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The ground-state wave function of a heliumlike atom is assumed to be Q = P(r,)exp( ar—, Pr&—), where
r, r, = min, max(r&, r,), r, and r2 being the distances of the electrons from the nucleus. An equation which
determines the electron-electron correlation function $(r,) is derived and numerically solved. The parameters
a and P are determined by minimizing the energy of the system. This is an extension of the Feshbach-
Rubinow-type approximation which has recently been applied to the same problem. The positronium negative
ion (eee +) is also examined by the same method. It is found for the binding energies that the improvement
over the Feshbach-Rubinow approximation is substantial for the eee+ system, but less significant for
heliumlike atoms. It is claimed that the proposed method is particularly useful in calculating quantities which
are sensitive to the short-range correlation between the electrons.

I. INTRODUCTION

As the simplest atomic systems that defy analyt-
ical solutions, the helium and heliumlike atoms
have been a subject of intensive study for many
years. The most extensive and accurate calcula-
tion so far done is the one due to Perkeris ' who
used a variational wave function which consisted
of over 1000 terms. The ground-state energy that
he obtained is believed to be accurate to one part
in 10'. However, the problem is still receiving
considerable atteQtion with a view to finding sim-
pler methods and wave functions. Recently the
Feshbach-Rubinow (FR) approximation and its
improved version have been applied to the problem,
with some encouraging results. '4 The purpose of
this paper is to report on a further attempt i.n the
same line, with an improvement with respect to.
the electron-electron correlation.

Before presenting our idea, let us summarize
the FR method applied to the atomic three-body
problem. In this method one assumes that the
wave function 4 is a function of a single variable
R,

4 = C (R), R = —,
' (r, + r, + t) t"s),

where x, is the interparticle distance between par-
ticles 2 and 3, and likewise for r, and r, .' Par-
ticle 3 is the nucleus and g is a variational param-
eter. The Schrodinger equation for the three-body
system can then be reduced to a Schrodinger-like
equation for I wi. th an effective potential. When
the original interactions are Coulomb, the effec-
tive potential for 4 turns out to be a Coulomb po-
tential. The function 4 and energy are obtained
analytically, and g is determined by minimizing
the energy. Srivastava et al.~ proposed to replac-

ing R of Eq. (1.1) by

R=-,'(a ~)+t &+ t)r,), (1.2)

where x&=r r&=x2 if ~i r2 and vice versa, and
n and g are variational parameters. With 8 of
Etl. (1.2) the screening effect is better taken care
of. We will refer to the above two versions of the
FB approach as FBI and FR2.

The FB wave function is. found tobe of the form

C (R) =exp(-XR), (1.3)

g (tr„r„t' ) =
&f& (r ) exp[- (atr + Ps' )], (l .4)

where e and P are variational parameters, while

p is an arbitrary function. This is an obvious
generalization of the FH wave function (1.3). The
Schrodinger equation for the system can again be

where X is a constant and R is that of Etl. (1.1) or
Et(. (1.2). Therefore, the FR method applied to
this problem is in fact equivalent to a variational
calcula'. ion with a trial function (1.3). It is indeed
possible to show from a dimensional analysis
alone that the effective potential for 4 is a Cou-
lomb potential and that 4 takes the exponential
form of Etl. (1.3).

A feature of the FB wave function which is not
very satisfying is that there is little flexibility
with respect to the electron-electron correlation,
i.e., it is restricted to the exponential form. The
exponential form for r, and. x, is probably a good
approximation but it is not clear if it is also the

' case for x, . It would be interesting to see what
the electron-electron correlation is like when it is
treated in a more fl.exible manner. Motivated by
the above observation we now propose the wave
func tloQ
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reduced to a Schrodinger-like equation for (t). Un-
fortunately this equation cannot be solved analyti-
cally, but it is straightforward to solve it numeri-
cally. The optimum values of (2 and p are found

by minimizing the energy. In addition to the
heliumlike atoms we will consider the bound state
of the positronium negative ion (eee').

II. REDUCTION OF THE SCHRODINGER EQUATION

(me2
C(z)=-2 ff dxdy[, . [Zz(xzy)-xy)

n'+
zyz

i
e 2(~-" »& (2.V)

2 j
Here the integrations are done for f0&x-y &z,
z+ y & z}. Explicit expressions for A, B, and C
are given in the Appendix. Note that A(z) is
positive definite. The variation 5I= 0 yields

For an S-state of a three-body system, the
Schrodinger equation reads

82

, , ",(;)I.f3

=E4 . (2.1)

This can be identified with the Euler-Lagrange
equation for BI=0, where

Ay" +A' y'+ (B'-C —x'A)y =0,

which can be rewritten

d 2f
, —[z 2+ v (z)]f= 0,

where

f (z) =A'" (z) y (z),

(A'i ' B'-C

(2.8)

(2.9)

(2.10)

(2.11)

with

ji2 $(1 1 ))=Z 2
i [m, m2& [&r, i

(2.2)

(&O ri+ r2
I= dr, dx, dr, r,r2r, F(r„r„r2)

, ( u(1+u)i '

2me'(&. 3 —3(2Z —l)u- (6Z —1)u'
+ h2 u(3+3u+u') (2.12)

Thus the three-body problem has been reduced to
that of two electrons with an effective potential
v (z).

If we assume that (&. = P, which corresponds to
FR1, v(z) is given by

(2.3)

For a heliumlike atom, we put m, =m, =m (elec-
tron mass), m2 -~, V, (r) = V, (r) = Ze2/r, a-nd

V(r) = e'/r
If we use Eq. (1.4) for )I,. the r, and r, integra-

tions in I can be done, and we obtain

+ 2B(z)(t)(t)'+ C(t)2], (2 4)

A(z)=2z ff dxdyxy z (2.5)

2B(z)= —ff dxdy[xy(z'zx'-y*)

+ P X ( y2 + »2 22 )] e 2 ( (yx z Sy &

(2.6)

where z=r; (t)'=dp/d», »2=-Em/O'. Thefunctions
A, B, and C are defined by

where u= 2ez. This effective potential v is like an
attractive Coulomb potential for very large z, and

a repulsive Coulomb potential for very small z.
For (&(22 p, which corresponds to FR2, the express-
ion for v(z) becomes quite complicated but its
qualitative behavior remains the same as that of

Eq. (2.12). Figure 1 shows v(z) for u e P (for op-
timal values of e and P). This v(z) resembles the
internuclear potentials in a diatomic molecule.
This resemblance is not accidental. For example,
if the two electrons in H are replaced by protons
and the H nucleus by an electron, the H ion be-
comes a H, ' molecule. Hence the mechanism for
the effective interaction between the two electrons
in H is similar to that for the two protons in the
H2' molecule. '

Equation (2.9) has a "bound-state" solution which
decays like f(z)-e "' as z- ~. This does not nec-
essarily mean that g =A 'i2f decays as z- ~. In
fact, A(z) decays like e 2™(in both cases of n = P
and n 4P), hence p decays if and only if x&(&( Let.
us add that even if p does not decay, 4' itself is
normalizable. At »=0, f starts with f (0) =0. But,
since A(z) ()c z for z = 0, p (0) is not zero.

So far we have considered heliumlike atoms.
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0 TABLE II. Comparison of variational parameters in
FR2 and II.

System
FR2

-10

-20

H

He
Li+
Be++

eee

0.6504
1.724
2.736
3.802

0.9434
1.931
2.930
3.929

0.6495
1.719
2.730
3.740

0.2379

0.9352
1.921
2.920
3.915

0.4454

' The values are given in atomic units, i.e., energy in
2 Ry and distance in Bohr radius.

-30 .

FIG. 1. "Effective potential" v (z) in atomic units.

For the eee' system, we putm, =m, =m, =m and
z= 1. The only change is that the function C gets
an additional term which originates from the
terms containing 1/m, in Eg. (2.3). Because of
this the effective potential gets an additional term
which is repulsive. The details are relegated to
the Appendix.

@=e 'z= exp[--,' Xqr, —(n'r)+ p'r()],

where

(3.1)

provement of II over FR2, and that of I over FR1
are not very significant for heliumlike atoms, but
the improvement of I over FR1 is quite substantial
for eee'. This is probably because the electron-
electron correlation is more important in eee'
than in the other systems.

Next, let us compare the values of the variation-
al parameters in FR2 and II. Recall that the un-
normalized FR2 wave function is given by Eq.
(1.3), i.e.,

III. RESULTS AND DISCUSSIONS
p'= ~ A. . (3.2)

We have done the calculations in two approxima-
tions I and II. In I we put n = p. This is an exten-
sion of FR1. In approximation II we take n 0 P, an
extension of FR2. The energies for heliumlike
atoms and eee' are shown in Table I and compared
with previous results. The FR2 result for eee' is
not available. All numerical results in this paper
are given in atomic units, i.e., energy in 2 Ry
and distance in Bohr radius. The accuracy im-
proves in the order of FR1, I, FR2, II. The im-

TABLE I. Ground-state energies.

This n' (not n) and P' of FR2 correspond to n and

P of II, respectively. All these constants in Eqs.
(3.1) and (3.2) are given in Ref. 4. Table II com-
pares n' and p' of FR2 with n and p of II; n' and
P' are slightly larger than n and P.

For the asymptotic behavior of P(z) for z- ~, we
pointed out in Sec. II that the criterion for conver-
gence is x& n. In the atomic units that we are
using, z= )El' '. We show v-n in the approxima-
tions I and II in Table III. It is clear that p(z) for
large values of s is more suppressed in approxi-
mation II than in I. Note that p converges for
eee and for H in approximation II, while it di-
verges in other cases.

System FR1 FR2
Best

estimates
TABLE III. Convergence of Q.

H

He
Li+
B ++

0.5079 0.5094 0.5206 0.5215
2.8896 2.8913 2.8983 2.8996
7.2668 7.2685 7.2748 7.2761

13.6429 13.6446 13.6506 13.6519

0.5278
2.9037
7.2799

13.6556
System

Approximation

eee 0.2391 0.2441 0.2562 0.262

The negative of thd'energies in a.u. The columns I
and II show the results of the present calculations, with
e=P for I and n&P for II. The results of FR1 and FR2
are taken from Refs. 3 and 4, respectively. The best
estimates are from Ref. 2, for heliumlike atoms and
from Ref. 6 for eee'.

H

He
Li+
Be++

eee+

-0.129
—0.148
-0.154
-0.158

0.134

0.073
-0.016
-0.036
—0.045

0.265

'
P - exp[-(K —&]. The values of K —n in a.u. are

shown.
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0.2

the electron-electron correlation at short dis-
tances. With the wave function of Eq. (1.4} and the
normalization condition (3.3), we obtain

&5(r —r )&=/'(0)/8~(n+ p)' (3.4)

In the FB approximation it is given by~ the same
formula with the substitutions

nI p pl

y'(0) —2'&'/(5'u),
(3.5)

eee+

FIG. 2. "Correlation function" P@) in atomic units.
For H, He, Li', Be, the figure shows $/10, $/102,
$/103, p/103, respectively. $(0) for the five cases are
H (0.543), He (11.41), Li (49.31), Be (131.3), and
eee {0.036).

where p is a constant defined by Eq. (A2) of Ref.
4, Table IV summarizes the results and compares
with those of other calculations. In view of its
simplicity, the accuracy of our results is quite
remarkable.

No]e added in proof. Contrary to what we said
in note 5, v(z) in approximation II does not go to
zero as z -~. The correct limit of v(~) is given
by

The function g(z) for z=0-3 a.u. is shown in
Fig. 2. The normalization of p is such that'

m8 g for H, He, . . .
~(")=-(p' —n')

f '(z}dz = A (z) y' (z) dz.= I .
0

(3.3) ~

me'
&-,&- —1) for e.ee'.

Note that the curvature (second derivative) of g at
short distances is negative. This is because of
the repulsion in v(z) at short distances. On the
other hand, P in the FR method is exponential and
hence its curvature is always positive. For eee',
P reaches its maximum at z-7 a.u. , and the dif-
ference from the FH cases is quite appreciable.
This is the reason why the improvement in the
energy is quite significant for the eee' system.
Even for other systems (H, He, . . . ), if one is
going to evaluate some quantity which is sensitive
to the electron-electron correlation, our wave
function could give appreciably better results than
the FB wave functions. In order to substantiate
this claim let us examine the expectation value
(5 (r, —r2)). Its accuracy is a sensitive test of

Because of this change the discussions on the
asymptotic behavior of f(z} and Q(z} are not valid,
and Table III becomes irrelevant. All other re-
sults are not affected.
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APPENDIX

Let us show some details of the integrals in
Eqs. (2.5)-(2.V). It is convenient to introduce

s=z+y, t=x-y„y=n+P, a=n —P, (Al)

TABLE IV. Expectation value (&(r&- r2)).
G „(z)= df f dss"f" e '"""'.

28
(A2}

System MCFC FR2
Best

estimates

Then', B, and C are givenby

A(z) =-,' z (G„—G„), (A3)

H

He
Li+
Be++

eee+

0.004 34
0.1357

0.004 34
0.124 2
0.585 8
1.627

0.002 95
0.1074
0.536 3
1.529

0.000 162

0.002 74
0.106 3 a(z)=--.'(yz2G„-~z2G„+aG„-yG„), (A4)

C(z) = —. , -Ze'zG„+
~
+ A(z) .m, e'A(z)& y'+ z '

Multiconf iguration frozen-core approximation with
(1s, 2s', 2p, 2p') {Ref. 8).

See Refs. 8 and 9.

(A5)

The functions 6 „are a product of a 1 function
and an incomplete 1 function and are given by
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G„=(1+yz)e~'(1 —e ")/y' z

G»=e~'[1 —(1+ez)e "]/ye',
G„=(2+ 2y z+ y'z')e~'(1 —e ")/y'e,

Gea = e~' [2 —(2+ 2tz + z'z ')e "] /y z',

G» =G„[1—(1+ez)e "]/c (1 —e "),
G„=G (1+yz)/y.

In the limit of a -0, we find

A(z) = (1/2y') u'(1+u+ s u')e ",

(A5)

(A7)

(A8)

(A9)

(A10)

(A11)

(A12)

B(z)= (-1/12y~) u' (1+u)e (A13)

C(z) =
a 4 u [1—(2Z- 1)u-(2Z —s)ua] e2a2y4

+ g y'A(z), (A14)

where u=yz=20. z.
The formulas given above are for heiiumj. ike

atoms. For the eee' system, A and B remain the
same while C is given by

C(z) = [C(z) of (A5) with Z= 1]+—,'(y'+z')A(z)

+,—'(y' —z') z(G„+G„-2z'Gm) . (A15)

~We confine ourselves throughout our paper to the ground
state of the nonrelativistic system with Coulomb forces
only. The mass of the nucleus is taken to be infinite.
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