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Reduction of the Bethe-Salpeter equation to an equivalent
Schrodinger equation, with applications
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We propose a new relativistic two-body formalism which reduces to a nonrelativistic Schrodinger theory for
a single effective particle. The formalism is equal in rigor to that of Bethe and Salpeter, and considerably
simpler to apply. We illustrate its use by computing 0(a ) terms in the ground-state splitting of muonium
and positronium involving infinite Coulomb exchange.

I. INTRODUCTION

The high-precision measurements of the ground-
state hyperfine splittings (hfs) in muonium' (e p, ')
and positronium' (e 8') allow a sensitive test of
our understanding of two-body bound states in quan-
tum fje].dI theories and particularly in quantum
~l~ct~odynamics (QED). This is the second of two
papers in which we examine alternatives to the
Bethe-Salpeter' (BS) equation for organizing and
computing bound-state energies in spinor field
theories. In the first paper (I),' the BS equation
was reduced to an equivalent Dirac equation by
placing one particle effectively on mass shell.
This approach is natural when the binding i.s non-
relativistic or when the ratio of constituent mass-
es is large (e.g. , in high Zo. atoms or perhaps in
D mesons). Analytic solutions were found for a
Coulomb-like kernel, and a systematic perturba-
tion theory developed. The bound-state equation
reduced to the Dirac-Coulomb equation when one
particle's mass became infinite.

Here we propose an alternative approach which
may be more convenient when calculating high-
order corrections for nonrelativistic systems
(e.g. , muonium or positronium). We reduce the
exact BS equation to an equivalent Schrodinger
equation with reduced mass. Among the advantages
Of sucll Rll Rppl'ORcll RI'e: (1) Appl'OxlIIlRtlllg tile
kernel by a simple Coulomb interaction results in
a zeroth-order problem of great simplicity. The
wave functions are essentially just the usual
SchrMinger wave functions for the hydrogen atom.
(ii) The corrections to this zeroth-order problem
can be elaborated in a systematic perturbation
series. (iii) The unperturbed two-particle Green's
function can be expressed in a number of simple
analytic forms. This is important when computing
contributions from second order perturbation theo-

ry, as we demonstrate below. (iv) As the exact
unperturbed wave functions are finite at the origin,
the expectation value of the one-photon annihila-
tion kernel (in positronium) is finite. This is not
the case in the BS approach, where this quantity
can be made finite only after an infinite order (in
II) renormalization of the annihilation vertices.
En the formalism described below, all infinities
related to renormalization can be removed order
by order in precisely the way on-shell amplitudes
are treated. This greatly simplifies the analysis
and numerical evaluation of high-order terms
(Appendix A). (v) The spinor structure of the wave
functions is that of free-particle Dirac spinors,
facilitating the use of computers fox performing
spinor algebra. This is quite important in view of
the large number of diagrams remaining to be
computed before theoretical and ekpeqimental de-
terminations of hfs can be compared. (vi) The
constituents are t, reated symmetrically, and herm-
iticity is explicitly maintained. (vii) In the limit
of zero binding, the O~een's function and wave
functions reduce to the correct relativistic func-
tions describing two free particles (at zero rela-
'tive time).

Unlike I, none of the fine structure of levels
with differing angular momenta is incorporated in-
to the unperturbed QED solutions. The fine struc-
ture of atoms'with constituents of equal mass is
quite different in character from that of atoms
with a large mass ratio. It is difficult to create
a formalism which naturally acommodates both
cases and still admits analytic solutions compar-
able in simplicity to those presented below.

The most recent measurements of hfs test theory
to O(n'nEo) in positronium and to O(u'm, /m„&Eo,
n'nE, ) in muonium, where nE, is the leading con-
tribution in each case. The relevant terms of
O(cI'hE, ) can be computed in the Dirac limit (m„
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FIG. 1. Diagrams having three loops and more which
contribute to 0(G.') hfs.
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II. BOUND-STATE FORMALISM (TWO FERMIONS)

Most bound-state formalisms follow from a
I,ippman-Schwinger equation for the truncated
two-particle Green's function G~ having the gen-
eral form (integrations over relative four momenta
are implicit)'

G, (P) =X(P)+SC(P)AS(t )G, g ) . (2.1)

Here K(P) is the interaction kernel at total mo-
mentum P, A is a spinor projection operation,
and S(P) is a two-particle propagator. The kernel
is determined by the choice of A and S(P):

- ~) and will be discussed in a later paper (see
also Ref. 5). Few O(c.'&E„o('m, /m, AE, ) terms
have been computed. ' All zero-, one-, and two-
loop (irreducible) kernels contribute to this or-
der. In addition there exists an infinity of diagrams
with three or more loops which contribute. These
diagramsr involve multiple Coulomb exchange.
They arise when static interactions are treated
in second-order perturbation theory (Fig. 1). To
illustrate the use of our formalism, we compute
all O(o(') hfs terms of this sort.

In Sec. II we introduce a formalism describing
bound states of two fermions with arbitrary mass.
The analysis is similar to that in I and will only
be outlined here. In Sec. III we rewrite the bound-
state equation as a Schrodinger equation for a
single effective particle and solve it for a Cou-
lomb-like kernel. We -outline the entire calcula-
tion of O(c(') hfs in Seo. IV. We then compute the
contributions requiring second -order perturbation
theory. We also quote the analogous results ob-
tained using the formalism of I. In Appendix A
we comment upon certain aspects of renormaliza-
tion theory for bound states, and finally, in Ap-
pendix B, we briefly discuss the relation between
our formalism and the more conventional BS treat-
ment.

TpP-q

Q&"
I K I

T'( P+q

FIG. 2. (a) Definition of the effective kernel in terms
of the BS kernel (b) The bound-state equation.

SC(P) = G,(P)[1+its(P)G, (P)] '

= Gr(P) —Gr(P)AS(P)Gr(P)+ (2.2)

Given the expansion of G~, this equation defines
the expansion in Q for K.

The BS equation is obtained by choosing'

S(k,J ) = [i/(r, P+ k'-m, )][i/(~P-k'-m, )],
A=1, r&=[m,./(m, +m, )], i=1,2.

In this case the kernel Kas is the sum of all two-
particle irreducible diagrams. This kernel is
dominated by the static single-photon-exchange
kernel in non-relativistic @ED atoms. When the
kernel is static, integrations over relative energy

are easily done, resulting in a three-dimension-
al formalism with propagator (in the center of mo-
mentum frame)'

iiS(kP) = 2(&i6(k')

A(l)(k)A(2)( k) A(1)(k)A(2)( k)
P' E,(k) E,(k) —P'+ E—,(k)+ E,(k)

E,. (k) = (k + m', )'i', i = 1, 2,
A&'&(k) = [E (k)y'~ (k y -m. )]/2E (k).

The A A„ term contributes only to O(n'), suggest-
ing that a useful formalism could be constructed
with A = 27&i6(ko)A&»A&2) and S(kP) '=P

It is convenient at this point to introduce the
two-particle Green's function evaluated at zero
relative energy and having external fermion prop-
agator s

d r
G(kt(P)= ' ', (kr)'k'(k —PI)+ f,(tC(krP)G(rkP))

P
'

E,(k)' E,(k)
(")' '(" -q)' "("q )P

'
E,(q) E,(q)

where Gr is related to the complete four-point function (2.1) by
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Gr(kqP) = lim iGz(kqP) .
ao~eO~ o

Equation (2.3) is exact only if Z is defined as in Eq. (2.2). In terms of the two-particle irreducible
BS kernel Ks0, we have [Fig. 2(a)J:

(2.4)

Z(kqP) = K„(uqP) K (I P) -2 6(')
(2&&)' Bs r, i(&+ r' —m, rp-r' -m, P' E,(-r) —E,{r)

x K»0(rqP) + ' ' ' .
t ao~o=o

(2.5)

As discussed above, Z= K» ~,0~0.0 is a very good
approximation when the binding is nonrelativistic,
and the remaining terms in (2.5) may then be in-
corporated perturbatively.

Equation (2.3) is far simpler than the BS equa-
tion because we have chosen to consider Gr(kqP)
only at &o=& =0 xo The location of bound-state
poles is unaffected by the relative energy of the
constituents, "and so there is no need to retain
this excess degree of freedom when computing
energy levels or decay rates (I'= -21m(kE). Fur-
therrnore when the BS kernel is static, Gz is in-
dependent of k0 and q', and solving (2.3) is then
equivalent to solving the BS equation (Appendix B).

Lil e GgkqP), G(kqP) has poles at the m, m,
bound-state energies P„'.

G(kqP)- [g„(k)T([q[)/(P 0P„)]0as P'-P„'. (2.6)

Substituting (2.6) into (2.3) and evaluating at the
pole, we obtain the bound-state equations [Fig.
2(b)]

[P' E,(k) ——E,(k) ]g(k)
i3

=A&'&(k)A&'&(-k) —,q, iZ(kqP)y(q), (2.7a)

A'"(-k)P(k) = A'"(+ k)P(k) = 0. (2.7b)

Note that the spinor structure of (t&(k) follows im-
mediately from (2.7)

~ u("(m) u(-'(-&&&&')
0( )=

[ ( ) ( }j 0( ) (2.6)

p) (&& (2&u (q~)u (x G (kqP )r0 "r0
[ ( )

&7"&(G.') u (0&( -kp, ')
[4E,(V)E,(I )]"'

u(»(qa)u(0&(-qu)
4E (q)E.(q)]

we can rewrite Eqs. (2.3}, (2.6), and (2.7):

(2.9}

where u(kX) is the usual free-particle Dirac spinor
(uu = 2m). Defining

u""(&&&&')'u('-'&( k&(')'-,"'"' "' "- [4,(I) (I)]'

G(kkP&= ((Rw&'ll'(k —
&&

+
2

iKkrP 6 rqP

4(k)4*(q), p0 p0
Po PO nt

n

(2.10a)

[P' k(k& —-R,,(k&]k(k} fk, (=g(kkP&k(Pl&.

(2.10b)

Using methods described in I, we obtain the or-
thonormality conditions

f d3pd3
qG(rkP) W(kqPP„) y„(q)

y„(r)
po po

d'kd'
, (t *(k)W(kqP + )(I& „(q)„5„=, (2.11)

W(kqPN„) (2r)=5 (I, q)
-' ("q ) '-("-q ).

m n

Perturbation theory for this equation also follows
as in I. Let (t&„'(k) be the eigenfunction and &„'the
eigenvalue (P'=-m, + m, + &) of (2.10b) with kernel
Ao. 'Then if C is the corresponding Green's func-
tion (2.10a), the perturbed energies and wave func-
tions when K= Ko+ 5K are given by

I

~„=~0+(y0+it&Ky0) 1+ @0* i5Ky0—
6=6O

n

0 08
+ &t„0*i5K G, — " ", i5K&t„0+O(SK')

6=60
n

8
Q„00 $„01+ Q„0*—i5K(([&0

~

- 6"-60

0 OW'&

+ G, — " ", ~i5K@0 +O(5K2),
~ -

&n& 6=6O

where the momentum integrations are implicit.
Note that these formulas are also valid when (t&,

(t&*, 6K, and G are replaced by [t&, T[(, 6K, and G,
respectively.
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III. UNPERTURBED PROBLEM IN QED

Equation (2.10b) is rendered more tractable by
multiplying on both sides by N(k)l&N(k) where"

[P,+ E,(k)+ E,(k)](P„—[E,(k) -E,(k)]'j
2P, [P', —(m, —m, )']

k' 3 k'=1+ .-- — +" IkI «m4m' 4 m, m, 2(m, +m, )

and

m -=m, m, /(m, + m, )

is the reduced mass. The resulting equation is

2m v'N k

3 N kÃq 1/2iKkqP

(3.2)

This is just a Schrodinger equation for an effective
particle with "binding energy" and "mass"

P', —(m, +m, )'
2P, 2(m, + m, )

P„—(m, —m, ) e 2mm= ' ' =m+- + ~ ~ ~

4I' 2 m, +m

We emphasize that this equation is exact and equiv-
alent to (2.10b).

For @ED bound states, the choice of zeroth-or-
der kernel is now obvious

iK.(kqP) = (-"/Ik —qI') &1/[N(k)N(~)]'"]

(3.3)

as then (2.10b) reduces to the Schrodinger-Cou-
lomb equation

functions with m replaced by m

&f&(k)= 1,4, Q~,„(k;m), n=1, 2, . . . ,
N(k)

u("(k)u"'(-k)
0( ) [4E (k)L (k)] / 4(k) '

The normalization is fixed by Eq. (2.11). Note
that Q(x = 0) ~ 1 d kQ(k) is always finite in the un-
perturbed problem. The unperturbed energy levels
follow by solving

P„'—(m, + m, )' o(' P', —(m, -m. ,)'&I

m
~PO= (m, +m, ) 1 ——,2+ 42 m +m

&2m @4m m'=m +m — + — 1—
2n 8 ' +m

.l 2

+ O((r') .
Et is readily demonstrated &hat the remaining

O(n') terms are due to the following static kernels
(in Coulomb gauge)":

(a) Relativistic corrections to single Coulomb
exchange [Fig. 3(a)]:

2
~ (Z) (2)i5K, =

(
(2 y yo—q

-e2 k q k'+q'+4k q
(kq( 4 8.

2(m, + m, )

sk X q ' O'I Sk X q ' 0'2
+ 2 +

4m', 4m,'

(3.5a)

4(k) d'q -e' Q(q) .
2m v'N(k) (2m)' I k —q I' &N(q)

(3.4)

(b) Single transverse photon exchange [Fig. 3(b)]:
2-, yr'"y,'"&,"(k q)—Ik-ql

(a) ~

(b) I

(c)

FIG. 3. Kernels contri-
buting to 0{& ) energy-
level corrections.

~ ~ ~ CoI.IIomb Interaction
Tf'Qnsverse Photon

Ko

The eigenfunctions are simply related to the
(normalized) nonrelativistic Schr'odinger wave

e' (k q)' —k~q'

m m (I'-q(2

ik x q (o, + o,)
2m m

(k q) x ir, (k —i() x k.,
I4-',-,

(3.5b)

(c) Single photon annihilation [positronium only;
Fig. 3(c)]:

i5K = [y 'y /(P ) ]e
2~i oK„=— —(3+ o, o,), m, = m, , (3.5c)

'2
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Only the dominant parts of each kernel have been
exhibited.

These kernels are important for the analysis
presented in Sec. IV. We will also require the
ground-state (n= 1) wave function

X.( )=((. ..) (—,) (x.,— .).x'"x"'

ys }/2
(3.6)v (k'+ y')' }0

where X"', X'" are two-component spinors.
We now examine the Green's function t, for ker-

nel Ko. We require

lim [G —P Q*/& —go],
g-+ 60

for second-order perturbation theory (2.12). Ap-
plied to (2.10a), the arguments used above lead to
a simple relationship between Co and the nonrela-
tivistic Schrodinger -C oulomb propagator"

G,(kqP) = [~(a)~(q)]"'a„„(kgb; m)

=O„„(kgb;m) IkI, IqI «m„m, . (3.7&

Though analytic expressions exist for G„„in co-
ordinate space, "we find it convenient to use an
expression in momentum space due to Schwinger}"

(2v)'6'(k -q) 1 s' 1
e -P/2m e -P/2m Ik-ql'& —q'/2m

S'gP a
I k —ql 'p -m/2&(c —P/2m)(e —q'/2m)(1 —p)' c —q'/2m

+8(kq) I. (3.8a)

R(kq) represents all contributions due to exchange
of two or more Coulomb photons and is given by

(k'+ y')'(q'+ y')' 2 P+ y' q'+ y' 2

where iq= o(m/mme The .first two terms are
just the zero and one Coulomb terms in the Born
series, Integrating by parts and taking ig- a we
can isolate and remove the ground-state pole,
and perform the p integration. The resulting
(exact) expression is"

(x
—-) ~x..(x)x.,(t()

)sch
6~ 80 4 —co

-64m v'y'63(k -q) y'
o(y 4(k~+y') 4(k +y )Ik -ql'(q +y')

lim (0, —P,&f&,*/e —«') - ( 64m/-o(y')R,
6~ eo

in (2.12). As mentioned earlier these are the only
relevant kernels having three or more loops,
aside from the O(n'AE, ) which are calculable in
Dirac theory.

IV. HFS IN MUONIUM AND POSITRONIUM

All kernels, except one, contributing to O(e')
ground-state splitting in this formalism are dis-
played in Fig. 4. These have been expressed in
terms of the BS kernel Kss (Fig. 5); the unperturb-
ed kernel K„and 8 [Eq. (3.8(b)], by combining
expansions (2.5), (2.12), and (3.8). Only those
parts of Ksa need be retained in Fig. 4(a) as result
in diagrams with two or fewer loops.

The only contribution not appearing in Fig. 4 is

m-a
(4A I )1I 2

xtan-'(4A —1}"'I, (3.8b}

A= (k'+y')(q'+y')/4y'Iq -kI'.
It is convenient when computing O(c(') hfs to iso-

late the zero and one Coulomb terms as these re-
sult in one- and two-loop kernels [when inserted
into (2.12)] which are most easily computed with
all other kernels of the same order. In Sec. Vf
we compute all terms involving the remainder
A, i.e., the kernels which arise when we substi-
tute"

'~l, II II
— & I:II +

, ll II II
— & I:II

R — +

,
'"[R)

('. - I)

FIG. 4. Kernels contributing to 0(& ) hfs. A double
line represents the two-particle irreducible Bs ker-
nel (Fig. 5).
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term containing i5Kc and i5K~:

+ + ~ ~ ~ +

+ ~ ~ 0

FIG. 5. Two-particle irreducible BS kernel.

trivially computed

96 e

&E = Eo Q()* i—5Kcpo = 4y'o. '
eg '='o 3(m, + mp)'

'

In what follows, we compute the hfs due to the
kernels in Fig. 4(b). To exhibit the mass depen-
dences, calculations are for muonium when it is
appropriate. The corresponding results for pos-
itronium are found simply by setting m„= m, .
Note that only the dominant perturbation kernels
[Eil. (3.5)t must be treated in second-order per-,
turbation theory, and then only in the region of
nonrelativistic momentum. Note also that i'd%~
and i5EA alone contain spin-spin interactions, and
thus w8 need only consider pairs of interactions
which include one or the other of these kernels.

To illustrate the procedure, we consider the

The spherical symmetry of the wave functions
allows us to drop spin dependent terms in HKc
and for hfs to replace i'd%~ by

i5Kr - (e'/Gm, m„)o, 'o,
%e find

2 64n 2 d'p 8n'y d'y Smy'
fEcr Ei & -6

(2~)3 (p 2)2 (2 ). (~ 2).

d 'jd'q 2p q p'+ j'+4p 'q+ 4m&
(2ir)'

&&
i Xt(gg7,

where Ez is the hfs in lowest order (Fermi split-
ting)

2 y Q . (»» )
8 y (x

F 3 memp J' p 3 mern g

( &n'm„ in positronium). The r and p integra-
tions are easily performed (using Feynman para-
meters for the latter), leaving

E a'F
7T'

d'kd'q' y, q y2 m 6y, q 8y2
2 —tan ' ——» — —tan '- — »+ l~ ft(qk)+~ me+me ~ ~ ~ +

The last integrals were evaluated numerically";
the analytic results quoted here agree to at least
five significant figures with the numerical results.
The term (iL —~6'm')n'E„when combined with simi-
lar contributions from Fig. 4(a) results in the
usual Breit-Dirac correction —,'o. 'EF. The remain-
ing term is a new recoil correction.

I

A similar analysis has been performed for each
term in Fig. 4(b). The results are summarized
in Table I. 5E» agrees with the value computed
in Ref. 20.

We list here the final integrals for each case.
Again these were evaluated numerically to one
part in 10' or better. As the spin-spin part of

TABLE I. (n6) hfs from second-order perturbation theory involving kernels with three or
more loops.

Muonium
Coefficient of (n m~m&/(m, +m&) JEz

[(me+ m )'/mern„f(~4- ~6~') —,+~27t'

~@AA

f(age+ rnid) /me~~] 0,6051+0.8412

Pos itronium
Coefficient of +6m

24 Z2+

M+2
&64 i&

M- &7r2
16 24

32 96

0.038 99
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5K„ is ~ that of 6Kr, we find 5Ec„=f5Ecr(m„- m, ) for these contributions.

y' d'yd'q y, P y' 3
)

1 d'yd'qR(kq) (k q)' 3 k' 3 k'~y, k
~

3 q2 3 i12+y', q 3 3 k +y', k k' 1 1 Q'+y', q

yq y 4 4 y& y y' 2 2 yq

y
' 1 22=E~ 11 ————m~mm, V2 3

d'kd'q y, k y' 1 - ~ 6 7 w''I—tan ' ——-» ——R(kq) = c('m, ———
~,y' k y k'+y' 6 ' 16 24''

R(kq) = ——o."m .
Sn4 y'

Perturbations of SETT ~EAT a d ~@AA

dependent to this order of the details of the bound-
state formalism used. The same results should
occur in most any analysis and in particular they
appear in a BS treatment or in the formalism of I.
On the other hand, iM~ is very dependent upon
the nature of the propagator and of the unperturbed
kernel used. Thus the formalism described in I
gives the following results:

—.f, &(&s)f()')

4 " ykdk, ' 5 y, k
, f(lr)

'

l—n2 ——+ —tan '—
(k'+y )', 2 0 y

1 k' 4y—ln1+ —,+
y a+y

The results in Table I are correct.

7 m 5
gg +~mm„6 2 m„2 6)

6
CA i6™ e'
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APPENDIX A: COMMENTS ON RENORMALIZATION

V. CONCLUSIONS

In this paper we have described further alterna-
tives to the traditional BS analysis of bound states
in field theory. ' These novel methods are well
suited to computational QED as analytic solutions
of great simplicity can be found for a zeroth-or-
der interaction containing the basic physics. The
corrections to this basic interaction are then un-
arnbiguously specified by a simple: perturbation
theory.

Applying these results, we have computed new

O(o.') terms in the ground-state splitting of muon-
ium and positronium which require anall orders
treatment of the binding potential. Of the terms
still to be computed before theory matches experi-
ment in precision, only those of O(n'Ez ) present
a major conceptual problem. Evaluation of the re-
maining terms [Fig. 4(a)] is straightforward though
perhaps tedious.
Note added in proof All terms in Table I other
than 5E» have now been evaluated analytically
using the general identity

The solutions presented in Sec. III contain none
of the divergences associated with the short-dis-
tance (high-energy) behavior of QED. ln particular
the wave functions at the origin

( (x = 0) =f, (' ((.')

are finite. Here we illustrate how this. , property
allows us to disentangle the low-energy features
of the field theory (e.g. , bound states) from the
high-energy features (e.g. , UV divergences). This
is most desirable as the first must be analyzed to
all orders, while the 1.atter are most conveniently
handled in perturbation theory.

The wave functions in Sec. III are finite at x=0
only because P' falls faster for large momenta
than does the true one-photon interaction. Indeed
the BS wave function (j~ for the exact one-photon
interaction [Fig. 6(a)t is mildly divergent at the
origin (just like solutions of the Dirac-Coulomb
equation). This divergence causes problems only
when evaluating the energy shift due to one-photon



18 REDUCTION OF THE BETHE-SAI. PETER EQUATION TO AN. . . 817

P
BS BS-

—+kP
2

(a)

+ss ~ss
-+as l)~)ss

FIG. 6. Divergent subdiagrams in the expectation
value of the one-photon annihilation kernel with wave
function g&&.

annihilation [Fig. 6(b)] and similar kernels. Since
the annihilation kernel is independent of relative
momentum k, the perturbation is proportional to

(x=0)~'-
~ f d'PP(k)~'= . This expectatio n

value contains an infinity of divergent vertex sub-
diagrams, as is evident when the wave function is
iterated [Fig. 6(b)]. Thus the energy shift has the
form

AE(A) =An'[1+nf, (A)+ u'f, (A)+, ],
if k is cutoff at A. The functions f, (A) all diverge
as A- ~ and these divergences are removed only
by an all orders vertex renormalization. Note
that the leading order contribution is finite
[=

~
p„s(0)~'%(e'8- ela) where g» is the non-rela-

tivistic wave function and 3R is the annihilation
amplitude at threshold]. The divergence is a rel-
ativistic effect and as such is suppressed by a
factor (e/c) = n

The infinity in g~s(0) is spurious insofar as it is
removed by a (complicated) renormalization when
computing one-photon annihilation terms, and cut-

. off by momenta of O(m) in other terms. Using the
more convergent wave functions g from Sec. III,
UV divergences only appear within the kernels
themselves. These are removed order by order
in just the way they are removed from on-shell,
amplitudes. No further infinities can be introduced
when evaluating the corresponding expectation
values since g(x= 0) is finite. Thus the perturba-
tion due to lowest-order annihilation [Fig. 3(c)] is
finite for these wave functions, and agrees in low-

+8S) + ( + ~ (ees—

= +sag f (s+s

est order with ~(A). The divergent parts of
AE(A) appear here, one at a time, in higher-or-
der kernels. For example, the first-order vertex
correction (Fig. 7) arises from terms in the sec-
ond line of Fig. 4(a). The kernel in Fig. 7(a) di-
verges as loop momentum k- ~, and reproduces
the lowest-order divergence in AE [i.e., Kn'f&(A)].
This divergence is exactly cancelled by the usual
(lowest-order) renormalization counter-term
[Fig. 7(b)] for all finite external momenta q. The
q-integration must then converge because J d'qg(q)
does. Thus the energy shift due to the kernels in
Fig. 3(c), 7 is completely finite.

Finally, we note that the Green's functions and
kernels discussed in Sec. II are all unrenormalized
(though masses and charges in I7O, rj are physical).
Overall multiplicative constants, such as Z„can-
not shift the locations of bound state poles in th@
Green's function. It is obvious from the deriva-
tion of perturbation theory (see Ref. 4) that such
constant factors- cancel in the final expression for
the perturbed energy. As mentioned above, the.
masses and charges appearing in the unperturbed
interaction (Ko) and wave functions (Sec. III) are
the physical quantities. Consequently all renorm-
alization is due to counterterms appearing in the
kernels (Fig. 4) of the bound-state perturbation
theory [Eq. (2.12)]. In particular it is not correct
to replace the unperturbed wave function t/r by Z,P
when calculating radiative corrections. The fac-
tors of VZ, required for charge renormalization
already occur in the kernel. To illustrate this,
consider the first-order radiative corrections on
the electron line using the BS wave function de-

2 M~3
,-( Xp „

. —+q2
(o) (c)

FIG. 7. First-order radiative corrections to one-
photon annihilation kernel using solutions from Sec. III.

I

2 +

FIG. 8. (a) Perturbation due to first-order radiative.
corrections related to the electron. Similar terms must
be included for the muon (or positron). Renormaliza-
tion counterterms are implicit. (b) Definition of the
"effective vertex".
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+ ~ ~ ~

FIG. 9. Terms from Fig. 4 due to first-order radia-
tive corrections as rewritten in terms of the "effective
vertex" defined in Fig. 8(b).

Thus given the solutions g of (4),, the BS wave
function is just p))s =K(P)(jI.

Specializing to the formalism in Sec. ID, we see
that when Kss is static (independent of k ') the
truncated BS wave function is

APPENDIX 8: RELATION TO THE BETHE-SALPETER

FORMALISM

At a bound-state energy Po, the complete two-
particle Green's function has a pole

Gr(kqP)- [-iPss (k)P (q)/(P, —P„')].

Here gas is the truncated BS wave function

(B1)

picted in Fig. 6(a). By iterating the wave function,
we can express these corrections in terms of a
single "effective vertex" (Fig. 8). Clearly charge
is properly renormalized. Similar rearrangements
of perturbation theory can be obtained beginning
with the solutions in Sec. III. The lowest-order
radiative corrections in Fig. 4 can readily be re-
written in terms of the same "effective vertex"
(Fig. 9).

An advantage of grouping terms as in Fig. 9 is
that Z, and Z, cancel explicitly because of Ward's
identity (QED). These are very complicated mo-
mentum dependent renormalization factors in
Coulomb gauge and it is fortunate that they need
not be computed. The vacuum polarization is
gauge invariant'in @ED and as such it (and Z, ) can
be computed in Feynman gauge (or any other gauge
one might prefer).

A detailed application of renormalization theory
is described in Ref. 22 for bound states in Dirac
theory. Most of that discussion applies to two
particle bound-state theory as well.

This is true only when K» is static, a,s only then
is P„s independent of k' [Eq. (3)]. In the general
case, K must be redefined to include, the k' be-.

havior of K~s and its iterates. Whether or not
K zs is static, the following relation is valid:

It ha, s recently been sugg. ested. that high-or. der
computations. be performed in two stages. '~ First
the BS wave function is determined for the fully
reiativistic (static) Coulomb interaction using a
perturbative expansion. This wave function is
then used in BS perturbation theory to compute
contributions. from transverse photons, cross
graphs, etc. The basic difference between this
approach and that described in this paper is that
we abandon the BS for'nalism completely. All
perturbations, static or otherwise, are treated in
the same Schrodinger-like theory, avoiding the
need for two separate perturbation series. Note, .

however, that the methods described in thi. s paper
(or in I) together with (5) can be used to deter-
mine the BS wave function to any level of accuracy
for a static kernel. Th'us, they are of use even if
the two stage approach is adopted.

Finally we note that if g(k) is a solution of Eq.
(2.7) for some kernel K(kqP), then wave function

y„(k) =-(P'- E,(k) —E,(k))q(k),

g, (k) =

z

v,P+ )t(- m, ).,J -|t(-m,

, K „(kqP)q„(q) .

7,p —g —m, y„(k)

(B2)

is an exact (truncated) solution of the BS equation
with kernel

K (kqP) = A"'(k)A"'( —k)r7(kqP)A"'(q)

x A(&)( q) (1) (2)

P~s =K(P)AS(P)gss, (B3)

where A and S(P) are arbitrary. Defining a new

wave function $ = AS(P) q)M, we obtain

S '(P)(=AK(P)(. (B4)

This is simply the effective bound-state equation
of the formalism defined by A and S [Eq. (2.7)].

Substituting (1) into (2.1) and evaluating at the pole
we find (momentum integrations implicit)

Thus, the wave functions of Sec. III are also exact
solutions of the BS equation with this kernel (K
-K,). It is possible to restate all of the analysis
in this paper in terms of the BS formalism, using
these as the unperturbed BS wave functions. How-
ever such an approach is awkward (a) because it
obscures the simple connection with nonrelativis-
tic Schrodinger theory, and (b) because the wave
functions g~s [Eq. (2)] still depend upon relative
time (or energy).
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