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An explicit foim of quasiprojection operator Q is given for the calculation of resonances in the domain of
inelastic scattering of electrons from atoms and atomic ions. This operator allows the calculation of the
resonant spectrum through the diagonalization of QHQ with as many inelastic states projected out as
desired. The technique gives rise to a limited number of spurious states, but they can be unambiguously
identified and thus eliminated. The elimination procedure is illustrated in the case of three-electron (i.e.,
heliumlike target) ions whereby we explicitly determine the number of spurious states that arise in inelastic
scattering below the 3 S state of the target.

I. INTRODUCTION

Although recent work in the theory and calcula-
tion of resonant structures in the scattering of
electrons from atoms was started as a purely ac-
ademic exercise, which can be described as the
culmination of the nuclear- resonance theory in
the area of atomic physics, it has very recently
become clear that such calculations on ionized
systems are of essential practical importance in
solar, plasma, and astrophysics. For the scat-
tering cross sections in the neighborhood of inelas-
tic thresholds can be dominated by these resonan-
ces, ' and as a result, the associated rate constants
can be dominated by such effects. The rate con-
stants are in turn the dominant atomic parameters
which are required in order to interpret the physi-
cal conditions of the astrophysical or other plasma.

As a matter of practice resonance calculations
can only be described as rigorous for one-electron
targets, because ultimately only in that case can
the exact (i.ei.i hydrogenic) target function be ex-
plicitly given.

The underlying method we wish to consider is
the resonant projection-operator technique of
Feshbach. ' Here the restriction to electron scat-,
tering from one-electron targets manifests itself
by the fact that only in that. case can'a rigorous
projection operator Q be constructed. ' This then
allows bounded variational calculations for QHQ
to be carried out' whose eigenspectrum corres-
ponds faithfully to resonances of the compound
system. Such calculations have in the interim been
greatly refined, so that considerable precision has
now been obtained. '

In calculating many-electron targets, one would
naturally be led to use the expedient of approximate
target-state wave functions in an otherwise rig-
orous form of Q. It turns out, however, because
of identity of scattered and orbital el.ectrons, that
even the formal definition of an idempotent Q op-

erator' is not explicit; rather Q contains a part
that requires the solution of a subsidiary homo-
geneous integral equation which would in general
pose a very formidable problem. To obviate this
problem, we have observed, ' in effect, that drop-
ping this very difficult piece of the operator affects
neither the discreteness of the spectrum nor the
proximity of eigenvalues to the positions of reso-
nances. At the same time all the effects of the
antisymmetry of the total wave function are re-
tained in this quasi-projection-operator formal-
ism. The original calculations for both position
and width of the lowest 'S states of He have pro-
vided results' which are among the most accurate
thus far. Similar successful calculations for po-
sitions and widths of Li autoionization states have
also been carried out. '

The method' actually consists of replacing the Q
operator by a (generally nonidempotent) Q operator
from which the variational solution of QHQ pro-
ceeds in the usual wa, y. However the previous Q
and associated calculations were restricted to
resonances below the first inelastic threshold. '
In this paper we generalize the operators to be ap-
plicable to resonances below any number of target
excited states, but below the first ionization thres-
hold (Sec. II).

The analysis shows that as in the previous case, '
one can get spurious states, which, ho~ever, can
unambiguously be determined (and probably in ad-
vance). Although the general. nature of these states
is clear, the specific analysis is performed for the
two-electron target, with the results being dis-
played in a table giving the number of spurious
states of different total angular momenta (partial
waves) for quasi-projection-operators which suc-
cessively exclude up to five states (i.e. , all states
below the 3'S state of the target). This appears
in Sec. III.

In Sec. IV, we presentour conclusions, whichin-
clude some comments and contrasts with other ap-
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proaches to the inelastic resonance problem. We
also discuss the incorporation of these ideas in a
distorted-wave program devoted to solar and as-
trophysical problems.

II. INELASTIC RESONANCE QUASI-PROJECTION-

OPERATORS

The basic operator we define is the P operator

E+
P(ff)

tenno ~l
(2 1)

Pa

P„ is such that it does not affect the asymptotic
form of a scattering wave function 4 when v+ 1
channels are open:

limP„+ =)am@ (2.2)

lim())„4' =0, i=1, 2, ... , N+1.
f(woo

(2.4)

The index n in (2.1) labels the target states and
v the highest state which is energetically access-
ible for a given incident energy k,'. (Rydberg units
are used throughout this paper. ) Letting E be total
energy,

(2.5a)

whereas

g(g ~ (2.5b)

In (2.5) c„are the energies of the target system
and k„' the corresponding scattering energies

k„' = k,' —(s„—e, ) .
The projectors P((") in (2.1) are defined by

P(n) (jt („(() ))( (I) („(())

(2.5c)

(2.8)

where g„ is target wave function of the nth state
coupled to the angles and spin of the scattered
electron to make a function of good total orbital
angular momentum (L) and total spin (S):

In the electron-atom (-ion) problem this must be
true for the radial coordinate of every electron
x„ i =1, 2, . . . , X+1, where N is the number elec-
trons in the target (so that N+ 1 is the total number
of electrons). The (() operator is then defined by

(L)„=1 —P„; (2 8)

it follows from (2.2) that

In (2.7) we have specified explicitly the quantum
numbers n = (L„,M~, S„,Ms) associated with the
target eigenfunction Q„only in the Clebsch-Gordan
coefficients. In addition we use superscript nota-
tion to indicate the absence of a coordinate; thus in
(2.7) x") signifies the absence of the totality of
coordinates (spin and spa, ce) associated with the
ith particle. Explicitly

(f)a
4 n(+ ) v j ((g, , sg((s (+(& 2t ' ' ' I ( 1& (+1&' ' ',xE41)

We also note that the "argument" of g„on the
left-hand side of (2.7) is similarly consistent,
because from the right-hand side P„ lacks only the
radial coordinate r( of the ith electron. y„~,(i)Sis a spin-~ function of the ith electron.

Before proving the fundamental relation, Eq.
(2.2), we must specify the asymptotic form of a
scattering wave function in the n- v continuum.
In the representation in which actual calculations
are carried out (i.e., L and S are good quantum
numbers)

sin jg 1 0
limC =(-1)s " ~ "

g (r'~ )
Ff ~()o k„rf

(2.8)

The factor (-l)~s is +1 (i.e. , i)& = 0 or 1) depending
on whether the argument in (2.8) (x&, x„.. . , x& „
x&„,. . . , x„„), is an even or odd permutation of
x

y x2 ~ ~ ~ xpf y This is the ne cessary condition
that the asymptotic form derives from a fully anti-
symmetric 4. It is assumed that the target states
(t)„are themselves antisymmetric in their particle
indices. The phase o„ in (2.8) is the usual partial-
wave term --.'.-t/, plus the well:-known Coulomb
terms if the target is an ion.

We are now in position to prove the fundamental
formula (2.2). Because the (t}, are bounded eigen-
functions we know

»mg(x(())=0, i~j.
rf

(2.Sa)

lim(j)„(x"') = g (x'")5
f'f ~ oo

We also use the orthonormality of the (j)„:

((t) (x"))(t) .(X(~) )) = 5

It follows then from (2.8) that

(2.Sb)

(2.10)

If i=j, then (t}, does not contain r& (i.e., it does not
contain x&) and it is unaffected by the limit; thus we
can write more generally

(j„(r(")= g (L„l(Mz m( I L Mz, )(S„~Mam, ISMs )

umph)" + = 5)fPg"
'Ff w ()o 'Yf ~ oo

(2.11)

x (t)„(x"))Y,„(A )x„(g,(i) (2.7)
With these equations we then outline below the
essential steps by which Eq. (2.2) is derived:
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V

limP„@ =P

n~o

n~o

Iim (P'P'e)
f)et 40

g„~~~ lime

( 1)'~t-(~"'.) g &P.(~"')4.(~"'))
n'~o

X
sin(k„, r, + o„,)

k'n. rJ

&8 (r&)g„(r' '))~„=0,n- v, allm (3.3)

then it is easy to show that

pond to resonances, the Q„operator should elim-
inate all n ~ v components for a/E distances of the
radial coordinate r&. In (3.2) the r~ dependence of
4' is expressed in terms of a compl. ete set of radial
orbitals 8„(r&). If the e„uence orthogonal to the yi„

for all g ~ v,

V

( 1)Py (. & f + &
q (~&/))

n-o

= lim+
g)ee~ ~

(2.2)

&eP,)=(++I)g g
n~o m~0

whereas

(3.4)

To repeat: Eq. (2.2) is the essential property,
because, as noted in (2.4) it follows that Q„4- 0 as
any r& -~, and from that we have our desired var-
iational principle:

&4Q„HQ,4)
&QP, 0P)

(2.12)

whose eigenvalues 8~"' are discrete if they are be-
low cv~~.

The denominator of (2.12) is

&Q.~, Q.~) = &~Q.'+); (2.13)

III. SPURIOUS STATES

Let us envisage an arbitra. ry function 4' (of good
L and S) to be used in the variational calculation
(2.12). Such a function can be expanded in the form

g C„„g„(rt»ls (r l) .
n, fn

(3.1)

The antisymmetrizer 8 effectively sums over
cyclical permutations of the j index, i.e.,

N+

~[4„(~"')e.(~,)]= (- I)'~g„(~"')~.(~,) . (3.2)
&~1

Asymptotically the Q„operator gets rid of all tar-
get components g„ for n ~ v according to (2.4). Now
the key to the Feshbach Q-operator formalism' is
that in order to get only eigenvalues whj. eh corres-

it is to be emphasized that (2.13) is not in general
A

equal to &4Q„4), because the quasi-projection-op-
erator Q„ is not in general idempotent. The lack of
idempotency is in turn related to the (possible) ap-
pearance of a finite number of spurious eigenval-
ues. These will be discussed in Sec. III; however
we emphasize that such eigenvalues can be identi-
fied unambiguously, and it is this fact that makes
this method a secure one for calculating autoion-
ization states.

V o.

&e,P„e,) =(x+1)g gC„"„&*C'„'„&.
niao fn=o

(3.5)

It is clear therefore that an arbitrary matrix ele-
ment of Q„= 1 —P„would be [if (3.3) were valid]

&e,Q.e,) =(++1)g g C~»*C~2~,
na V+1 fnlIO

(3 6)

I

from which we see that only n~ v+1 terms remain.
In point of fact the orthogonality condition (3.3)

is not in general true. Actually there will be a
finite number of terms for which (3.3) will be vi-
olated. .The number of such terms is in effect the
number of spurious states that can arise. Below
we shall consider explicitl. y the number of such
terms for the two-electron target, but in a general
way we can describe those orbitals which violate
(3.3) as arising from orbwxls which (in an inde-
pendent-particle approximation) correspond to un-
filled shells in the g. For example if we want to
eliminate both the ground, 1'S(ls'), and first ex-
cited, 2'S(ls2s), states from a two-electron tar-
get, then a three-electron wave function of the
form (ls)"S;(2s)

~

'S), (ls2s) 'S; (ls) ~'S)) and
(ls2s)'S;(2s) 'S) all contain the third electron in
an orbital occupied by one of the target electrons.
None of those types of functions will be completely
eliminated by the appropriate Q operator (in this
case Q, ). On the other hand a hypothetica, l state in
which a target-state orbital would appear to be oc-
cupied such as (Ls)"S; (ls)

~

'S) is disallowed, as is
well known, by the exclusion principle. .Such a hy-
pothetical state therefore does not contribute a
spurious state.

In Table I we have tabulated the number of spur-
ious states which will arise for different v up to
v =4. This number is derived by writing all allow-
able combinations 4„) (for each total symmetry) of
target orbitals which ean be made from those of
occupied target orbitals, and then calculating
Q„4'„); the number of nonzero Q„4'„) consititues the
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TABLE I. Number of spurious states in quasiprojection calculation for three-electron ions.

Symmetry of
autonioziation

state b
v+1 1 2 3 4 5

target state 2 'S (ls 2s) 2 'S (ls 2s) 2 'P (4s 2p) 2 'P (ls 2p) 3 '5 (ls 3s)

2+e
2 P0
2De

0
0

"' The target state given is the one below which eigenvalues must lies in order to be considered as
resonances. See text for further discussion.

There are no spurious states of higher symmetry for v 4 S. States which are nonrelativistically stable
are not included in this table.

number of spurious states, and it is the entry in
Ta,ble I. In so doing care must be exercised that
(a) the state is allowable, (b) that each state is
linearly independent of the others, and (c) that
even if some states are linearly independent the
resultant Q„4' must also be linearly independent,
but not zero. In the determination of these num-
bers it is only necessary to use Slater determin-
antal forms for the target- state functions. Fur-
thermore one does not use the numerical values
of the orbitals, only the fact that they are orth-
onorrnal:

(3.7)

We have illustrated (a) above by noting that
(1s)"S,(1s) I'S) does not exist; to illustrate (b) we
note that

0'„= (1s2s)'S; (Is)
I

S) ~ (1s)"S;(2s) I'S) .
~ (1s2s) 'S (].s) I'S) .

Thus these somewhat different looking states
are to be counted only once. We also note that in
'P' symmetry the three states (ls)''S; (2P) I'P),
(ls2s)'S; (2p) I'P), and (ls2s)'S; (2p) I'P) are zero
when acted on by Qo, Q„and Q~; thus they contri-
bute no spurious states. On the other hand for
v =3 these states plus the remaining possibilities

, (1s2p)'P; (1s) 'P) and (ls2p)'P; (2s) I'P) are not
zero when acted on by Q3; however two of the re-
sultant Q,4'„are proportional. to each other, so
that only four spurious states remain, 'as indicated
in Table, I, for this case.

Let us also emphasize that, discounting the
spurious states, the energy of the autoionization
state must be below a„„in order for it to count:

(3.8)

(The v+ 1 state is what is given in the table. ) How-
ever any state which does qualify is distinctly a
new state (i.e. , resonance), and not one which may
have arisen from a lower (or higher) v calculation.
In fact the spurious statel of a given v ca,lculation

may in fact correspond to the real resonance of
a lower v ca.lculation. (The spurious states, how-
ever, may also correspond to a purely nonreson-
nant scattering function. ) Thus we envisage calcu-
lations as being performed sequentially from one
v to the next, so that one uncovers all (Feshbach)
resonances that are present.

We expect that the energy of spurious states will
a,lways be the lowest that arise. Thus, for ex-
ample, for the v+1=3, '8' entry in Table I, we
expect the lowest two eigenvalues to correspond
to the spurious states, and, assuming'we have
used a good enough variational wave function these
eigenvalues should be below the 2'P threshold.
However, in order to be sure, it may be necessa, ry
to evaluate (4„C) for each eigenfunction 4 that ar-
ises for each suspected spurious configuration 4„.
If this overlap is in fact large (i.e. , close to 1),
then we can be sure that the (main part of the)
variational eigenfunction 4 is 4„ in character and
should be eliminated. It is conceivable that in
some cases a nonobvious ordering of eigenfunc-
tions may occur; but in any case the overlap test
will clearly reveal which states are real.

Finally we mention tha, t no attempt has been
made to include the shift & between the eigenvalues
& =(Q&Q) and true resonance position~ E„:

Indeed it makes no sense to do so in the absence
of exact ta, rget states and idempotent Q and P op-
erators. From the case of one-electron targets,
where ~ can be calculated, ' one can be sure that
& will be very small, probably much smaller than
other uncertainties which will necessarily confront
any real calculation.

IV. CONCLUSION

In generalizing the quasi-projection-operator
technique to the inela, stic domain, we have attemp-
ted to develop a method which is well defined, in-
terpretatively unambiguous, and accurate. The
need for accuracy in terms of solar, astrophys-
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ical as well as plasma spectral diagnostics w3s
mentioned in the Introduction. A prel. iminary in-
vestigation by Pindzola, Temkin and Bhatia' for
resonances from 0 VQ suggests that resonances
are not important there. However the conclusion
depends heavily on the widths; since that calcula-
tion' is an effective separable approximation for
the doubly excited states (further using a distorted-
wave, multichannel quantum-defect formalism9),
it is not Bt all clear what the accuracy of those
calculated resonances is. With the implementa-
tion of the present quasi-projection-operator
technique we can confidently look forward to a
significant increase in accuracy.

There is a more subtle need for the quasi-pro-
jection-operator formalism which arises in the
calculation of highly ionized systems. As the
charge of the nucleus increases relative to (a
fixed) number of orbital electrons, it is known that
the position of autoionization states descend, rel-
ative to target threshold. In fact they can cross
target thresholds, "and in the case of highly
charged ions they can surely cross several thres-
holds. This means that autoionization states in a
given region may be related to parent (target)
states of much higher principal quantum number.
However in close-coupling or related calculations
each target state is included explicitly, so that one
is in practice restricted to including only a few of
such states. On the other hand, in a quasi-projec-
tion-calculation the resonant function Q„4 are not
so restricted; one simply calculates the resonances

with (hopefully) as many parameters as is required
for effective convergence. If in fact one cannot
readily say from what parent state a given reson-
ant state arises, it does not really matter. What
does matter is that it is there, and it has a definite
width.

A simple form of quasi-projection-operator cal-
culation consists of an expansion in terms of or-
thonormal orbitals from which appropriate com-
binations are used to describe target states (up
to vth) and one then constructs 4 from products
of the whole orthonormal set of orbitals such that
4 is manifestly orthogonal to all v target states.
This is a generalization of the approach Weiss
and Krauss" used to calculate He and I i auto-
ionization states below the first excited threshold.
Junker and one of the present authors (A.T.) are
presently using this approach for He, but we do
not have any results to report at this time.

To conclude, we mention some other techniques
which might be contemplated. The stabilization
approach" contains much good physics; however,
questions of interpretation are not as straight-
forward and they become more difficult for higher
resonances and those above inelastic thresholds.

Complex- rotation methods'3 on the other hand
have developed very rapidly and particularly the
analytic aspects of this methodology have proved
very rewarding mathematically. " Whether such
methods will be amenable to the productive needs
of many-electron systems" of interest in space
and plasma physics remains to be seen.
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