

Therefore (28) can be approximated by

1/&rZ = -1/vz +lnz + g(1 —v) + 2y

+(1 —v}/2v- vf(l —v)z+0(z). (32)

Since we are dealing with an exceedingly small
perturbation on the Coulomb system (&-10 ' in
hydrogen), the quantum number v should differ
only minutely from an integer. It is useful to de-
fine a quantum defect such that

v=-n+5, n =1,2, . .. .
In terms of the quantum defect, the energy is given
by

S' S' S' SS'
~E + Q Q2 +e ~ ~

2(n+6„,}~ 2nm n~ " ~ 2n«~ '
(34)

and the hyperfine splitting by

g'~ "n =En.r+g. n.g g, = , (6N.I—+g. -n.l-g—.)+O(5').—

(35)

~+ (1 —&p) ~~Z (1 —2Z r„)
l, +XrZ/np 1+x~/2r, (38)

the quantum defect being independent of n to this
level of approximation.

III. LIMITING BEHAUIOR AS r& ~ 0

The limit ~,-0 represents a reduction to the
original Fermi contact interaction. Velenik e&

al."carried out variational calculations for a hy-
drogen atom perturbed by a &-function potential.
They concluded that, for a repulsive ~ function
(&~ &0 in our notation), the energy maintains its
unperturbed Coulomb value while for an attractive
6 function (&~&0}, the energy diverges to -~. A

variational calculation on so singular an eigenvalue
equation is perhaps suspect. ' ' Nonetheless, as
we shall demonstrate, the conclusions thus ar-
rived at are correct.

Consider first the case ~~&0. As &,-0, Eq.
(37) converges uniformly to zero. For r, «z&~,

=2gy . ' (39)

Thus, as &,-0, &-n and the energy approaches
its unperturbed value. Figure 1 represents the
quantum defect as a function of ~0 for the E =1
state of hydrogen.

For &~ &0, (3V) likewise applies so long as r, is
not too close to the value ~~~+(. The quantum de-
fect increases sharply in the vicinity of ro =2(&r~.
Equation (3V) becomes invalid since it was based
on the condition )5( «1. For r, & 2[~~(, we must
revert to Eq. (32), which assumes only that z « l.'~

Figure 2 shows the quantum defect for the I' =0
state of hydrogen. The steep change occurs near
&, =4.29 10 ' fm, corresponding to ~0=-1.6200
X10 '. The quantum number plummets from
v=0.9999 (6 =-1x10 4} at r, =4.2932x10 ' fm to
v =0.0001 at &, =4.2828&10 ' fm. The dependence
of & on &0 for the I" =0 state of hydrogen is shown
in Fig. 3.

As v approaches zero, the condition z =2Zr, /v
«1, upon which (32) is based, will eventually be

Substituting (36) into (32), dropping the indicated
first-order terms, and solving for &, we obtain,
with p =2Zro/n,

A.gZ(1 -np)
(37)1+&„Z(1/np —lnp —H„+ (n +1) /2n —y)

'

An alternative derivation is given in Appendix C.
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FIG. 1. Quantum defect for the hydrogen 1s, I =1 state.

~~Z 1-e ' 2Z&„1=- . 8=
V g V

(41)

This is physically meaningful only when ~~&0.
For z «1, (41) reduces to

v= '
(A.+&0, 1» v»2Zr ),

Zr.
1+2r,/X

(42)

which also follows from (32}with v=0. For z»1,
on the other hand, (41) implies

violated. However, as v-0 in (28), the Whittaker
functions become spherical Bessel functions. Spe-
c ifically, "

M, (z) = 2 sinh(-,'z) =e'~' —e '/',

W, (z) =e '~'. (40)

Moreover, for v=0, 1 (-v) =-1/v, so that (23) is
approximated by,

ro fm

FIG. 3. Quantum number for the hydrogen 1s, E =0
state.

E,--~ for all bound s states.
It should be remarked that the preceding analy-

sis of limiting behavior for &0 less than 1 fm has
been a purely mathematical exercise. The modi-
fied Fermi potential does not, in any sense, re-
present actual nuclear structure. Nor does it
even correctly represent the electron in a region
where its behavior must be manifestly relativistic.

IV. PERTURBATION EXPANSION

Since ~~ is a natural scale parameter in the
operator &', expansion of the energy in powers
of ~~ will identify terms corresponding to the
various orders of perturbation theory. The quan-
tum defect given by (37) can be expanded in powers
of A.g

~

v= " (x &0 r «'Iz I)
4Zr'„

(43) 6„=xZ(1 np)

s

such that z = I&zI/2r, . The limit z -~ thus corre-
sponds to r, -0. Equation (43) shows finally that
v-0 as r, -0 for &+ &0 and, by virtue of (23},

221 n —1—~2Z2 —-lnp-II„— —y + '
np " 2n

provided that

I&,z(1/ p —''')I

(44) .

(46)

Cl
CrO

1P-5
I—

C5

s s s s s s s s s s s s s s Correspondingly, for the energy Icf. (34)],

Z' Z'
E„p= — +Ap—(1 —np)

Z 1 4 —n—-lnp —ff + —y + ''' (46)~n~ np n

s

up to terms O(p) with respect to 1. We therefore
identify

E~"„=X~(Z'/n')(1 —2Zr, ), (47)

1P-7 , I ssssssssl s s s s s s s s

10 10 10 "

FIG. 2. Quantum defect for the hydrogen 1s, E =0
state.

( ) Z 1 2Zr 4 —n2 ~ g2 —ln ' —0+n " 2n0

The first-order energy corresponds to
1

(48)
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E~~~& =x,vip„(r, )lm =xr—, (49)
the formal structure

under the approximation for p«1,
l~(p)/pl'=1-np. (so)

It should now be apparent why divergences occur
in perturbation calculations using the Fermi po-
tential. If the expansion (46

I
is spuriously applied

as r0-0, in violation of conBition (45), only the
first-order term will approach a finite limit, cor-
responding to the Fermi formula (2), but second-
order and higher perturbation terms will diverge.

The second-order energy (48}can be compared
with results obtained by Power and Pitzer' (PP)
and Gregson, Hall, and Rees' (GHR) for Z =1,
& =1 and 2. Expressing the constant term in (48)
numericaQy, we can write

0.7704

E tmr1 = X2r — +lnro + ( —0.0665 (PP )(.)
gIE r 2r 0

0.5992 (GHR)
lm

I 1.5772

8E = ~' — +lnro+& 0.7403 (PP)

ill, 4061 (GHR)

(51)
Pur results agree with those of PP and GHR up to
reciprocal and logarithmic terms. '4 The numeri-
cal discrepancies in the constant term are rather
trivial in any event since &, of the order of 1.4 fm
(2.6x 10 ' ao) gives 1/(2r ) = g x 10' and lnr = 10.
Remarkably, for all three computations,

8Emi~r~ E~'~~ = (~ ——In2)&r2 =0.8069&r2 . (52)

The last result can be applied to the 1+-2s hyper-
fine structure anomaly':

V. EIGENFUNCTIONS

h, v„
6v, 8

'* = —(I+8) &=(34.6+0.3)&&10 ' (53)

The calculated residual is & =-, (2 ln2- 3)& = —0.08
&&10 ', much smaller than the experimental uncer-
tainty. The residual is, in fact, quite satisfactori-
ly accounted for by relativistic and radiative cor-
rections. "

( k) $ Pn (r)p„(r~)
u2 a2

n n
(ss)

in terms of the unperturbed radial functions P„(r)
= g/n} 'M„(2Zr/+). In view of the nonstandard
method by which these solutions were obtained, it
would be reassuring to demonstrate their mutual
orthogonality. Consider accordingly the overlap
integral

00
A,~2

p„(r}p (r) dr = r P„(r,)p„(r,}
0 0

g F, t', k g r, r k' gy
0

Making use of (55), we find

r g(r, r„k)g(r, r„k') dr
.0

lP. (.)l'
g2 Q2 QI2 Q2

lp. (r.)l' lp. (r.)l'
y2 P2 P2

n n n n

= (k' k'2) ~[g( „rr„k)—g(r, r, k)]. (57)

Now, (54) with r =r, implies that

g(r„r„k)= const =g(r„r„k')

for every & which corresponds to an eigenvalue of
the SchrMinger equation. Therefore (57) vanishes
for &4 &' and there follows the orthogonality con-
dition

p„(r)p„i(r)dr =0, v4 v'.
0

(58)

The eigenfunctions (54) can be normalized by ap-
propriate sealing of the factor P(ro). Formally
this corresponds to the condition

„(km km } (s9)

The sum in (59) equals -&g(r0, ro, k)/&k' but other-
wise has no simple analytic representation.

Normalization to [1 +0 (&)] is much simpler and
should be quite adequate in most applications. For
r&ro [cf. (25)],

In Sec. II it was deduced that the Schrodinger
equation (15) possesses solutions of the form

(s4)P„(r) = r p„(r )g(r, r, k), v=g/k.
0

The Coulomb Green's function defined by (17}has

P„(r)= — kr, P„(r,)I'(1 —v)M „(2kr,)V„(2kr) . (60)
0

The desired normalization can be effected by
making the following first-order approximations
in (60}:
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P„(~,) =P„(r,) = (g /n)~'M„(p),

M„(2kr, )=M„(p), I'(1 —v) = -(-1)" '/(n —1)!6,
5=~,g(M„(p)/p~2, k=Z/n. (61)

Thus

APPENDIX A: DERIVA'fION OF THE S-WAVE COULOMB

GREEN'S FUNCTION

The Green's function for a Sturm-Liouville dif-
ferential operator satisfies

P„'(r) =[(-1)" '/n!) g/n) 'W„(2kr). (62) (
8 8

P (x)——q(x) g(x, x') =6(x -x').
Bx Bx (A1)

(-1)" ' g ~' W„(2kr„}
(63)

Note that (62), (63) still represents an exact solu-
tion of the Schrodinger equation.

For 2&«&1, it can be shown that"

M„(2kr)-2k', W„(2kr)-1/I (1 —v) = 0(6). (64)

It follows that

The corresponding wave function for «„ as de-
termined by the continuity and derivative conditions
[cf. (26}], is

I

If uo(x) represents a solution of the homogeneous
equation satisfying specified boundary conditions
at x =0 and u (x}designates the corresponding so-
lution for &-, then"

u„(x&)u„(x))
P (xjm~n, n,~

~flu„, u ].-=u„(x)u,'(x) u„'(-x)u (x). (A2)

To apply this prescription to Eq. (17), note that
the solution fulfilling conditions (18}at r =0 is the
Whittaker function M,„(-2ikr). The solution ful-
filling (19) as r-~ is W;„(-2ikr), provided that
Im» 0. The Wronskian for the two functions is"

„& 2d&=O &2 0 &
0

(65)
&(W,„(z),M,„(z))=1/I'(1 —i v)

or, with respect to the variable r',

(A3}

The analogous integral with P, (&) gives a quantity
of the same order in & and &,. Therefore,

&V(W,„(—2ikr) Mz( 2ikz)) — 2gk/I" (I

(A4)

Pv(&)l'« =1+o(6), (66) For Eq. (17), P(&) =1. It follows therefore that

=2~e "[1+6(-1/2~+ln2& —1+&)]. (67)

This agrees, within a constant term, with the first-
order perturbed wave function for a hydrogen atom
in a Fermi potential, as derived by Scgwartz. ' The
radial function (67} in the integral (66}gives

P,.(~)~ dr =1,(3 2y)6, 0(62) (68)

with use of the definite integral

since substitution of P„(&) for P„(&)between 0 and

&, introduces an error, . at most 0 (6'). Moreover,
the integral over the Whittaker function W„(2k'r)
continues to exist even when the lower limit is thus
extended to & =0.

For the 1s state of hydrogen, as shown in Appen-
dix B [Eq. (B23}]for v = I +6, 8 =1,

P„(r)=W„(2r/v)

g(r, ro, k) = (2ik) 'I (1 i v)M,„(—2ik~&)-

x W)„(-2ikr)}. (A5)

APPENDIX B: WHITTAKER FUNCTIONS FOR SMALL

QUANTUM DEFECT

Solutions of the Schrodinger equation for a Cou-
lomb system perturbed by a modified Fermi po-
tential involve the Whittaker functions M, (2gr/v)
and W, (2Zr/v) with v=n+6, n=1, 2 ~ ~, 6-10 7

These differ only minutely from the corresponding
functions of integral index, which pertain to the
unperturbed Coulomb problem. Direct computa-
tional use of M„and 8'„would require at least
eight significant-figure accuracy in order to take
adequate account ef the perturbation. It is clearly
more efficient to make these deviations explicit by
expanding the Whittaker functions to first order in
the quantum defect. Thus we write

x 8 lnx kc =3 —2p (69)
MI, =M„+&— --MI, , B1
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and analogously for W. The main task is to evalu-
ate the derivatives of the Whittaker functions with
respect to &.

The function M„(z) is defined in terms of the con-
fluent hyper geometric function~:
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M„(z )=—z e»,E,(1 —v; 2; z),
~ (1 —v)a. a,E,(1-v;2;z)=M

(2) «! z,
( ).=-

( +1)'"( +k-1)=1'( +k)/1( )

The quantum number v occurs in both the index
and the argument of the function. The required
first derivative is thus a sum of two parts:

aM„(z) aM„(p)
v n

p aM„(z)
vs S ~Z «=p

z -=2gr/v, p
—= 2Zr/n. (B3)

The derivative with respect to argument is easy
in view of the identity"

8
—,E, (l -n;2;z) =z(1 —n), E, (2 —n; 3;z). (B4)

The derivative with respect to the index follows
from the relation

8

a v
(1 —v), = -(1 —v)+a(1 —v),

H~(n) =—+ 1+' ' + k 1, Hq(1) =Hi, . (B6)
1 1

Now

(1 n)~a(1 n) fo, k~n
/

,—„(1—v), l.=.=

( 1)"(n —1,)!(k —n)! for k~n,

(B7)

and therefore,
n-

,E, (1 -v; 2;p)i„=„=-,k! H, (1 -n)p

In full,

aM. (z)
~Z «~p

=pe» ~ -— E (] —n 2.p)/ 1 1
1

+2(1 —n),E,(2-n; 3;p) (as)

+(-1)"(n —1)! k p .(k —n)!
-. (2 P!

(Bs)

Using (B2), (B3), (85), and (Bs) in (Bl) we obtain
the desired first-order result:

M, (z)=M„(p)+&pe ~' ———,E,(1 —n;2;p)+ p,E, (2-n;3;p)

(1-n)~ ~,~(«-n)! z-
H, (1 -n)p (-1) (n —1)! (ae)

Specifically, for the 1s state (n=1, v=1+&),

M;~(z) = pe "9+6[-1+'p -f(p)3, -
where

(B10)

Again

aW„(z) aW„(p) ~

8 V p~„BV p g 8 ~Z «~p
(Bls)

(B11) For v =n, the divergent series (B14) reduces to a
polynomial since

and"

(d'- t —
p)

pe"-y
x (B12)

This latter function was encountered also by Ha-
meka" and Hostler" in connection with the re-
duced Coulomb Qreen's function. Integration by
parts gives By use of the identities

(1 n), = (-1)'(n —1)!/(n —k -1)!,
(-n)„= (-1)n! /(n —k)!,

we find

(a17)

p ex
dz =Ei(p)- lnp —y.S (B13)

The analogous computation for W (z) is most
readi'ly approached using the asymptotic series~

W„(z)-z "e '»,Eo(1 —v, -v;; -1/z),

+0(1 —v, —v;; -1/z) =g k, ,~ . (B14)
&=0 t 'L-Z J

W„(z) = (-1)"-~n!ze-»g (
'

(1 -n)a ~

a=, (2)P!
=(-1)" 'n!M„(z). (Bls)

The derivative with respect to the argument thus
follows from (Bs). For the derivative with respect
to the index, we require analogs of (86) and (B7),
viz ~
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8
(1 —")l (-v)l =-(1 —v)a(-v)g [HA(1 —v) +Ha(- v)]

~
-(1 -n)~(-n)„[H„(1—n) +H~(-n)], for k ~ &g

(1 —v),(-v)„,= & nl(n-l)l, for k=n,
v=n

i 0, for k&n

The divergent series again terminates, for

8 " '
(1 —n) (-n)„(-1)"(n—1)f

,F,(1- v, -v;;-1/p) =-g, ~, "[H (1 n)-+H (-n)] +

(819}

=(-1)"~' Z, 2 k, [H. -,(1-~)+H. ,(-~)]p'+—.~ (1-")a a

k&p

The factor p" in (8!4)contributes a logarithmic term

P

=p lnp.
v=n

%1th (818}, (85), (820), and (821) in (815) we obtain finally

(Mo)

(821}

Wp(g) 1 p n 1
(-1)" 'nl =M (p)+&pe ~' —+—+lnp E (1-n.2 p)+ p F (2-~ 3.p)-—

n 2n»» 2n» ' ' np

~ (1 -n)»-Z, ~2) k) [H.~-~(1-")+H.~-, (-&)]p (822)

W,+z(z) = pe ~ '[1 +5(-1+p/2+lnp —1/p)]. (823)

'APPENDIX C: ALTERNATIVE DERIVATION

OF THE QUANTUM DEI'ECT FORMULA

For sma, ll values of p= 2Zr, /n, as w—ell as small
5, Eqs. (89) and (822) reduce as follows:

Also

M„(p)/p = 1 ——,
' n p (c

For v=n+6, the F function can be approximated
with

M„(e) M„(p) ', p'
z p i 12n J '

W(z)
( 1) y

i
M (p)

8 p

1 3++1x 1+& — + lnp+ 2H„-—
sp 2n

(C1) {C4)

Putting (Cl)-(C4) into the eigenvalue condition
(28), we obtain

1 n+1
1 = X.+ —— + lnp+H„— +y, (C5)

np " 2n

apart from terms O(5), O(p), etc. Solving for 5

then gives Eq. (37).
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