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Calculation of permutation matrices using graphical methods of spin algebras:
Explicit expressions for the Serber-coupling case
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We present a general'method, based on the 'diagrammatic techniques of spin algebras, for the calculation
of permutation matrices of two-rowed (two-columned) irreducible representations of the symmetric group ~„
relative to a basis (or bases) adapted to the subgroup(s) &~„g SN &@ or to (a) subgroup chain(s) which

may be generated by a recursive application of the above-given chain. These matrix elements are needed in
spin-adapted configuration interaction calculations. This general technique is applied to the Serber coupling
scheme, and general and explicit closed formulas are obtained for the matrix elements of an arbitrary
transposition. An extension of this formalism to cases with an arbitrarily large frozen core is also outlined
using the same technique. A computer program based on these derivations was written and its effectiveness

compared with that of other approaches is discussed. An extension of these applications to more complex
permutations than transpositions, as well as to other coupling schemes, is also briefly discussed.

I. INTRODUCTION

The basic problem in the majority of atomic
and molecular electronic structure calculations
is the determination of eigenvalues and eigen-
states of 6-electron spin-independent Hamilto-
nians. The neglect of the explicit spin dependence
endows a Hamiltonian with a rather high symme-
try: in addition to being invariant under the inner
direct product group 3~" RI~„' of the symmetric
groups permuting the spatial (S„"')and spin (S„' )
coordinates, which is a consequence of the fact
that electrons are indistinguishable, the spin-
independent Hamiltonian also commutes with the
outer direct. product group & " SS„'~, and with the
special unitary group SU(2)." Of course, the
irreducible representations of SU(2) and S„'
(henceforth designated simply as S„)are closely
related"'~: $~-adapted spin states automatically
span irreducible representations of SU(2). Con-
versely, adaptation to SU(2) symmetry imposes
S„symmetry on the spin functions (assuming that
the spin states are connected via ladder opera-
tors').

Thus, in order to utilize the symmetry of the
spin-free Hamil. tonian, we can either use the
SU(2) calculus, developed originally by Wigner
and Racah, or the S„calculus pioneered by Young.
Moreover, it may often be even more advantageous
to exploit the pertinent dynamical group' U(m),
as indicated by a large number of recently pub-
lished papers. ' ' In fact, as will. be seen later,
it may be sometimes very convenient to combine
several of these approaches. "

In many physical. and chemical applications one
not only wishes the spin states to be adapted to
S» [and SU(2)], but also to some subgroups
S„xs„x~ ~ ~ x S„,of S„(p;1U;=R). Reasons for

this may be that the electrons form an "aggre-
gate"' of weakly interacting subsystems of
6'„A„... , A'„electrons, or that the orbital states
are required to span irreducible representa-
tions of certain subgroups of GL(m). ' fn order to
project out states that have this latter property
one needs irreducible representations of S~ sj.mul-
taneously adapted to $~ S„(3 ~ ~ 88„.1 2

To our knowledge, no general prescription for
the computation of such irreducible represen-
tations exists. In this paper, we present a
prescription for irreducible representations of
S„having at most two rows (or columns) in their
Young diagram. Our approach relies on the
Wigner-Racah SU(2) calculus, and in particular
on its graphical. version pioneered, by Jucys and
co-workers. 1O

The diagrammatic techniques of spin algebras
have great advantages arising from their univer-
sality and transparency in handling various
coupl. ing schemes. Although, in this paper, we
apply them to the spin functions only, we must
stress their suitability in conjunction with the
graphical techniques based on the second quan-
tization formalism and Wick's theorem, when-
ever the spin and/or angular momentum adapted
theory is required. I et us at least mention their
previous use in spin (and/or angular momentum)
Adaptation of perturbation theory and Green's-
function approaches, " limited configuration-
interaction (CI) matrix element evaluation"'"
and generation of compact direct CI"expressions"
or in the spin adapted coupled-cluster-theory
derivation. " They were also successfully
employed to calculate efficiently the matrix
elements of the unitary group generators" or of
their products. ' Very recently, " they were also
used to establish a transformation between dif-
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ferent coupling schemes, " in particular between
Serber-like and Young- Yamanouehi bases, which
led to a new derivation of the Young™Yamanouchi
formulas for elementary transpositions in the
two-rowed irreducible representations. "

The objective of this paper is to present a
rather general outline of the possible applj. cations
of the graphical methods of spin algebras to the
calculation of matrix el.ements of spin-independent
operators over "aggregate states", ' using an
approach via the symmetric and the SU(2) groups.
As a specific application of this general tech-
nique we work out in detail the case in which the
aggregate consists solely of electron pairs
(N, =N, = ~ =N„=2); we refer to this as the
Serber case.

The Serber case has attracted much attention
recently, and different ways of constructing
Serber states" have been proposed. "" How-

ever, in this connection, one must realize that
the requirement that eigenstates of S' transform
according to irreducible representations of
S,SS,S ~ ~ (3S, is not sufficient to specify states
uniquely (up to phase); indeed, one commonly
employs a canonical chain of subgroups of SN to
achieve a unique state labeling. The chain origi-

lly u'sed by Serber2 ' is

S2C S4C S6C '''C SN 2C S~

and, accordingly, we calculate representatiori
matrices adapted to this chain. The same chain
has been recently used by Carrington and

Doggett, "who suggested a simple method for
Serber-state construction, using formulas from
an earlier work by Kotani et al." A similar
procedure has also been very recently proposed .

by Pauncz. " A completely different line of
approach has been fol.lowed earlier by Ruedenberg
and collaborators, ""who diagonalize the S'
operator over all spin states of fixed magnetic
quantum number and belonging to a certain irre-
ducible representation of S, (9S,S ~ ~ SS,. The
resulting eigenvectors do not correspond to a
definite coupling scheme, and hence are strictly
speaking not Serber states. Very recently Vojt&
and Fiser'4 showed that the Ruedenberg-Salm'on.
scheme can be improved upon by including time
reversal.

In all the work mentioned above the Serber
states are constructed explicitly. However, as
has been shown by Ruedenberg, "all one needs in
the calculation of Hamiltonian matrix elements is
the matrix of certain permutations (so-called
line-up permutations) relative to the basis of
eigenstates of S2. Thus, there is no need to cal-
culate Serber states explicitly if one can derive
formulas for the matrices of arbitrary transpo-

sitions relative to the Serber basis. Any permu-
tation matrix can then be obtained from the latter
ones by matrix multiplication. As will be dis-
cussed in this paper, our formulas for the matrix
elements of arbitrary transpositions relative to
the Serber basis have enabled us to write a very
fast computer program requiring little main
storage.

H. GENERAL OUTLINE OF THE METHOD

In this section, we briefly describe a general.
technique for obtaining the matrices of arbitrary
permutations I'e S„relative to eigenstates of
8', which may result from any coupling of the
electron spins. Consequently the method, as we
present it, is restricted to two-rowed and two-
columned irreducible representations of S„
which, however, are precisely the irreducible
representations needed in a spin-free treatment of
spin-& fermions. With the aid of a generalization
of the graphical techniques used in this paper to
SU(m) (Ref. 29) one may be able to apply similar
techniques in obtajning other irreducible repre-
sentations of S„.

It is well-known that an W-electron irre-
ducible representation of SU(2), characterized
by the total spin quantum number S, is related to
an irreducible representation [X] of 8„, where
the Young tableau P.] is given by

[A,]= [qN+S, q~N -S].
We consider irreducible representations of
S~ adapted to the chain S„„S~ ( S„, where
S=1V„+N~, and no other restriction is made an
the particle numbers N& and N~. This chain
clearly entails an arbitrary chain of subgroups,
because we can repeatedly substitute the chain,
with varying S„and W~, into the permutation
subgroups which occur, i.e., S„„and S~ . Most
of the. spin-functions used in the literature can
be. characterized by such a chain. We obtain, for
instance, Young- Yamanouchi functions (cf., for
example, Ref. 4) by taking Ns = 1 throughout the
chain, while the Serber case arises when N~ =2.

We write the N-electron spin functions as
(SMy), where S and Mare defined by (using
atomic units)

S'isMy) =S(S+1)iSMy),

s.[SMy& = M(SMy& .
The third argument y stands for a set of Young
diagrams labeling irreducible representations
of the subgroups of S~ that occur in the chain
under consideration. Because only two-rowed
(columned) representations are considered,
all subductions arising are multiplicity free.
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That is, thefrequencyfactors m&~„, defined by

p, v

(4a)

are.zero or one. This implies that the different
sets y provide a unique state labeling.

If, instead, we express y as a set of inter-
mediate spin quantum numbers (as we do in this
paper; cf., for an example, Table II in Appendix
8), we write (4a) as

[afi+S, ~N-S] 0 8~ 8$„

Bi[HA + At %+A A]
SA)SB

Here,

S[~s+Ss, ~s -Ssj. (4b)

(S,S„,S,j
1 for S = IS„-S,I, IS& -Ss I+1 . ~ S~+Ss

0 otherwise,

is the usual triangular 5 symbol. One obtains
states adapted to S& z S~ (3S~ by forming the
Clebsch-Gordan series corresponding to (4b)

ISM» = Q &S.M. SsM. ISM) IS.M.y.) IS.M,YB),
A' 3

(6)

where IS&M&y„) and IS&Mays) are the spin eigen-
functions associated with the subsystems con-
taining N„and N~ electrons, respectively, and
where (S„M„SsMsISM) is the usual Clebsch-
Gordan (CG) coefficient. From (6) follows that

y = Y„U ys U (S„,Sj,
and so, using repeatedly Eq. (6) for the spin func-
tions occurring on the right-hand side, we obtain
y as a set of intermediate spin quantum numbers.

After we have specified a state by a set of
spin quantum numbers, its graphical representa-
tion is easily drawn. ""''" A matrix element
(SMy IPISMy) of an arbitrary permutation P H 8»
may then be calculated in the following way: We
write down the graphs of (SMyI and ISMy) (or,
rather, the generalized CG coefficients defining
these states), as shown schematically in Fig. 1.
We let P act on the one-electron labels of the
ket, and form the resulting diagram representing
(SMylPISMy) by interconnecting all the lines in
the bra and the ket that label the same one-elec-
tron coordinate (i.e., we interconnect lines
labeled i andi, i = 1, .. . , E, in Fig. 1). One can
also connect the resulting total spin lines (labeled

HI. SERBER STATES

Consider, for the sake of simplicity, a system
with an even number of electrons N, 34 N = 2n. In

2
A

hv
— Na

PV

B

Na+~

Na+2

Na+)

Na+2
8

s, M S,M

FIG. 1. A schematic representation of the formation
of the resulting spin diagram used to evaluate the
matrix elements of an arbitrary permutation P e3&,
relative to the bases adapted to subgroups SgzQN-~
and g~~g~~, N =N~+Ng=%~+Kg. The triangular-
shaped vertices are the Clebsch-Gordan vertices (cf.
Ref. j.2). See text for details.

by S, M and S, M) if one introduces the factor
Q (Ref. 32) [cf., for example, rule (6'f) of Ref. 12].

Q —= [S] "5(M, M)5(S,S). (8)

The resulting diagram may then be simplified and
evaluated using the standard rules of the graph-
ical techniques of spin algebras'0'" (for a brief
list of the most useful rules see Appendix A of
Ref. 12).

The diagram in Fig. 1 is completely general in
the sense that the bra and ket may belong to dif-
ferent coupling schemes. We can even assume that
N„M1& as long as N„+N~ =N&+N~. In such cases
we compute a so-called "asymmetric" represen-
tation of S~. The cal.culation of recoupling co-
efficients is a special case of the method out-
lined here; it is simply a calculation of the iden-
tity permutation matrix in an asymmetric rep-
resentation.

It is more common for the bra and ket to belong
to the same coupling scheme. In that case one
sees the subduction rule (4b) illustrated graph-
ically. For, let P =P„8P~ belong to S~ (3S„:
then no electrons are exchanged between the
boxes A and B and the diagram can be broken over
the lines S„,S„and S~,S~ yielding three separate
diagrams. One diagram represents the matrix
element (S„M„y„IP~IS~M~Y@, one represents
SsMsys PsISsMsys), and the third stands for
S,S„,S,].
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order to define the N-electron Serber states, we
first "precouple" the appropriate electron pairs
as follows:

S(x) =-Si M(i) = Mi (Ioa)

S( p)
= M( p)

= 0'
» (10b)

and, similarly, for the resulting spin quantum
numbers,

8 =S(„) and M=—M(„) .
The Serber states of multiplicity (2S+ 1) are

then defined as follows:

(I'& =- [SMy&

IS,M,.& = Q Q(-'))t„-, ayre„lS, M, &)-,'m„.-,&l am„.&,
2a-X ai

(9)

where I
—,

&
and [-, —

& designate the usual SU(2)
spin-up and spin-down states. Clearly, only
singlet (S; =0) or triplet (Sq = 1) pair states can
be obtained, so that the Pair sjin quantum numbers

S;, i =1, .. . , n, can only equal zero or one, re-
spectively.

The desired Berber states are then obtained by
sequentially coupling the pair states (9). This
introduces an additional n —2 intermediate sPin
quantum numbers S(~), i =2, . . . , n —1. It is con-
venient to make the definitions

labeling scheme for Serber states of any desired
multiplicity (2S+1) that is consistent with the
total electron number E.

The Serber states (12) may now be represented
by the 3-jm graph" shown in Fig. 2, where the
pertinent phase and normalization factor 4, re-
sulting from a transition from the CG represen-.
tation to the 3-jm one, is

@ = (-I)'[Si " S. (.) ~ ~ ~ (.) J'". (14)

i

[Sx, . . . , S(J =—Q [S~J.
9" 1

(16)

The corresponding bra state is then represented
by the diagram, which is obtained by (i) reflecting
the diagram in the vertical plane, (ii) reversing
the signs of all vertices, (iii) reversing the
orientation of all lines, and (iv) reversing the
variance of external lines (i.e., replacing the
double arrows with single arrows and vice versa
for the external lines). Further, the pair and
intermediate spin quantum numbers, as well as
the electronic coordinates of the bra state, or of
its diagram, are designated by the corresponding

We use here the usual shorthand notation for
the dimensions of the SU(2) irreducible represen-
tations, namely

[SJ=2S+ 1

~S,M,&

y ~ ~ ~ &n &(2). ~ "+(n-y)

(S((,) M(;, ) S;Mi ~S(i)M(()&

2

Sp
iy +

where

x iSiM(&, (12)

4
5

6

Sp
ir S(2)

AE +

y = {S„S,. .. , S„;S(,), . . . ,S(„,)) (13)
(2n-3)

4 ~

designates an index set containing both the pair
and the intermediate spin quantum numbers
S~, i =1, . . . , n and S(;), i =2, .. . , n-1, respec-
tively (see, for an example, Tabie II of Appendix
8). The summations extend over all possible
values of the corresponding projections M;,
(M; [ -S( and M«), (M(;) ( - S(;).

When the values of pair and intermediate spin
quantum numbers contained in y are not consistent
with the triangular conditions implied by the
pertinent CG coefficients in Eqs. (9) and (12), the
Serber state (12) vanishes. Conversely, the set
y of pair and intermediate quantum numbers sat-
isfying the triangular conditions provides a unique

(2n-2)
(2n-I)

2ll

" S(n-))

+

i' S(„)-=S,M(„)= M

FIG. 2. 3-jet graph representing the Serber spin
function ~SMy&, Eq. (12). The phase and normalization
multiplicative factor 4 is given by Eq. (14). The orien-
tation of internal lines can be dropped since the pair
(S&) and intermediate (S(~) ) spin quantum numbers,
@=1,2, ... n, can only take on integral values. The
numbers on the left-hand side designate the appropriate
electron coordinates.
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symbols with tildes, i.e., S„S(~),S, M, y,
etc.

%e also note:that both pair and intermediate, spin
quantum numbers S; and S(q), respectively, take
on only integral values in the Berber case con-
sidered, so that we can ignore the orientation of
all internal lines in the diagram in Fig. 2. This
property xs used to slmphfy the resulting dia-
grams ~

IV. MATRIX ELEMENT EVALUATION

Following the general outline given in Sec. II,
we form the resulting diagram by considering an
arbitrary Serber bra (SMyi and ket i SMy&, and
an arbitrary transposition (i, j}Es~. When we
interconnect the resulting spin lines, this yields
the factor Q, Eq. (8), and gives the resulting
diagram sho~n schematically in Fig. 3, where
the overall factor 0 multiplying this diagram is

(1 —=c$@y =(-1) '
[SJ '()(8, 8)5(M, M)[Si, . . . ,8„,8(,), .. . , 8(„),S„... ,S„,S(2), . . . ,8(„)j

gg fV
u'2

O(898)5(MIM)[8)9 '' 'IStlt . (2)t ' ' ' t (II 1)9 99 ' ' 'I tlt (2)9 ' ' ' I (II 1)j

Here we have used definition (11) and the notation
(15), (16).

In view of the orbital pairings (9), we have to
distinguish several cases of the transposition
(i,j) depending on the evenness or the oddness of
the indices involved. These four cases will only
differ by an appropriate phase factor, and may
be easily transformed one into the other, as can
be seen from the diagram in Fig. 3(b). Thus,
taking the transposition (2i, 2j —1) as a'standard
one, we find that

(I" i (2i - I 2j - I) i I'& = (-I)""&I i(2i 2j - I) ii"&&)

(I I(», »)ii& =(-1)""'«I(», 2j —1)IF&, (18)

(I'i(2i —1, 2j)iI &
= (-I)'&"&"~"~ (I i(2i, 2j —1)i I'&,

assuming that i &j.
For a transposition involving the

(i=j) we have that

(I I(2i —1, 2i)i I")=(-1)" 95(g, II)t)

where we have defined, generally,

5(X, L) =5(M, M) 5(S (2),S(2))
span'

same pair

n

5(S„St),
&QL,

for arbitrary index sets K and L. In Eq. (19),
both .K and L are empty index sets P, so that
()(g, 9) vanishes unless y=) (and, of course,
8 =S, M=M). Thus, the matrix(I'i(2i-1, 2i)il&
is a diagonal matrix with diagonal matrix elements
equal to -I and I, depending on whether the ith
pair in the state I', is a singlet or a triplet,
respectively.

Consider now the matrix elements of a stan-
dard transposition (2i, 2j —1) appearing on the
right-hand side of Eqs. (18). The pertinent re-
sulting dia,gram shown in Fig. 3 may then be

factored' by sepa, rating over each pair of lines
labeled S(~) and S(~) for k = 1, 2, ...,i —1,j,j
+1, . . . , n- I, and eac»esulting component (ex-
cept the first one) may be further factored by
separation over the pair of lines labeled S, and
S„ for 0 =2, ... ,i —1,j + 1, . . . , n. Each separation
introduces a factor [8(,) j '5(S(», 8(2)) and

[S,j- 5(S„,S,}, .espect..eiy, a.d the ".ys«. -
type" graphs [cf. Eq. ('l4) of Ref. 12j representing
the triangular O functions (2'—28$ and (8998(„,)8(tt)j,
defined by Eqs. (5). AII these symbols equal 1
when nonvanishing Serber states (12) are used.

In the remaining part of the diagram, involving
the pairs of quantum numbers S&, Sq through
S;,S~, we can further factor out the triangular 5
graphs by separating over the pairs of lines
labeled by S„and S~ with k =i + 1,i +2, ... ,j —4,
to obtain finally the diagram shown in Fig, 4(a)."
This diagram represents a 3nj symbol of the first
kind, where n=j -i+3. Thus, already for the
elementary transposition of the type considered
(j =i +1) this diagram represents a 12j symbol
of the first kind.

Designating the diagram in Fig. 4(a) by S, we
can write for the desired matrix element

(I"i (2i, 2j —1}II &

(&» II)IÃ 9I)» I)))" (, lt(.).t( )) ') I)

(21)
where K&& and I ~& are the index sets

K; =(i, i+1, . . . ,j —I),
L, -=(i,j)

and 5(K, L) is defined by Eq. (20). Bringing the
Snj symbol in Fig. 4(a) to a standard form we
find that

1
Sk S(4)

S=( 1)" (I)' (I)' (~-9)"(S-9) (f -x) .&+x

8(~)

S],~

S(~.i)

o e ~ Sjat g

''' S(s-2)

S(s)

S(f-x)

S(&+x) ' '' S(J-a) S(i-i)
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It is well known ' ' that the 3nj symbol S can be reduced to the sum of products of Gj symbols. This is
easily achieved in diagrammatic form by applying the rule shown in, pig. 5 to the pair of intersecting
lines, labeled with angular momentum .—. in Fig. 4(a). Clearly, the sum over the intermediate angular
momentum line labeled X contains only two terms, namely X=O and 1=1. . The diagrams corresponding
to these iwo terms (X=O and X=1) are shown in Figs. 4(b) and 4(c), respectively, where in the first
diagram 4(b) we have already eliminated the zero angular momentum line [cf. rule (68) of Ref. 12] yielding
a factor —,. Thus, the first diagram [Fig. 4(b)] yields simply a contribution ~5(g, P), since the separation
over each pair of lines labeled S{„),S{„),k =1, . . . ,j.-1 and S„,S„k=i and j, yields factors
[S&»] '5(S&», S&») and [S,] '5(S&„S„), respectively (in addition to the triangular 5 factors which must equal
1 if proper Serber states are involved).

The second graph [Fig. 4(c)] may then be separated over the three lines for each triple of lines involving
always the central line with angular momentum 1, and the appropriate pair of lines on the perimeter of
the diagram in Fig. 4(c), iabeled S&~&,S &», k =.i, i+1, . .. ,j-1 and S„S», A =i and j, and in each case a
Gj graph is obtained. Bringing these 6j graphs to one of the standard forms [cf. Eq. (75) of Ref. 12] and
using explicit expressions for the 6j symbols involving —;-angular momenta [6j graphs separated on each
end of the graph in Fig. 4(c)] we find, finally, an explicit expression for the desired matrix elements
(i)(2f, 2j-I)(i), f&j,

y-2

«I (2, »- I)l I) = ..'-5(P, 0).(-I)"~„
(~) «) (

' -1) S{i- j.) (j -1) S(y) ~ S(&) S{&) S&+i

(24)

2

&&-1&+ &&&
+ &i x&+ (-y& + ( a+a+ &a+a&+ &a&) ~ (25)

- j./2

5(X„,L„)-' P' [S&,&, S&,&J [ [S„S,][-,(S, +S,)] ' ] J (S,S,IJ,
I(f~g& ~ l eg)~ lcIqg

with 5(E, L) defined by Eq. (20) and the index
sets A;, and I,;, by Eqs. (22). As. above, g
designates the empty set and [SJ= 2S+ 1 [cf. def-
initions (15) and (16)]. The Gj coefficients appear-
ing in this expression may be easily evaluated
and their explicit form is given in Appendix A.

V, PRESENCE OF A FROZEN CORE

In this section, we show how to apply the for-
mula derived in the foregoing section in the case
that an indefinitely large frozen core is present.
By a frozen core we mean a set of n, orbitals,
which are doubly occupied in al.l the states under
consideration.

It wi. ll be convenient to associate the first n,
pairs in our Serber state (12) with the frozen
core orbitals. Clearly, then S„=8{~)——0 for
k=1, ... , n, . Considering, thus, as the A part
in Fig. 1 the frozen-core part (X„=N„=2n,), we
can represent schematically our Berber state by
the diagrams shown in Fig. 1, since the diagram
may ahvays be broken on a zero angulari mo-
mentum line or, conversely, the disconnected
parts may be connected via a zero angular mo-
mentum l.ine.

It has been shown by Ruedenberg' that all one
needs for a calculation of Hamiltonian matrix
elements on the basis of spin-adapted antisym-
metrized functions are the matrices (SMy&&L)SMy)

and (SMy[(k, f)L~SMy), 0&/. Here I is the per-
mutation that lines up the orbitals in the ket so as
to minimize the number of noncoincidences be-
tween bra and ket (a so-called line-up permuta-
tion); and (k, l) is an arbitrary transposition.
Because the order of the orbitals in the core is
fixed, J never permutes core electrons, or in

other words LE s„, [Ns =iVs =2(n-n, )J. In

contrast, the transposition (k, I) may act on any
pair of electron coordinates, so that (k, I)e 2,„.

Clearly, the matrix elements of L, are given
directly by Eq. (24), where X=fV~ =2(n-n, ), and

are independent of any frozen core altogether.
On the other hand, the transposition (k, l) ES „

may interchange the —,'-angular momentum lines
between the frozen core and valence shell. How-
ever, since the frozen core may always be dis-
connected from the rest of the diagram by sep-
aration over the zero line(s) (S&„& =8&„& = 0), the
only link between the two parts of the diagram wil. l
be via the —,'-angul. ar momentum lines. %Ye can
separate over these two lines [rule (70) of Ref. 12]
yielding a factor (-,') and two disconnected diagrams
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S(2)

r Sl

$2

Sl

$2

S(2)

$(i-2) i ) ~ ~+ Si) (i-2)S

$(i-I)
«JE $) r -l S) S(i-))

PV

$(i)

S(i+))

(j-2) ™Sj

S(j-I)
«J E

S(j)
'I F

L

Sj+I ~ ~ Sj4)

I

Si+) + Si+)

+ Sj-)

~ Sj

JL+

S()+I)

S(j-2)

S(j-))
Ii+ '

.. S(j)
X

I
I

L

S(j+))
l

S(.-2)
«J E

JIJ

S(n-I)

Sn-) -~
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FIG. 3. A schematic representation (a) of the resulting spin diagram associated with the matrix elements appearing
in relations (18). All oriented lines carry the angular momentum &. The phase and normalization multiplicative ac or
0 is given by Eq. (17). The dashed rectangles (b) can be replaced by either one of the diagrams (bi) or (bii) as indicated.

aking the replacements at E;, $'; and R&, S& of the types (i), (i); (ii), (ii); (i), (ii) and (ii), (i) yields the spin diagrams
for matrix elements of transpositions (2i-1, 2j), (2i, 2j-1), (2i-1, 2j-1), and (2i, 2j), respective y.
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the summation rule shown
in Fig. 5.
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TABt k: I. II3M 360/7~ C'I'U tinge» required f'or the c,llcul;l-

tion ot the ns;itrix of',
& tr;ln»po»ition -,according to I'orrnul l (24).

Ihe din)en»ion of' the nl;ltrix is given by th'e dinien»ion /I„I of'

the pertinent irreducible represent, ition» [Aj of'5~.

I."IG. 5. Summation rule based on the orthonormality
relation for 3jn~ symbols involving the summation over
the two magnetic quantum numbers. The rectangles
labeled n and P represent schematically an arbitrary
angular momentum diagram. For greater convenience
in applying thi. s ru].e to the diagram Q, Fig. 4(a), it is
formulated for the case of crossing lines.

8 0

8 0

14 0

14 0

14 I

14 I

14

14

429

1001

1001

(6,8)

(1,8)

(12, 14)

(1,14)

(12, 14)

(1,14)

tinge (»ec)

0.07

0.08

0.60

6. 16

2.43

30.41

representing the normalization diagram for the
frozen core and the diagram of L in the basis of
the valence shell.

We cyn thus conclude that the matrix elements
(SMyl(k, l)L, IS,'lay) are given by

$~ jg~y~ /p, $ $~gg~y~ $~~~y3 g $~.g~y~

if A, l& 2n„, and by

~(S~M~j's
I I IS~kI~y~),

if k ~ 2n, and k 4l —1.

(2't)

(28)

VI. DISCUSSION

The technique employed to derive formula (24)
can also be appl. ied to general coupling schemes

S( I

'~

F.K». (~„24j symbol appearing in the evaluation of
mat', .b: elements of cyclic permutations involving four
pairs ':n a bra or a ket Serber state. All oriented lines
carry the lingu]. ar momentum ~1 ~

and arbitrary permutations. However, it is not
always possible to break up a diagram in a gen-
eral manner for an arbitrary number of electrons
in order to obtain a relativel. y simple and closed
formula.

For instance, we coul. d try to generalize ex-
pression (24) to cyclic permutations of arbitrary
l.ength, which would be very useful in view of
their relationship to the unitary group generators.
However, one can easily convince oneself, that
the graph, representing the cyclic permutptions
(2i -p, 2i -p+1. ..2(i+I) —q), where p, 4=:0 or
1, (i.e., cyclic permutations involving (k+1).
pairs in the Serber state) is a 6(k+1)j symbol of
a more complicated nature than those of the first,
or second kind.

Indeed, in the case of a cyclic pe.rrnutation in-
volving three pairs we get an 18j.symbol of the
type (321) (E. diagrams, p. 213-214 of Ref. 30).
This diagram can be expressed as a sum. of prod-
ucts of one 6j, one Sj, and one 12j.symbol, of the
first kind. Thus, expressing the 18j symb01, in
terms of 6j symbols, a tripl. e summation will
be involved.

Similarly, in the case of a cycle.involving four
pairs we get the 24j symbol shown 4o Fig;.,6,
should be mentioned that there .exist already 576
kinds of 24j symbols. '

Clearly, a general formula for a cyclic permu-
tation involving an arbitrary number of Serber-
coupled electrons would be cumbersome, if at
all possible. A diagrammatic line of approach
would probably be hardly more advantageous than
the generation of permutation. matrices by taking
products of the representatives of transpositions.

On the other hand, even in such complicated
cases, the graphical method can be useful as a
qual. itative tool providing an insight into the actual.
complexity of the problem. If one does not have
to worry about the phase factors and multiplicative



18 SPIN GRAPHS AND PERMUTATION MATRICES

TABLE ll. Sptn qu;intum nun&bers specie'ying the Serber eight-electron triplet st;ltcs, cf', Eq. (13).

State Pair quantum Nos. intern)ediatc quantun) Nos. St;itc 1';lir quantuni Nos. Intcrnlcdlatc ituantulll Nos.

No. S) S& S3 S4 S(2) S(3) No. 5) 5& S) Sp S(p)

1 1

2

3 1

4 0

5

6 0
7 1

8 1

9 0
10 1

ll 1

12 0

13 1

14 0

1

1

0
1

1

0

1

0

I

]

0
1

1

0

1

1

I

1

1

1

0

0

0

1

1

1

0

0

2

1

1

1

0

0

1

1

1

1

1

0

0

15 1

16 1

17 1

18 0

19 1

20 0

21 1

22 1

23 0

24 1

25

26 0

27 1

28

constants, it usu@, 11y does not take more than a
few minutes to draw the pertinent diagram(s) and
to determine which 3nj symbols will occur. In
this manner age can explore the general. appear-
ance of tQe resu8ing formulas and find out im-
mt. diatefy ho+ inany summations are involved
and which 3' symbols have to be evaluated in
the final expressions. If these expressions seem
tractable one can go back arid take proper care
oj,' phases and constants.

The question may arise whether it is possible
to generalize the method exploited in this paper
to irredgcib$e representations of S„with m
rows (or columns), where m& 2. One must realize
that guch ji'reducible representations are in
that case to be obtained from the irreducible
representations of SU(m). Although graphical
techniques for the SU(m) calculus have been
discusse&, 9 they are not so easy to apply, mainly
because the special unitary group is not multi-
plicity frey for m&2,

In order to test the feasibility of expression (24)
for computer applications„we have programmed
it using the values of the Gj symbols given in

Appendix A. The resulting program is ope6. ended
in the sense that the only limitations on the spin
and the number of electrons are core size and
the CPU time. Some typical. CPU times are given
in Table I. In the largest case considered (S = 1,
14 electrons, irreducible-representation
dimension f&~ „—-1001) the program required
82 kbytes of main storage.

In this connection it is perhaps instructive to
examine the amount of computation required in
the method of Salmon et aL. ,

"taking as an example
the 14-electron singlet case. In this case,
Salmon eE a$. have to diagonalize a 393 x 393
matrix in order to obtain the 36 singlets char-
acterized by all. seven. pair quantum numbers
being one. Further, they have to diagonalize a.

141x141 matrix, a 51x 51 matrix, a, 19x19
matrix~ a, '

7 x P matrix~ and a, 3 x 3 matr~ I

TABLE III. Symbols used in the tabulation ot' the rcprcsent, ition matrices,

Symbol

Number
I

4
—Vis
12

Symbol

Number
I

2
—,
' Vis
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TABLE lV. The. matri-x Di4 2)(3, 5),

order to obtain the states with, respectively, 6,
5, 4„3, and 2 pair quantum numbers equal to one.
Inclusion of time reversal roughly halves the
dimension of the matrices involved. '

In a second stage Salmon et al."operate with
the required permutation on the ket and compute
the matrix element. In this- manner they avoid
having to multiply large (but sparse) matrices, as
has to be done in our method.

An example of eight-electron triplet' matrices,
complementing the results given by Serber" for
the eight-electron singlet case, is given in
Appendix H.

Ne remark that the number of electrons involved
in our method, as wet. 1. as in the method of Salmon
et al. 9, is in fact the number of electrons in the
valence shell, as pointed out above (cf. Sec. V).
Thus, the 14-electron ease corresponds to the
inclusion of seven-fold excited spin-adapted states
in a CI calculation of a closed-shell system.
Hence, in praetieal applications we can usually
restrict ourselves to eight or ten electrons in the
valence shell.

To conclude, we want to remark that Serber
spin functions are not as easy to handle as
Yamanouchi-Kotani functions or spin-bonded
functions, at least not by the technique presented
in this paper. One can derive closed formulas
for the matrix elements of more complicated
permutations than transpositions relative to the

basis consisting of either of these two kinds of
functions. The formulas for cyclic permutations
in'the Yamanouchi-Kotani basis are equivalent
to the expressions given by Drake and Sehlesing-
er, ' or earlier by Gouyet et al. ,' for the matrix
elements of the generators of the unitary group
in a Gelfand basis. These expressions give the
matrix elements of an arbitrary generator as a
single product of 6j coefficients. Iri case of
elementary transpositions one obtains the results
for the elementary generatoxs of U(m) derived
earlier'i+ in a different manner (using the
unitary group formalism~'). Very recently,
Shavitt" extended this approach to the matrix
elements of nonelementary generators, expressing
them as a single product of simple factors, while
staying completely within the unitary group
formalism.

The expressions for spin-bonded functions are,
of course, identical to those derived earlier by
Beeves,"Cooper and McWeeny, Sutcliffe" and
others (for an excellent review, see Ref. 42). We
intend to elaborate on these final r'emarks in a
future paper.
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TABLE VII. The matrix D (5 7)

2 3 4 5 6 7 8 9 10 11 12 13 14

1
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9
10

11

12 .

13

14,

15

16

17

18

19

20

21

22

23

24

25

26

27

28

d

.f

h

h

15 16 17 18 19 20 21 22 23 24 25 26 27 28

15

16

17

18

19

20

21

22

23

24

25

26

27

28

h

k
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APPENDIX A: EXPLICIT EXPRESSIONS FOR THE

REQUIRED 6j SYMBOLS

In this Appendix we present the explicit expres-
sions for the 6j coefficients needed in the evalua-
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tion of the matrix elements (24). These 6j coeffi-
cients are basically of three types, since the pair
quantum numbers Sh, (k =1, . . . , n) can only equal
zero or one. Thus, either at least one spin angu-
lar momentum vanishes [case (a)j or the 6j's are
of the type [cases (b) and (c), respectively J

1 1 1 S S'
and

S
(Al)

where S, S',S",S'" are nonvanishing integers.
Case (a). In the first case, the following well-

known simpl. e formula applies

=(6I [kI,I])"'",
I I I

(A3)

(A4)

case (c),

I I+11.
[

I I-1 1

(AS)

where we have used definitions (5), (15), and (16).
In cases (b) and (c) the pertinent nonvanishing

types are easily worked out and simple explicit
expressions for them are derived, namely,
case (b),

using again definitions (15) and (16). All the re-
maining 6j symbols needed in expression (24)
for the desired matrix elements are related to
those given above by 6j symmetry relations.

APPENDIX B: SERBER MATRICES FOR THE
EIGHT-ELECTRON TRIPLET CASE

In this Appendix we l.ist the matrices that are
sufficient to generate the eight-electron triplet
representation characterized by the Young dia-
gram [5, 3]. All nontrivial elementary transpo-
sitions not given below follow by Eqs. (16) from
the matrices in this Appendix. Only the lower
triangles of the matrices are listed, as the ma-
trices are symmetric. The Serber states, given
in Table II, are ordered in such a way that max-
imal blocking is obtained in going through the
chain S, o 3,& 8~s 8,. Within the blocks the
ordering of Serber2' is followed wherever pos-
sible. Since Berber gives matrices in the assoc-
iated representation [4, 4] = [2'], one can obtain
from his tables also the subgroup representa-
tions [2, 2], [3, 1], [4, 2J, and [3,3]; these are
identical with the ones given below.

Thus, we get

D&»&](1 3) —{Df4]@DP~~]@DR~&]@DE~&]

g DL'3I1]g D(2&2] @DE4]g DE3el]

gD[3I2] @D[3i1](pD l3 ~ 11 gD l4]

@Dr4]](1 3)

where

D"'(1 3) =(1),

=(I[I-1,I]) ~

I I-1 (A7)
h""(1,h) = m h

h hf

II I

=[,'I, I] ', -
I I+1 1

(AS)

(A9)

(A10)

Dt . ](1h3)
I, -q kj

(see Table 1II for the code used in these matrices),
and

Dtsh3](3 5) {D[4im]@Dfsis]@DE&2]

Dgs. h][(3 5

See Tables I7, 7', and &I for Dt »
D "], respectively. The matrix Dt' ](5, '7) does
not block, see Table Vg.
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