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N-electron zero-momentum energy expression: A criterion for assessing
the accuracy of approximate wave functions
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A derivation and discussion of Armstrong s N-electron zero-momentum energy expression is presented.
This functional Z, ()t) is linear in the wave function )i, and thus is easier to compute and more sensitive to
wave-function error than the variational upper bound E„„(y). The smallness of the quantity
4()i) = E, ()t) —E„()i)provides an a priori criterion for assessment of the accuracy of an approximate wave
function. Nontrivial numerical examples are given to illustrate the utility of this criterion.

I. INTRODUCTION

Recent advances in the technology of electronic
computation have been paralleled by an enormous
increase in the amount of effort devoted to finding
approximate solutions of the N-electron Schrod-
inger equation

s
V', + V(r, , r, , . . . , r„))I

~ ~ ~ rs) = &p(rt rs ~ ~ ~ rg)

where r~ is the position vector of the kth electron,
V(rt,sr, , . . . , r„) is the spin-free external potential
in which the electrons move, E is the energy, and

g(r, , r, , . . . , r~) is the position-space wave func-
tion. Note that atomic units are used throughout
this paper. Spin variables are suppressed wher-
ever they play no direct role.

The accuracy of an approximate wave function
may be gauged by comparison of calculated expec-
tation values of dynamical variables with experi-
mental results. This approach is limited by the
availability and accuracy of experimental data.
Moreover it is inapplicable whenever the calcu-
lation refers to an experimentally unobserved
quantity. Therefore a pro~i criteria for assessing

the accuracy of approximate wave functions are of
great interest.

The virial theorem, ' the cusp conditions for the
wave function, ' the spherical average of the charge
density' and the intracule function, ' local-energy
functionals, ' and reduced local-energy functionals'
have all been utilized for such a pylor tests. In
1964 Armstrong' derived another a priori criterion
which unfortunately has been overlooked since that
time; perhaps, because of the relative inaccessi-
bility of his work.

Armstrong' "examined the Fourier-transformed
Schr5dingdr equation at that point in momentum
space where the momentum vector of every elec-
tron is equal to zero. He thus obtained a simple
energy expression that is move sensitive to the
error in the wave function than the expectation-
value expression. The difference between the
energy values computed from these two expressions
thus provides an a pyj0yi criterion for assessing
the accuracy of an approximate wave function.

In Sec. II a derivation of this N-electron zero-
momentum energy expression is presented. Var-
ious aspects of this expression are discussed and
illustrated with nontrivial numerical examples in
Sec. III. These examples also serve as additional
tests of the accuracy of a set of compact and accu-
rate explicitly-correlated generator-coordinate
wave functions recently constructed' ' for the
heliumlike ions.

II. DERIVATION

The integral form of the N-electron Schrlinger equation in momentum space may be written as"

1978 The American Physical Society



AJIT J. THAKKAR AND VEDETTE H. SMITH, JR.

where E is the energy, pk is the momentum vector of the kth electron, and

N

W(P„P„,Pr)=-(pr)- dr, dr, drr V(r„r„.. . , r )exP(-l r ~

P») .

g(p„p„.. . , p„) is the momentum-space wave function which is simply the Fourier transforin of the posi-
tion-space wave function P(r„r„.. . , r„). Thus

0(p„p., ', 0) =(0») ""fdrdr. ~ ~ ~ dr p(r„r„.. . , r)exp .
(

-lQ rr ~ p )(.
k~ )

Pl+P2' dp»v e(pl P2 ~ ~ ~ P)V)e P & d)'Py
k=1

Now consider the case when gll the momentum vectors vanish, i..e.,

p~ =p2=" ' '=pg=o

Under such circumstances, Eq. (2) may be written

dd(0 0 . 0)=fdpdp '''dp W(-p -p . , -p )P(p p, p )

= (2m) '" '
dp,'dp,' dp„'dr, dr, ~ ~ ~ dr„dr,'dr,' ~ ~ ~ dr„' p(r,', r,', . . . , r~)

N
x V(r„r„.. . , r„)exp 'g p' (r„—r„')

~

=(2') 3'v~' dr„dr, dr„dr,'dr,' (fr„'q(r,', r2, . . . , r„')

x V(r„r„.. . , r„)5(r, —r,'}.. 5(r„—r„')

= (2))') ' ' dr, dr, dr„g(r„r2». . . , r)),)V(r„r„.. . , rN) .

Note that Eq. (4) yields

(t) (0, 0, . . . , 0) = (2 7p)
I

Combining Eqs. (7) and (8) we obtain the desired result

r,dr, . rd„(drr.„.. . , r) fdr, dr, ~ dT„P(T„r„,rr) V(r„r„.. . , Pr) .

If the integral on the left-hand side of the above equation is nonzero, then the N-electron zero-momentum

energy expression is obtained

dr~4(r). » r2» ~ ~ ~ » rg) V(r). » r2» ~ ~ ~ »
r p)) (10)

The integrals in Eq. (9) are understood to be spin-traced. These integrals are nonzero only' for spatially
totally symmetric singlet states. Hence the step from Eq. (9) to Eq. (10) is only valid for such states. For
al. other states, Eq. (9) is trivially satisfied and yields no useful information.

HI. MSCUSSION

The energy expression Eq. (10) is a local-energy
functiona»n momentum-space analogous to the
Bartlett-Frost local-energy functional' in position-

space

+Are r ~ ~ ~ 4»EBF(r„r„.. . , r)),) =

'4 (ri » r2» ~ ~ ~ » r))()
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where H is the Hamiltonian operator. The momen-
tum-space local-energy functional has been re-
stricted to a single point in momentum space sim-
ply because it is most tractable at that point. Arm-
strong's alternative derivation' " shows a clear
relationship between Eqs. (10) and (11) without
reference to momentum space: Eq. (10) is essen-
tially an integrated form of Eq. (11).

I et y(r„r„.. . , r„) be an approximation to the
position-space wave function g(r„r„.. . , r„). The
variational approximation to the corresponding
energy is then given by

&...(x)= x'&xd" /fx xd'" (12)

This approximation is, in fact, an upper bound to
the true energy. Thus &

&...(X) =E„„(X)—E- o-

The N-particle zero- momentum appr oximation to
the energy is given by

y = n 'rr ' exp[ n-(r, + r, )],
with

Q=Z ——5
1B

for the wave function for the ground state of a two-
electron ion with nuclear charge Z satisfies Eq.
(18), but is obviously not the exact wave function.
Armstrong"" has given a detailed explanation for
this peculiar property of the Kellner function.

Suppose that X, and y, are two different approxi-
mations to g. Then an order relation between

(y, ) and n, (y, ) does not imply the same order
relation between n, (y, ) and a, (y, ). In particular,
b,„„(y,) =b,„„(x,) does not imply b., (y, ) =. &, (X2) and

&...(X ) «...(X.) doe»« imply
~
&,„,(Xl)

~

&
~

~,.(X2) ~.

Tables I and II list values of ~„and ~,„, for a
set of highly accurate explicitly correlated wave
funtions of the form

y( rr„r, )=(4w) ' g C (1+I'„)

E, (X)= I'X« d1 . (14) x exp(- ct &r& —P&r2 —yp'&2)

(21)
This approximation is not a bound and thus the
error

&,.(X) = E,.(X) —E

may be of either sign. Of course for exact wave
functions g we have

(18)

Note thatE, (X) is much easier to compute than

E, (X).
It is easy to see that &, (y) is linear in the wave

function error whereas &„(y) is quadratic in the
wave function error. Since many, expectation-vaLue
expressions for operators other than the Hamilton-
ian are also linear in the wave-function error,
b, (y) should give an indication of the error in

such computed properties other than the energy.
If the exact energy E is unavailable, then the quan-
tity

recently constructed "for the 1'S and O'S si~tes
of the heliumlike ions. These tables also list val-
ues of the ratios R = n2 /4„and n jE„. These
tables clearly show that 6, can be of either sign
and that order relations for ~, do not imply order
relations for 6, . The facts that 6„„«~b., ~

in

all cases and that in many cases R is of the order

Wave function &Zn1

TABLE I. Zero-momentum energy tests for wave func-
tions (Hef. 8) for the ground states of the heliumlike ions.
The "exact" energies used are from Ref. 12 for ~
=1,2, . . . , 10 and from Ref. 13 for &=11,12. In both
Tables I and II the number and letter in the wave-function
column indicates the number of terms and the scheme of
construction (see Refs. 8 and 9), and the notation A-n
means A X10 ".

can be used to approximate &, (y) because &„(y)
can;be expected to be much smaller than 4, (y)

.for most (but not:all) reasonable choices of y. It
is important to note that

(18)

is a necessary but not sufficient condition that y be
equal to the exact wave function. The "necessary"
part of the above statement is obvious from the
developmeiit so fax', and the "not sufficient" part is
shown by the following example given by Arm-
strong. ' " '

The simple Kellner approximation"

20P
30P
60P
66&
66&
45P
25P
25P
25P
25P
25P
25P
25P
20P
20P

1 1.27-6 4.74-4
1 7.50-7 1.87-4
1 7.63-8 6.54-4
1 3.09-8 -5.78-5
2 1.43-8 4.58-4
3 1.46-7 7.23-4
4 1.26-6 -6.26-3
5 1.22-6 -6.34-3
6 1.25-6 -9.50- 3
7 1.28-6 -1.29-2
8 1.30-6 —l.63-2
9 l.55-6 -2.09-2

10 4.12-6 8.46-3
11 4.50-6 -7.97-3
12 4.00-6 -6.00-2

0.18
0.047
5.6
O. 11

15
3.6

31
33
72

131
205
281
17
14

899

—8.96-4
-8 5d-4
-1.24-3

1.10-4
-1.58-4
-9.92-5

4.58-4
2.88-4
2.93-4
2.89-4
2.76-4
2.76-4

-9.00-5
6.98-5
4.39-4
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%'ave function & &var &zm

55P
40P
25P
25P
25P '

25P
25P
20P
20P
20P
20P

2 2.20-7
3 1.32-6
4 1.59-5
5 8.09-6
6 1.52-5
7 1.09-5
8 1.25-5
9 5.00-5

10 5.26-5
11 5.69-5
12 1.76-5

1.23-4
1.06-3

-1.49-3
-1.04-4

6.40-3
-l.83-3

2.91-3
4.91-3
4.93-3
6.19-3
3.70-2

0.068
0.85
0.14
0.001
2.7
0.31
0.68
0.48
0.46
0.67

78

-5.71-5
-2.10-4

1.64-4
7.68-6

-3.01-4
6.31-5

-7.58-5
-9.98-5
-8.09-5
-8.37-5
-4.24-4

TABLE II. Zero-momentum energy tests for wave
functions (Ref. 9) for the 2 ~S states of the heliumlike
ions. The "exact" energies used are from Bef. 14 for &
=2, 3, . . . , 10 and from Bef. 15 for Z=11, 12. See also the
heading to Table I.

the ground states of the helium atom and hydride
ion.

In summary, we note that the zero-momentum
energy functional E, (y) provides another a priori
computationally simple criterion for assessing the
accuracy of an approximate wave function and

.should be more widely used. From its very defi-
nition, E, (y) may be valuable as an indication of
the quality of approximate wave functions for the
calculation of momentum-space properties which
are sensitive to smaller values of p, such aS the
height and curvature of the peak of the Compton
profile. " Since E, (y) weights larger r regions of
position space it may be useful'~" as an indicator
of the accuracy to be expected of transition prob-
abilities computed from the dipole-length formula.
Finally it may be possible to improve the-asymp-
totic behaviour of approximate, wave functions by
enforcing the requirement that &(y) be small. ' '

of unity numerically iIlustrated that E, is linear
in wave-function error, whereas E„,is quadratic
in wave-function error. The smallness of i6
and 6/E„, provide additional indications of the
high accuracy of these wave functions. Further
numerical exampIes were given by Armstrong who
tabulated"" E, and E„,for three-, six-, and
ten-parameter Hylleraas-type wave functions" for
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