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The Casimir-Polder R retarded potential between two neutral (polarizable) atoms at a separation R,
which replaces the nonrelativistic R ' van der Waals potential for R suAiciently large, has been derived
both by standard techniques and by assuming the atoms to be within a large volume with conducting walls
and considering vacuum-fluctuation efFects. The latter technique is here used to provide simple derivations of
the R ' potential between a charged point particle and a polarizable system —an addition to the usual R.
polarization potential —and the R two-photon contribution to the potential between two charged point
particles. It also suggests a new, R potential —an addition to the usual R ' image potential —between a
charged point particle and a conducting wall.

I. INTRODUCTION

The considerable interest in the possibility of
detecting effects of the finiteness of the speed of
light in experiments involving two atoms at large
separation 8 stems from a classic paper by
Casimir and Polder. ' They showed that this
"retardation effect" changes the interaction po-
tential U(ft) between two hydrogen atoms, each
in its ground state, from the Van der Waals-
London 8 ' dependence, which had been thought
to be valid at all distances somewhat greater
than a few Bohr radii, to an A ' dependence at
very large A. We suggest that retardation effects
be looked for in a new area, in energy measure-
ments on the high Rydberg states of a single atom.
The motivation is the recent rapid advance in
the precision of these measurements. We find
that the primary effect is an A ' addition to
rather than replacement of the A 4 polarization
potential of the outer electron and the polarizable
inner ion. Using a dispersion-relation analysis,
Bernabeu and Tarrach' showed very recently
that the. leading retardation addition to the A '
potential of a particle with charge q, and mass
m, and a neutral polarizable system is, asymp-
totically,

U(A)-
(

',
)
[ll „(0) 5P„(0)j

ns, (0) and Ps, (0) are. the static electric and mag-
netic dipole polarizabilities, respectively, of the
neutral system. Though of great interest, it does
not follow from their calculation that the result
is applicable to the problem at hand, since the
core is charged. In a recent paper, ' Kelsey and
Spruch used standard time-ordered perturbation
theory to study retardation corrections for a
high Rydberg state which has as well a very large
angular momentum quantum number. They showed

that the leading retardation correction, for,
roughly, 10'«ft/(h'/me') «10', is the first term
in Etl. (1); as, (0) is here the static electric dipole
polarizability of the (charged) inner ion. [The
magnetic term was not obtained since it is of
order (e'/kc)s smaller than the electric term for
the problem we examined, and terms of that
order were dropped. ] The calculation is a very
tedious one.

We here provide a short derivation of the 8 '
retardation potential and some physical insight
into its origin. The argument is based on effects
of the vacuum fluctuation of the electromagnetic
field. The few problems analyzed previously
using such arguments gave results in exact agree-
ment with those obtained using standard methods
of calculation. Why vacuum-fluctuation argu-
ments worked in the past in the problems to
which they were applied is, to our knowledge,
not completely understood, but the simplicity of
the approach gives it considerable appeal, as a
means of providing physical insight into known
results and as a means of suggesting new. results.

II. PRELIiV1INARY CALCULATION

A. Two finite systems

Although calculations using the vacuum-
fluctuation approach can be much more than an
order of magnitude simpler than, for example,
calculations using time-ordered perturbation
theory, the precise vacuum-fluctuation for-
mulation can still require considerable effort.
The physics behind the vacuum-fluctuation view-
point is, however, rather simple. We will there-
fore use Sec. II to obtain results with a rudimen-
tary version of the vacuum-fluctuation approach
in which we simply ignore all details that might
obscure the underlying physics. These include
signs, numerical coefficients of order unity,
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and angle-dependent factors whose integrals can
be expected to be of order unity; we also ignore
magnetic fields. The various results are re-
derived in Sec. III, but exact numerical coef-
ficients are then obtained. No approximations
whatsoever are made in Sec. III over and above
those present in the standard vacuum-fluctuation
approach.

In the past, the vacuum-fluctuation formulation
has been limited to systems with internal degrees
of freedom, and one has used the electric and
magnetic polar izabilities associated with those
degrees of freedom. The A ' results for atom-
atom interactions in that formulation are the same
as the results obtained using other techniques.
The new feature of the present paper is simply
the realization that the vacuum-fluctuation for-
mulation can be immediately extended to cases
for which one or both of the systems is a charged
point particle; one need merely use the polar-
izability appropriate to the new situation. (The
polarizability of a free charged particle behaves
as I/e', while at low frequencies systems with
internal degrees of freedom have frequency-in-
dependent polarizabilities; this will be seen to.
be the root cause of the different A dependencies
of different interacting systems. ) The extended
formulation is also applicable to charged systems
with internal degrees of freedom.

The extended vacuum- fluctuation formulation
can be used to derive the interaction between two

systems where one or both of them is a charged
point particle; the derivations of the interaction
between a charged point particle and a charged
or neutral system with internal degrees of freedom,
and between two charged point particles, are
very much simpler than derivations that use
standard techniques. In addition, one new result
has been obtained, a I/R' retardation correction
to the I/A image potential of a charged particle
and a perfectly conducting wall.

We are interested initially in obtaining, as
simply as possible, the dependence of U(R) on A

for a pair of systems; either "system" can be
(i) neutral, with internal degrees of freedom,
or (ii) charged, with internal degrees of freedom,
or (iii) a charged point particle. We therefore
begin by presenting a bare outline of the argument,
omitting all factors of order unity, and signs.
Further, in this section we neglect magnetic-
field effects. We assume our two arbitrary sys-
tems are in the presence of a background standing-
mode electric field

E,((u, r, f) = E,(&v, r) cos(+f)

All time-dependent fields and dipole moments
will henceforth be understood to have a cos(&uf)

time dependence. r is measured with respect to
an arbitrary origin and the wavelength of E„(~,r) is
assumed to be very large compared to the dimen-
sion of either system —the dipole approximation
with respect to either system —but not necessarily
compared to A. The p;(&u) factor of the electric
dipole moment p;(u, f) induced in system i by some
field E(u), r, f) is p( ((u) = o.; ((u) E(~ r); this equation
defines the dynamic electric polarizability o.;(&)
of system i. The energy 8, (+) of interaction of
systemi and E((u, r, t) is o.;(v)E'(&u, r;); here and
in subsequent expressions energies represent
time-averaged energies. System 2 interacts
with both E„(&u, r, t) and the field E, ,(~, r, f) set
up by the oscillating dipole of system 1. Very
schematically, the field at system 2 caused by the
induced dipole at system 1 is

The exact form of E, , can be found in almost
any text on electrodynamics. In reality, E, ,((u, r,)
is not in the same direction as E, (&u, r,) but has
a complicated angular dependence; we will assume
that the angular integrations give results of order
unity. The only properties of g(x) of interest to
us here are that g(x)/x remains finite as x
vanishes and that g(x) is of order unity over most
of the relevant range of x.

The energy of the polarizgble system 2 in the
presence of both E,(&u, r) and E, ,(~, r) is

b, ((o) - n, ((u) [E,((u, r,) + E, ,((u, r, )]'.
We have neglected fields at system 2 which arise
from radiation by a dipole induced in system 2

by Eq(&u, r2) which propagates to system l and is
then backscattered to system 2. Such a field is
proportional to n, (&u)n, (&u), and its neglect
generates an error in 8,(~) which is cubic in the
polarizabilities. It would not then be consistent
to retain the n2(&o)[E, ,(~, r,)]'term inEq. (3), since
it, too, gives a contribution which is cubic in
the polarizabilities. Further, we need not even
consider the term a, (u) K~2(+, r,) since it is in-
dependent of A. The interaction potential U(~, R)
of the two systems in the presence of E~(a&, r) is
then, at sufficiently large A,

U((g, R)- a, ((o)E,((o, r,) ~ E, ,(&u, r, ) .
We next assume that the two systems are in a

box with conducting walls of volume V, that R is
very much smaller than the distance of either
system from any wall, and that the background
field has a distribution N(&u) d&u of modes, given,
as usual, by Vv'd~/c'. We then have, from
Eqs. (2) and (4),
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U(R) - U((g, R)N((o) d(g

i

n, ((o)u, ((u) [K,((u, r,) ~ E,((u, r,)]

x g((uR/c) N((e) d(u. (5)

l 1
g(x)x'dx- 1.

p

Similarly, we have

U„(R)- Aq',a„,(0)/(m, cR'),

where we assume that

(Vb)

We now approximate the[ ] in Eq. (5) by E,'(a, r,)
for + &c/R and by zero for + &c/R, since there
will be considerable cancellation for X =c/&o &R.
The value of r, is arbitrary, and we replace
E~(ar, r,) by its average over r„denoted by ( )
with r, replaced by r, %'e then have

ic/8 (U(R)-R ' g ~ ~
u, ((u)u, (a))c i

x(E~~((u, r))N(a)) du) .
At this stage we introduce quantum mechanics

for the first time by replacing E, (&u, r) by E fl((0 r),
the vacuum fluctuation field whose spatial average
is (E'„(~,r)) V= k&u. We arrive at

U(R)- R, ) g I( ]I a,((u)a, ((u)uPd(u. (6)

ii "" /(oR
U~„(R)-, ,u~, (0)n„,(0) g i

—(u d(u
(cR ~ Ca'p

- Scu„,(0)u„(0)/R',
where we set x = ~R/c and assume that

(Va)

An identical contribution arises from the interac-
tion of system 1 with E„and the dipole field
generated by system 2.

If the ith system is neutral bqt has internal
degrees of freedom, a, (&y) will be a«(&o), the
dynamic electric dipole polarizability of system
i, which has a well defined nonvanishing limit,
nd;(0), as &u- 0. Since the maximum frequency
under consideration is the very low frequency
c/R, we may replace a„(&u) by u„(0). If the ith
system is a point pax'ticle with charge q; and mass
m„we must use for a&(ur) the free polarizability
nz&(&u) = (qf/m, a-r'); this follows directly from
the definition of n, (u). In general we have u, (~)
= n«(0)+ nz, (&u), and there are three kinds of
contributions to U(R). The retarded interaction
between two neutral atoms, for example, is
given by U„~(R). The interaction of the outer
electron in a high Rydberg state with the ionic
core includes a Coulomb R ' term, a polarization
R term, and a retarded interactioh U+(R).
Finally, the retarded interaction between two
charged point particles is given by Uz&(R).
Systems can have retarded interactions which are
sums of the above. Thus, the retarded interac-
tion between two He' ions is a combination of all
three. We have

f 1

g(x)x dx- 1;

there is of course a similar form for subscripts
1 and 2 interchanged. Finally, we have

V»(R) - [g/(cR)'] (q', /m, ) (q,'/m, ),
where we assume that

. 1

[g(x)/x] dx- 1;

(Vc)

we here use a property of the quantity in square
brackets assumed above.

and

U~, (R)- n„(0)Ac/R' C'
le

B. Perfectly conducting wall and finite system

We now consider retardation interactions for
system 1 not finite but a perfectly conducting wall.
System 2 remains finite, and its center is at a
distance R from the wall. The situation is in
one sense profoundly different from that con-
sidered previously, for the interaction of radiation
with a wall cannot be treated in the dipole ap-
proximation. We will proceed in two quite dif-
ferent ways.

First, we adapt the analysis above of the case
of two finite systems to the case for which system
1 is a conducting wall. Very crudely, we approxi-
mate the wall by a sphere of radius CR, wi. th C
of order-5, perhaps, with the-center of system 2
at a distance R from the nearest point on the
sphere, so that the separation of the centers of
the two systems is (1+C)R. CR is then sufficiently
small compared to (1+C)R for the dipole approxi-
mation to be meaningful if not accurate, and CR
is sufficiently large for the sphere —with yolari-
zability (CR)' —to roughly approximate a wall. We
can immediately obtain the retarded interaction
of a perfectly conducting wall with a neutral
system with internal degrees of freedom from
Eq. (Va), and of a perfectly conducting wall with
a charged point particle from Eq. (Vb); we need
merely replace a„,(0) by (CR)~. [We must also
replace R by (1+C)R, but we are assuming that
C is small compared to 1.] With the subscript
W denoting a perfectly conducting wall, we
thereby obtain
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I

U, (R)- @,'/(m, cR') C'. (Ve)

The 1/R' interaction does not seem to have been
obtained before.

Although the forms of Eqs. (7d) and (Ve) should
be believed, it is difficult to make a meaningful
estimate of C, and we will consider a second
approach. The-interaction of system 2 with a
fluctuating field E» (~, r,) in a huge conducting
cube of volume V, for system 2 far from any
wall, is

C. Range of validity of retarded interaction,
and additive correction»ersus replacement

Equations (7a)-(Ve) represent five different
retarded interactions. The interaction of two
neutral atoms is an example of (7a), while the
interaction of the outer electron in a high Rydberg
state with the ionic core includes the interaction
in (7b). The interaction of two free electrons is
an example of (7c). The interaction of a perfectly
conducting wall with a neutral atom and with an
electron pr'ovide examples of (Vd) and (Ve), respec-
tively.

It follows from the nature of the derivation that
the retarded interactions are valid for R asymp-
totically large. It is natural to ask the further
question of the possibility of making at least a
rough estimate of the value 8, beyond which the
retarded interaction approaches its asymptotic

where r, is measured from an arbitrary origin.
This is essentially the self-energy of the system,
but the divergence at high frequencies need not
concern us, for the retarded interaction of
interest is the difference between U;„„„, and
the interaction of system 2 with. E & when system 2

has been moved so that its center is at a distance
8 from one of the walls; we will now measure
distances from the point on the. wall closest to
system 2. The interaction of system 2 with E~
will of course be modified by the presence of the
wall. A rough indication of the modification can
be obtained by assuming that modes with A. &8
are unaffected while modes with A. &R no longer
'nteract with system 2. The retarded interaction
is then given by the difference, namely,

c/Z

Ug (R) g A2((d)(d d(d,
0

where we have again used (E» (e, r)) V= k&u. In-
serting n, (&u) = o.„,(0) and q2/m, ~' gives Eqs.
(7d) and (Ve), respectively, apart from the C'
factor.

form. It will also be important to know when
the retarded interaction is an additive correction
to the interaction in the nonrelativistic approxi-
mation, and when it is a replacement of the in-
teraction in the nonrelativistic approximation.
Finally, we will make a brief comment on the
possibility of estimating the interaction for R in
the neighborhood of Ao from a knowledge of the
nonrelativistic interaction for A larger than a few
Bohr ra.dii —the domain beyond which interactions
in the nonrelativistic approximation normally
approach their asymptotic forms —and of the re-
tarded interaction for A»Ro. The questions are
well posed and can be answered by a complete
analysis for any given pair of systems. We are
here trying to obtain at least partial answers,
using only the results- obtained above.

As has been emphasized in a number of papers,
the effect of retardation can be expected to be
important if the time it takes light to travel to
and fro, 2R/c, is comparable to or larger than
a significant characteristic period of either sys-
tem. For an atom or an ion, a characteristic
period will be of order 2»a, /g, =2»a, /(e'/h), where
v, =e'/ii is a characteristic velocity. Dropping
a factor of v, we thereby arrive at R,= a, (hc/e').
We thus have an estimate for three of the cases
discussed. above, but not for the electron-electron
and electron-wall ca,ses.

We note that the nonrelativistic approximation
is a self-consistent one; we can never have I'
&8, in that approximation since A,-~ as c

We turn now to the question of additive correc-
tions versus replacements. The interaction in
the nonrelativistic approximation of two neutral
atoms (which have no permanent dipole moments)
can be thought of, crudely, as the interaction of
two correlated virtual dipole moments. When
retardation is taken into account, the correlation
can be expected to be gradually reduced as R
increases, and the interaction can be expected
to fall off more rapidly than 1/R', the correlation
between the virtual dipoles can be maintained
only if the atoms maintain communication by the
transfer back and forth of photons, and, as the
time of transfer increases with 8, the com-
munication link is weakened. (The argument is
clearly intended to be at best suggestive. ) For a
neutral atom or positive ion with one of its
electrons in a high Rydberg state, the electron-
cor e interaction in the nonr elativ istic approxi-
mation will include a 1/R Coulomb potential, a
static electric dipole 1/R' polarization potential,
a static electric quadrupole 1/R' polarization
potential, and a nonadiabatic 1/R' potential. The
first three interactions remain when retardation
is accounted for; the ionic charge is of course
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specified, and the induced electric dipole and
electric quadrupole have perfectly well-defined
magnitudes and directions for the electron fixed,
no matter how large a value R has. The retarded
R ' interaction given by (Vb) will be an additive
correction. However, the nonadiabatic non-
relativistic R ' interaction depends upon the
velocity and position of the electron; the cor-
relation between motion within the ion and the
position and velocity of the electron will be re-
duced as R increases, and the nonadiabatic in-
teraction can be expected to fall off faster than
R '; the present authors have checked this point
formally in work that has not yet been published.
For two electrons, the nonrelativistic Coulomb
term persists when retardation is accounted for,
and the R ' term of Eq. (Vc) is an additive cor-
rection.

For a perfectly conducting mall interacting with
a neutral atom (with no permanent dipole moment),
the nonrelativistic interaction is that betweeri the
virtual dipole moment of the atom and its per-
fectly correlated virtual dipole image; the in-
teraction is therefore that between two dipoles,
which behaves as 1/R'. On accounting for re-
tardation, the correlation between the dipoles is
gradually lost as R increases, and the interaction
will fall off more rapidly than 1/R'. For a per-
fectly conducting wall and an electron, the noo. -
relativistic 1/R image potential will persist when
retardation is accounted for, for the location of
the image will continue to be -R no matter how
large the value of R is; the R ' retarded interac-
tion will be an additive correction.

We now consider the two cases for which the
retardation interaction is a replacement rather
than an additive correction, namely, two interac-
ting neutral atoms and a perfectly conducting wall
interacting with a neutral atom. The non-
relativistic interactions are o.„,(0)n„(0)b.E/R and
e'agR', respectively, where AE= e'/a, is a
characteristic atomic-excitation energy. Com-
paring with the appropriate retarded interactions,
it is found for both cases that the nonrelativistic
and retarded interactions are comparable at
R= R,. It follows for these two cases that one
can expect the effective interaction to be reasonably
well approximated by any interaction we can
choose which represents a smooth transition from
the nonrela, tivistic to the retarded interaction.
This point has been made previously. It is not
clear how one could make an estimate of the
interaction at "intermediate distances" for the
other three ca,ses along the above lines.

Analysis from the viewpoint of vacuum Quctua-
tions of the asymptotic interaction of two neutral
atoms, and of a neutral atom and a perfectly con-

ducting wall, have been given previously. What-
ever merit the above derivations may have for
these two cases is heuristic; particularly in the
case of two neutral atoms, the introduction Of a
complete set of modes for the electromagnetic field
in a very large container with perfectly conducting
walls, and the exact treatment of those modes,
generates a lengthy treatment, and one can easily
lose the physical picture in the mathematical
details. The three cases involving an electron —the
electron in a high Rydberg state, the two electrons,
and the electron and the perfectly conducting
wall —have not previously been treated from the
viewpoint of vacuum fluctuations. The essential
step was the realization of the simple fact that
the electron could itself be treated as a polarizable
system [with polarizability -em/m~ ]. The asymp-
totic interactions for the high-Rydberg-state case
and for the case of two electrons had previously
been obtained using other approaches, while the
retarded R ' interaction of an electron and a per-
fectly conducting wall does not seem to have been
obtained previously by any approach.

m; CALCULATION

For two finite systems, one can obtain the pre-
cise form for U(R), rather than the approximate
form given in Eq. (6), if one uses the identical
physical approach but retains signs, all numerical
coefficients, all terms, and angular factors, and
includes magnetic effects, but it is not necessary
to go to the trouble for almost all of the work has
been done, and we simply note down an extension
of a version given by Boyer. 4 The new form is

x[A(&o)I(kR) +B((u)Z(kA)], (8)

where A(&u)
-=a,u, +P,P„B(u&)-=ng, + ag„with

the o. 's and P's &o dependent, and where I(x)-=sin(2x) (x ' —5x '+ 3x ')+ cos(2x) (2x ' —6x '),
J'(x)=-sin(2x)(-x '+x ') —2cos(2x)(x '). Boyer
wa.s interested only in polarizabilities associated
with internal degrees of freedom. We have taken
his n„(0), a„(0), P„,(0), and P„(0) inside the
integral and replaced them by n, (ar), n, (e),
p~(+), and p, (&u), respectively, assuming thereby
that Eq. (8) is also applicable to cases where
one or both of the systems is a charged point
particle. [The applicability of Eq. (8) to electrons,
'pay, might seem even more difficult to justify
than for (heavy) polarizable systems, since the
latter are far more easily localized, but for
sufficiently large R this should not pose any
serious new difficulty. ] For the appropriate
choices of o., (&u) and P, (e), we find that U«(R) is
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exactly the result obtained in a dispersion re-
lation analysis by Feinberg and Sucher' as the
generalization (which includes magnetic effects)
of the Casimir-Polder result, a point noted
previously. ' (By exactly, we mean coefficient
and all. ) What is more interesting at present is
that U~&(R) is found to be exactly the result of
Eq. (1).' Furthermore, U&& is exactly the sum of
one and two transverse-photon graphs in posi-
tronium as calculated previously' using standard
perturbation theory. Though not properly founded,
the present deriva. tion is not only very much
simpler but suggests the last two results are
valid over a wider range of conditions than those
encompassed in the original derivations.

Equation (8) was obtained by extending an ex-
pression for the interaction of two finite systems
whose polar izabilities are associated with internal
degrees of freedom to the case where polari-
zabilities associated with a free charged point
pa, rticle are allowed. To make the extension,
we had merely to replace the static-dipole po-
larizabilities, constants, by dynamic (frequency-
dependent) dipole polarizabilities, and place them
inside the integral over the frequency. An

identical adaptation can be made for the case for
which system 1 is a perfectly conducting wall.
An expression has been obtained' for the retarded
interaction with a finite second system whose
polarizability is associated with internal degrees
of freedom. To extend the validity of the ex-
pression to include the case where the po-
larizability of system 2 can be associated with
that of a charged point particle, we need merely
take o(~, (0) inside the integral as o,,(~). We
thereby obtain

U)), (R) = —18, lim, a, ((u)e 'z', dx,
16m& x~ jo dz2 z

where z = 2&uR/c. We immediately arrive at

U~„(R)- -(3/8m) u~, (0)Sc/R' (10a)

IV. DISCUSSION

The verification of the interaction UI&(R) of
Eq. (10b) may possibly represent in the future an
attractive way of detecting a retardation effect.
Its validity should first be checked by redoing
the calculation using a more standard and re-
liable approach, ' which would, a.t the same time,

for the polarizable system-wall interaction' and
the apparently new result'

(10b)

for the free charge-wall interaction.

give the U(R) for small R. The asymptotic result
is almost surely valid, however, and for the
purposes of this discussion we will assume it to
be correct. One could not hope to detect the effect for
an electronbound in a low-lying state by its image
charge to a conducting wall, for the separation would
be of the order of Qo a Bohr radius, and at that
distance it makes little sense to think of the
conductor as a perfect plane. One might con-
ceivably detect the effect for an electron bound
in a low-lying state to a dielectric surface with a
dielectric constant close to unity, or bound in a
highly excited state to a conductor.

The extension to a dielectric medium would re-
quire techniques similar to those Lifshitz" used
on the problem of the attractive force between
two slabs of dielectric material separated by a
large distance which was an extension of work
by Casimir" on the attractive force between two
metal plates. A possible way of performing such
a test would be to perform precision experiments
on electrons bound at great distances from a
surface of liquid helium —the low temperature
simplifies the analysis —along the lines of Grimes
and Brown. " There are clearly a number of
serious problems, since the effect is very small.
Thus, since the bound states are at distances of
order 100a„ the A ' correction is of order
(h/mc)/R= 10 ' relative to the binding energy in
the Grimes- Brown experiment. There may
therefore be a number of possible masking effects.
In particular, the model dependence of the
Grimes-Brown result would have to be reduced,
perhaps by some other experiments which gave
information on the surface. Further image-
charge distortion in the liquid-helium surface
could pose a problem. Finally, realistic checks
of the results discussed in this paper may require
separations R such that a~(e) cannot be approxi-
mated by (o0) for 0&(d&R/c in which case a more
detailed knowledge of the frequency dependence
of the polarizability will be required.

The semiclassical analysis of the first three
examples presented above might seem far re-
moved from the standard approach, but it may
not be too difficult to ma. ke the connection. The
starting point, equivalent to summing non-
relativistic perturbation diagrams but hopefully
arrived at directly, would be an attempt to express
U(R) in the form

x T,(k, A. , k', A.')f(k, A. , k', A', R),

where k, A. and k', ~' are the momenta and po-
larization vectors of the two virtual photons and
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T; is the off-shell inelastic amplitude for the
scattering of light by the ith system; f would be
a sum of terms, each containing a factor
exp(+ik Ra ik' R). Because of the presence of
the exponentials, only very small values of k
and k' would give significant contributions for
large R, and T, and T, would each reduce to low-
energy elastic-scattering amplitudes, Thomson
(T~„&o'-) for a charged particle and Rayleigh
[T„;n~(&u)&u'] for a polarizable system. [From
this point of.view, the basic elements are not
the n's but the T's. In particular, we need never
introduce the free polarizability n~(&u) = e'/~u-&'
for an electron, and, with n~(&u) replaced by n&(v),
find T„& for the Rayleigh scattering amplitude
for a free electron to be T„,&- n&(&u) &u'- &u', using
Tr„gives &u' directly. ] Apart from providing a
proper justification of Eq. (8)—it has been seen to
give three correct answers —Eq. (11) might serve
as a convenient starting point for obtaining terms
in 1/R beyond the leading term; one would ex-
pand the T's in powers of k and k'." Note, in-
cidentally, that the first term beyond the Coulomb
term in U(R) for an electron in a high Rydberg
state is not the R ' polarization term but the
R charged particle-electron interaction, arising
from T» for the ion, but the coefficient is ex-
tremely small. (There is an additional 8 ' term
if the nucleus or ionic core has a permanent
quadrupole moment and the Rydberg electron is
not in an s state. )

In order to verify the existence at very large R
of the R ' retardation potential between an
electron and a polarizable ionic core in future
bound-state experiments, it will be necessary
to have reliable theoretical values of radiative
and other relativistic corrections. That these
shifts may be as large or larger than the shift
produced by the R ' potential will not be a source
of difficulty once they have been calculated. A
more serious problem is that the radiative uid~hs
of the states are larger than the R ' shifts. For
a helium atom with the outer electron with
effective quantum numbers n= 15'and l = 14, the
radiative width is approximately 100 times that

of the shift caused by the R ' term. As a con-
sequence such an experiment will have to Qe
performed with very good statistics.
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Note added in proof. (i) The proof that the non-
adiabatic interaction between a charged particle
and a polarizable system falls off faster
than R ' when retardation effects are in-
cluded appears in Ref. 3. (ii) That retarda-
tion is significant if and only if &/c is
comparable to any relevant period 2s'/&u, of
either system led us to argue that the atom-
atom, atom-electron, and wall-atom retarded
interactions are significant beyond 8/c~ I/v, .
This same conclusion follows directly from
our derivation in Sec. II. Thus n~(&u) can be
approximated by n~(0) only if e is small compared
to the lowest natural frequency vp of the system.
Since the effective range of ~ is from 0 to order
c/R, we can ta'ke n~(&u) outside the integral as
n„(0) only if c/8 ~ &o„ the same estimate is ar-
rived at using transit time arguments. [For the
electron-electron and electron-wall retarded in-
teraction, the integral does not contain n~(+) and
we cannot readily estimate the range beyond
which retardation plays a role, nor were we able
to make such an estimate using transit time argu-
ments. ] (iii) We note that the nonrelativistic B '
atom-atom interaction involved the uncertainty
principle for particles, while the retarded R '
term is a consequence of the uncertainty principle
for electromagnetic fields.
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