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Viscosity model for gases in the transition regime
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We have studied a model of tangential viscosity of a fluid in which high-order spatial derivatives of the
velocity are taken in)o account. The model indicates that for a'gas in the transition regime, and within a
range of boundary conditions, the tangential stress presents an oscillatory dependence on the density. An
experiment designed to detect these oscillations was done with helium at constant temperature T = 294'K
and varying the pressure within the range 0.5—50 mTorr. The results were found to be in good agreement
with the oscillations predicted by our model when the spatial derivative of the fluid velocity near the
boundaries was close to zero. From the separation in density between these oscillations, it is possible to
obtain an independent measurement of the atomic mean cross section for helium, This method makes specific
use of the way the viscosity oscillates with the density in the transition regime instead of using the value that
the viscosity takes in the continuous regime. The good agreement between our measurements of the cross
section and the values that have been obtained by other methods gives an indication of the validity of the
proposed model.

I. INTRODUCTION

One of the main results of the kinetic theory of
ga8es is that the viscosity is independent of the
density in a range of pressures going approxi-
mately from 1 to —,', atm. ' ' For pressures less
than —,', atm, the viscosity measured at a constant
temperature decreases with the pressure. ' ' In
regions of low pressures with a Knudsen number
X„&1,K„=//t. , where l is the mean free path of
the molecules of a gas and L is a characteristic
length of the container, the viscosity goes to zero
with the density. ' The Knudsen regime X„&1 and
the continuous regime (K„«1) are well known. '
The intermediate-density region between these two
regimes is sometimes called the transition regime.
Cha and McCoy' "have recently developed a tran-
sition-regime transport theory in rarified gases.

In the present paper we have studied the viscosity
of a fluid in the transition regime following a
somewhat different approach from that of Cha and
McCoy in Refs. 8-10. A first rough approximation
for the tangential stress P,„ is obtained making
use of a Taylor-series expansion of the fluid vel-
ocity up to the third order in the spatial deriv-
atives. A more-rigorous method ls also used to
obtain a relation of the same type for P. ,„by solv-
ing the integral form of the Boltzmann equation in
the relaxation-time approximation. This equation
gives us a series of integrals in terms of the spat-
ial derivatives of the Velocity that can be exactly
solved at least up to the one corresponding to the
third order. The resulting equation for P,„has a
form similar to the one obtained by the Taylor-
series method. However, the expressions for P,„
obtained by these two methods differ in the coef-
ficient of the third-order term. These two ex-

pressions for I' also have a similar form to
the one proposed by Cha a,nd McCoy' who
have solved the Krook equation. " by the Chap-
man and Enskog method. ' " Although our treat-
ment yields some of the results obtained by Cha
and McCoy, ' th6pe are differences. For instance,
the method we have used to solve the Krook equa-
tion (in its integral form) seems to us more
straightforward and simple than the method used
in Ref. , 8. On the other hand, we have examined
cases corresponding to boundary conditions which
were not considered in Ref. 8. The experiment we
have done with helium shows that the boundary con-
ditions we have considered, which give rise in the
transition regime to oscillations of P,„as a func-
tion of the density, may occur in real systems.
Furthermore, in Sec. IV, we mill see how an inde-
pendent determination of molecular diameters can
be achieved from the osciHations of P,„with the
density. The molecular diameter for helium de-
termined in this way is in good agreement with
measurements performed using other methods.

II. THEORETICAL

A. Crude Taylor-series-expansion approximation to the problem

I.et us consider an ideal gas located between two
parallel surfaces separated by a distance L. Con-
sider the lower surface at z= 0 fixed relative to
the laboratory coordinates, and the upper one at

- z=L moving along the axis x with a velocity uM.

Let us denote by P,„the component of the stress
tensor a.cting on the moving plate, and u„=u„(z),
the velocity of the layers of the fluid owing to the
action of this plate. In the transition regime, i.e. ,
0.1&E„&1,the mean free path l of the molecules
is large enough to consider high-order terms of a
series expansion of the fluid velocity u„(z) about
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the point l = 0:

8u„ i 8 u„
u„(z + l) = u„(z) + " l + 2, I'

9z 2 f 8z

9'u„ , & O'I„ 43" l'+ — 4" l4+''' .
3) 9z 41 8g

write Eq. (6) in the following way:

f(F, v, t}= f-ft t(r, (t'},v(t ,}'t—, t }de.'''t', (P}
0

which integrated by parts yields

The mean force on a plane parallel to the plates
and passing through the point z is due to the mo-
mentum transfer per unit area and unit time, and
can be written approximately" where

x e "'dt',

P,„=—', nmv[u„(z -I) -u„(z+ I)].
From Eqs. (1) and (2) and keeping terms up to
third order, we obtain

8u„8 u„
8 ~ 9z ~ 8z3 t

with

1 1 mv
q= —nmvl = (4)

B. Path-integral formulation

' Consider now a less-crude model in which the
distribution of molecular velocities is taken into
account but the effects appearing in a detailed an-
alysis of the collisions are neglected. For some
of these effects this may be justified by the fact
that we are concerned with rather low densities.
In the path-integral formulation we have"

1 1 mv
y = —nmvls— (~)

2 0' tl

where we have used the approximation l = 1/~2on
and the notations n, m, v, and g for the number of
molecules per unit volume, mass of a molecule,
mean molecular velocity, and the mean molecular
cross section, respectively. Note that from Eqs.
(1) and (2) it immediately follows that only the odd-
order terms of the derivatives 8"u„/sz" contribute.
It should also be noted that in the linear term
'-eau„/sz in Eq. (8) appears the well-known vis-
cosity coefficient g which is independent of the den-
sity -n. However, the coefficient y appearing in Eq.
(8) is density dependent, as is shown in Eq. (5).

f"'( ,(t'), .(~'), t —t')
& mP& '~'

}8m}= e} } exp
}

— [e(t }—e, (v', (t'},t —t'}}')

is a Maxwellian velocity distribution.
In the above expression n=n(x, (t'), t —f,') and 6

=P(x, (t'), f, —f,') are the density and temperature
parameters that we consider space and time inde-
pendent. The fluid velocity u(~, (t'), t —t') is as-
sumed to depend only on the z coordinate" [i.e. ,
u = u(z)]. Furthermore, vo(t') = v(to) = v(t) t where
t, = t —t' since t' is a free-flight time in Eq. (9).

Introducing the defi.nitions

U„=v„-u„(z), U, = v„U, = v„
U=U„x+U y+U, z,

(10)

g(U„, U„U,) =n(mg/2v)' 'e '~ ~" ',
we can write

f~'}(r,v, t) =g(U„, U„U,). (11)

The time dependence of f&0}(r,(t'), v, (t'), t —t') oc
curs only through the time dependence of the coor-
dinate z in tt. This, together. with v, (t') = v(t, ) and
t, = t —t', allows us to write

df&'}(r,(t'), v, (t'), t —t') df"}(z(}},),v(t, ), t,)
dt's d

(12)

From Eqs. (10)-(12) and the relations dz(t, )/dt,
= v, (t,) = v, (t) and U„=v„-u„(z), we have

"f"}(r,(t'), v, (t'), t —t')e '~'dt'

0
(6)

sg su„(z)
dt' 9U„8z

which together with Eq. (8) yields

where f(r, v, t) is the distribution function of the gas
and, j"}(r,(t'), vo(t'), t —t') is the complete time de-
pendence of the Mmovell-distribution function for
local equilibrium. The factor e '~'dt'/r is a col-
lision probability, and ~ is the average collision
time that we will consider as constant. ". %e can

8U„9z

(14)

The integral I, that appears in the right-hand side
of Eq. (14) can be integrated by parts:
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sU2 ~( sz) ' sU„sz' (15)

Iterating the procedure, i.e. , integrating by parts the integral appearing at each step, one gets an in-
finite series, which when inserted in Eq. (14}allows us to write

(Bul 3 9' Bu Bu 9 9u; v', r' + ~, l
*

l v', r' + 3 ~ ," * var' + ~ ,.vars + ~ ~ ~ .
BU Bz' z BU' ( Bz ) ' BU' Bz' 9z z BU 9z' (16)

We will take all the terms of this series up to the one corresponding to the third order in the deriv-
atives of u„(z), as was done in the Taylor-series development. The tangential stress P,„ in terms
of the distribution function is given by"

P„=nz d'v r, v, t U,U„.

Inserting the value of f(r, v, t) given by Eq. (16) in Eq. (IV), we have

(»)

9'g &Bu 't '
U Bz z z x eU„' i ez

9 9 Bu
t'1

BU'„Bz' Bz i, ' BU„ I Bz'~ (18)

Some of the integrals of Eq. (18) are zero by sym-
metry. The remaining integrals are

Bu„Bu„
~ Bz ~ Bz' (21)

P,„=m d'U " v,YU, U„
Bg Bu

9U„9z

eU'„ez &

BU„(Bz3) (19)

The second integral of Eq. (19) gives rise to a
sum of two identical terms with opposite signs
that cancel out the value of the integral. There-
fore, only the first and last integrals in Eqs. (19}
do not cancel in our model. On the other hand,

Cha and McCoy, '" following a Chapman and En-
skog method to Solve the Krook equation, have

found an equation essentially similar to Eq. (18).
However, in their expansion occur nonlinear terms
of power 3 in su„/sz which do not exactly cancel.
These terms were considered small and thus

dropped out in their final expression (see, e.g. ,
Ref. 8).

The solution of the first and third remaining in-
tegrals of Eq. (19) gives rise to

(Bu, (kT
P,„=-nkTr

l

" -3nmr'l —il,*, (20)
~sz &ml' sz'

which can be written

with

g=nkT~= 3nmvl (22)

6'k z) + &u'k(z) + y = 0, (24)

where

~ = (n/r)"',

y =P,„/r,
and

(25)

(26)

k(z) =
Bz

The general solution to Eq. (24) is

(2V)

r = 3nm7'(kT/m)' = s mnv P.

Equation (20) has the same form as Eq. (3) obtained
by the Taylor-series expansion method. It should
be noted, however, that the numerical coefficient
for y differs in both expressions, as can be seen
in Eq. (5) and (23), which are, respectively, —,', and
j.
3 ~

To introduce the boundary conditions, let us
write Eq. (20) in the form
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h(z) = c,e'"'+ c,e '"' P-,„/r]. (28)

From Eqs. (2V) and (28) we can obtain a general
solution to Eq. (20) or (21), which is

u„(z) = —. e'"' ——. e '"'- * z+ Cr.C~ C2 P
2(0 S(d

(29)

The value of this derivative in the interphase
gas-solid depends on the nature of the surface of
the plate. Moreover, it depends on the way in
which the molecules of the gas and the solid sur-
face interact from a microscopic point of view. "
Since it is very difficult to calculate a, for a par-
ticular system, we mill study the- tangential stress
P,„for different values of a,. However, the fol-
lowing qualitative argument is an indication that
the value of a, lies close to zero, as our experi-
mental results tend to favor (Secs. III and IV). The
argument is as follows: For K„~O. l the mean
free path l of the gas molecules is macroscopic.
We can choose a distance l &l that is also macro-
scopic. From the definition of mean free path we
can say that most of the molecules going close to
the wall move with a uniform linear motion in the
region of width l just close to the walL The same
thing occurs for the molecules departing from the

The values u„(0) and u„(L) that u„(z) take at z = 0
and z = L are the fluid velocities just close to the
fixed and moving solid surfaces, respectively.
When slip occurs at the boundaries between the gas
and the solid plates we have u„(0) &0 and u„(L)&u„,
where 0 and u„are the velocities of the fixed and
moving plates. In general, the slip increases
monotonically as the density decreases, becoming
pronounced when the mean free path is comparable
to the separation between the solid surfaces. '~"
An indication that slip occurs in the experiment
discussed in Secs. III and IV is given by the drift
of the experimental curve of the tangential stress
(Fig. 4) towards lower values as the density de-
creases.

Let us introduce the boundary conditions u„(0) = u,
and u„(L) = u~, where u, and u~ are tne fluid vel-
ocities just close to the fixed and moving solid
surfaces for the specific system studied (if slip
occurs we have u, &0 and u~&u„). Separating the
real and imaginary parts in Eq. (29), we have

u (z)=Iud-uo+ '"L
I

. — "z+u, .J',„)sin(vz) P,„
& sin &L

(30)

The other boundary condition that is necessary to
specify is the derivative of the fluid velocity u„(z)
just close to one of the plates. Thus we take

(su„(z)
k s

mall. In this way the mean value of the velocity of
the rnolecules is approximately constant within
this region. Therefore, we may expect that su, /az
is close to zero for 0 ~z & l.

Note that the same argument can be used inde-
pendently whether slip occurs or not at the solid.
surfaces. To see this, let us use the following
simple model for the interaction of the molecules
of the gas with the solid surfaces first introduced
by Maxwell ': Let n be the coefficient of accom-
modation, i.e. , the fraction of molecules that,
after colliding with the solid surfaces, stick only
to be reemitted afterwards with thermal velocity
to the gas. Therefore, the fraction 1 —z corres-
ponds to the molecules which are reflected spec-
ularly on the solid surfaces. The mean velocity
u„(0) of the gas close to the fixed surface is ap-
proximately given by

u„(0)=on+ u„(0)+I, "
&I

I+ I, *,
&

Ia
tsu (z) t 1 ~s'u. (z)

I

+ —
I ", I

I' (I-n),1 &s'u„(z)&

-3) & e~' ], , (32)

where we have made use of Eq. (1) up to the third
order. The term On in Eq. (32) is the contribution
to the mean velocity u„(0) coming from the mol-
ecules that stick to the surfaces and then are re-
emitted with thermal velocity. Since these mol-
ecules are generally assumed to be reemitted in
a complete diffuse way, the mean value of the vel-
ocity component parallel to the surface of these
molecules can be taken as equal to the velocity of
the fixed surface, which we have fixed at zero.
The second term on the right-hand side of Eq. (32)
is the contribution coming from the molecules that
are specularly reflected on the surface.

Since u, is the fluid velocity just close to the
fixed surface, we can write from Eq. (32)

1 —n (eu, (z) &I
1 i/s'u„)

L az

(33)

the factor s = (1 —o.)/o. appearing above is the usual
slipping coefficient. " Note that when me take into
account terms only up to the first order in Eq. (1),
then Eq. (33) reduces to the well-known expression
u, = sl(Su„(z)/Sz), , "

From Eq. (33), it can be seen that there is no
slip when @=1, since in this case s=0 and u, =0.
Qn the other hand, when n &1, slip occurs be-
tween the gas and the solid surface. We see nom
that, within this simple model of slipping, the
qualitative consideration we have discussed above
still favors that a, -0 when slip occurs. Recall our.
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argument that the molecules going close to the sol-
id surface move with a uniform linear motion in
this region of width l &l just close to the surface.
On the other hand, the same occurs for the mol-
ecules departing from the surface both in the case
that these molecules are reemitted from the sur-
face with thermal velocity and in the case that
they are specularly reflected. Therefore, though
the occurrence of slipping modifies the mean ve-
locity u, =u„(0), again it may be expected that a,
is around zero. The specific value that ao actually
takes may be expected to depend on the nature of
the solid surfaces (chemical composition and the
surface finish), the kind of molecules of the gas,
the number and velocity of the gas molecules
colliding on the same surface element, and on the
surface temperature. '

The region of the gas in the neighborhood of a
solid surface of a width approximately equal to i
is usually called the Knudsen layer. " Elaborate
treatments of this region have been done. They
consist essentially in solving approximately the
Boltzmann equation in thi;s region for a distribution
function depending on a number of free para. -
meters. "" These free paramet'ers depend in
turn on the physical and chemical properties of
the surfaces, the kind of incident molecules, the
temperature of the gas and the solid surface, etc.
Outside of the Knudsen layers, the validity of
either the Navier-Stokes equations or the Burnett
equations is assumed. " Furthermore, matching
conditions are introduced at the boundaries be-
tween these two types of regions of the gas. ' This
way of taking into account the effect of the complex
processes of interaction occurring at the gas-solid
interphase on the whole gas presents- a great deal
of difficulty. Part of this comes from the scarce
knowledge at the present time of the potential of
interaction between the incident molecules and the
molecules of the solid surface.

However, calculations can be made within sim-
plified versions of the above scheme. For instance,
the case of weakly perturbed flows which corres-
pond to a small relative velocity of the solid sur-
faces and a small temperature difference between
these surfaces has been treated. " This has been
done making use of a Krook equation" and simpli-
fying assumptions on the interaction between the
gas and the solid surfaces. 23 In the particular case
in which there is no temperature difference be-
tween the solid surfaces, and accommodation fac-
tors are equal to unity, this yields a, smaller than
&u/L (Du —=u~ —u,) for Knudsen numbers around
unity. " Recall that &u/L is the value assumed for
a, in the usual case of the continuous regime iri

which l &&I .
This result points in the same direction as our

where &u=u~ -uo and

(35)

Equation (35) follows from Eq. (25) and the re-
lations I = I/M2no and v= (BKT/vm)'~'. Figure 1

shows the value of P,„given by Eq. (34) for differ-
ent values of a,.

It should be noted that Eq. (34) corresponds to
a model in which I',„ is independent of z, and ap-
plies to a stable state in the sense that there are

. not any accelerated fluid layers. For this reason,
specification of u„(0) = u„u„(L)= u~, and a, deter-
mines completely the boundary conditions of the
problem. Qn the other hand, we can see in Eqs.
(34) and (35) that for the high-density limit, n- ~
corresponds to &o -~ and lim„„P,„=-q(&M/L),
which is the usual result (see Fig. 1). Further-
more, P,„=-g(&u/L) is the correct expression for
any density when the boundary conditions are so
that a, = &u/L. This last property gives a supple-

P2.x
p „p,

0,= 60

a,=hU/L = 40

,= 20

+10%
4

-10%

)0 15 a& (cm')

FIG. l. Oscillations of P~„ for increasing ~ for some
values of uo. co=AN, /L =40 sec ~ corresponds to the
linear case, in which we have used d u ~200 cm/sec and
1.-"5 cm.

qualitative consideration in favor of a, -0. We
will see below that according to our model an os-
cillatory behavior of P,„as a function of n can oc-
cur if a, &&u/L, which is a less restrictive con-
dition than ap 0 Yet the oscillations of P,„be-
come more pronounced as ~a, —&u/L

~

increases.
Qn the other hand, our experimental results tend
to favor that a, &&u/L (see Sec. IV). Also, the
experiment we have done fulfills the conditions of
weakly perturbed flows (see Sec. III and Ref. 23).

Deriving Eq. (30) with respect to s, and making
use of the relation (31), we obtain

&u 1 —(a,/&u)(sin&oL/(o) &u

L 1 —s in~L/vL I.
(34)
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mentary justification to the usual model in which
P,„=-q(4u/L) and a, = &u/L. One of the assump-
tions in the usual simple model is that because l
«L, the Taylor series given by Eq. (1) can be cut
after the first-order term in E. However, as we
have seen, this is not a necessary condition since
with the boundary condition a, =&u/L we can use
higher-order expansions and still retain P,„
= -q(&u/L).

When the boundary conditions are such that a,
4&u/L, the function P,„given by Eq. (34) and
shown in Fig. 1 oscillates with &o (and so with n)
and with decreasing amplitude as n increases.
When n is close to zero, then we are in a Knudsen
regime and the model here described does not ap-
ply.

In connection with the oscillatory behavior that
P,„may present in the transition regime as a func-
tion of n, the question arises whether such oscil-
lations could also occur for other transport pheno-
mena such as heat conduction and diffusion. In
favor of this possibility is the fact that for these
transport phenomena we will have equations of the
same form as Eq. (20).'4 In the case of heat con-
duction the heat flux and temperature take the place
of P,„and velocity. For diffusion the mass
flux and the concentration take the place of
P,„and the velocity. However, according to what
we have already seen, there are two types of re-
quirements for the occurrence in the transition re-
gime of the oscillations of P,„as a function of n.
These are, first, the structure of Eq. (20), and
second, that boundary conditions are found in a
certain range. An example illustrating this last
point is provided by the fact that we have found
that, in spite of Eq. (20), the oscillations of P
with n vanish when a, = &u/L. In fact, for these
oscillations to occur we must have a, 4&u/L, and
they become sizable only when a, separates suf-
ficiently from &u/L [see Eq. (34) and Fig. I].
Therefore, it may be expected that also in the
case of heat conduction and diffusion, boundary
conditions play an essential role in the appearance
of an oscillatory behavior as the n varies in the
transition regime. '4

The way to obtain experimentally boundary con-
ditions favorable to the appearance of sizable os-
cillations may be different for each transport
phenomenon. In the case ofP,„and heat conduction
such a difference could be expected on the following
grounds: (a) momentum and energy of the gas ac-
commodate at different rates to the state of the
solid surfaces, since in processes of interaction
momentum transfer occurs much faster than en-
ergy exchange"; (b) in the exchange of energy be-
tween the gas and the solid boundaries, internal
degrees of freedom of the gas molecules may be

involved"; (c) exchange of energy by radiation be-
tween the gas and the solid boundaries contribute
to the boundary conditions for heat conduction";
(d) in the case of heat conduction the density of the
gas ne~ one solid boundary is different from the
density of the gas near the other boundary; (e) the
temperatures of the two walls are different.

We have described in Sec. III an experiment to
measure P,„as a function of n in the transition re- .

gime. It seems that in the physical system with
which the measurements have been done, the ap-
propriate boundary conditions for observable oscil-
lations of P,„hold in the transition regime. It is
our feeling that such oscillations could also occur
for other transport processes in the transition re-
gime provided that certain boundary conditions are
obtained in the physical systems concerned. A'

pure phenomenological approach to this problem
could be the searching of such boundary conditions
by changing the chemical and physical nature of the
solid boundaries, the temperature, and other para-
meters relevant to boundary conditions. " Another
point is that measurement must be performed in
such a way that the separation in density of the ex-
perimental points must be considerably shorter
than the separation between the expected oscil-
lations of the measured transport variable. If in-
sufficient care is paid to this point, although the
oscillations may be occurring, we will only observe
a scattering of the experimental points in the tran-
sition-regime region of densities.

III. EXPERIMENTAL

A gas viscometer" was designed in order to
make an experimental verification of the model of
viscosity presented here. It consists basically of
a cylindrical torsion pendulum of a large surface
and low mass (see Fig. 2). A stainless-steel cyl-
inder 120 cm long and 23.1 cm in diameter con-
stitutes one of the fixed surfaces of the physical
system. It is vacuum tight and ls the support of
the peripheral instrumentation. An inner stain-
less-steel tube 100 cm long and 3.1 cm in di-
ameter, located in the center, is the second fixed
surface. Concentrically, and 5 cm from both fixed
surfaces, there is a shell suspended from a 30-cm-
long quartz fiber. This shell is made of aluminum-
covered paper and is 78.1 cm long, 12.84 cm in di-
ameter and weighs 58.63 g. An external torque
can be applied to the fiber by means of a rotatory
vacuum feedthrough, making the shell oscillate.
The period of oscillation of the pendulum can be
measured electronically with the aid of a laser
beam reflected from a small mirror attached to
the fiber.

The helium used for the experiment was purified
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1
2

I
I

tT

5l

6

v -=(1/2v)(if/f)'"

1/r =qf-Q)(/1/ML).

(38)

(38)

f 1

ll
' I12

I

I

I

I

I

I

I

I

I

10

y (t) = y,e ~' cos(2mvt),

where

tI = 1/2~ =rtf(s)g/2ML)

(4o)

(41)

Note that L is the distance between the cylin-
drical shell and any of the fixed surfaces. The so-
lution to Eq. (37) is the usual one given for a
damped oscillator:

15~ u

Jo- -~
I X I X'

tgesr I//11~ )3

FIG. 2. Scheme of the experimental setting. 1, 2, and
3: laser, goniometer, and equilibrium center. 4, 5,
and 6: laser, mirror and photocell, respectively. 7
and 8: screen and electronics for amplitude and period
measurements. 9: quartz fiber. 10, 12: fixed sur-
faces. 11: moving surfaces (pendulum shell). 13:
vacuum outlet and sample inlet. 14, 15, and 16:
thermocouples and pressure gauges.

in a liquid nitrogen trap and its pressure, when in
the viscometer, controlled to 1% in the range
from 5 to 50 mTorr by a McLeod and by electro-
static pressure gauges. The working temperature
was 294.1 + 0.2'K. The period of the pendulum is
approximately 71 sec. A large period is desirable
to avoid turbulence and to have good precision in
the measurement of the period. Such measure-
ments were made deflecting the pendulum 45', and
after 10 free oscillations a photocell placed in the
path of the reflected light corresponding to the
equilibrium position of the pendulum triggers a
time-interval-measurement instrument in order
to measure the time elapsed in 10 oscillations.
For each period measurement the instrument was
evacuated to 1 mTorr and then a new sample of
helium was placed at the desired pressure.

The equation of motion of the pendulum is

Ij'= -Ey -P,„AR,

)
4IIML (T', —T',)'~'

rIA. T,T, . (43)

Table I indicates different values T, and the cor-
responding values of f(n) for several pressures P, .
The minimum experimental value for the period
was found to be V1.1172+0.0002 sec, and for the
value of the constant 4nML/rIA we used M= 58.63
+0.01. g, I =5 cm, A=6349+10 cm', and g=194.1
p, P. This last value is the accepted one for the
viscosity of He at 293 K and normal pressure. To
have an estimate of the error in the periods T, , we

8 T~= period(sec )

71.300

(v2 P2/4~2)1/2 (42)

For our experimental setup in which i.= 5 cm,
we are interested in the range of pressures from
5 x 10 ' to 5 & 10 ' Torr. We will measure the per-
iods T, corresponding to the densitips n, in this
range of pressures. Equation (42) relates the coef-
ficient P with the frequencies v, = 1/T, . We take
the frequency v, appearing in Eq. (42) as equal to
the frequency corresponding to the minimum value
T, of the measured periods T, (see Fig. 3)." We
can write from Eqs. (41) and (42)

where I, cp, R, and A are the moment of inertia,
deflection angle, the radius, and total surface of
the oscillating shell, respectively. Z is the torsion
constant of the suspension. Since I= MR', where
M is the ma, ss of the pendulum, &u=yR, and P,„
= -II(&&/L) f(n) [see Eq. (34)], we can write from Eq.
(36)

71.200

71.100,Jl 10

1.64 3.28

20 30

6.57 9.85

1.95 0.97 0.49 0.32

40

13.13

1

p (mTorr)

n (c rnid) x10'~

0.24 l (cm)

rp+ (1/7') p+ 4g'v'qr = 0,
where

FIG. 3. Experimental values of the period T for
different pressures. P, n, and l are pressure, density,
and mean-free path, respectively.
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performed several measurements at 21 'C and
17.1 mTorr. . The standard deviation was found to
be 0.0002 sec. Qn the other hand, since the over-
all temperature variation was 0.3'C for the experi-
ment, several measurements 'of the period T at.
17.1 mTorr were made within a temperature range
of 0.3'C, and a standard deviation of 0.004 sec

Pressure (m Torr) Period (sec)

0.5
2.25
3.75
3.85
4.4
5.25
7.4
9.15
9.2
9.85

' 10.9
13.0
14.35
16.0
17.2
18.1
20.25
21.15
22.2
22.9
23.6
24.25
25.45
26.75
28.4
28.55
30.0
30.7
31.0
32.3
33.3
34.2
36.5
38.0
38.9
39.9
40.3
41.6
43.2
44 0
45.25
46.75
49.75
50.6

71.339 5
71.274 1
71.238 6
71.204 1
71.1830
71.144 6
71.1181
71.1181
71.117295
71.1233
71.123 1
71.1553
71.1915
'71.203 1
71.205 9
71.1941
71.158 8
71.145 8
71.1601
71.1697
71.167 8
71.174 5
71.188 2
71.205 3
71.204 3
71.208 6
71.209 5
71.1901
71.200 2
71.206 l
71.235 9
71.227 9
71.228 0
71.237 0
71.2192
71.248 0
71.240 1
71.2514
71.258 0
71.255 6
71.251 2
71.2317
71.249 0
71.246 0

3.3145
2.7865
2.4517
2.0747
&.8055
1.1644
0.2000
0.2002
0
0.5462
0.5370
1.3735
1.9185
2.0628
2.0961
1.9518
1.4353
1.1897
1.4576
1.6126
1.5832
1.6848
1.8755
2.0890
2.0771
2;1278
2.1382
1.9004

. 2.0277
2.0985
2;4244
2.3414
2.3424
2.4356
2.2476 .

2.5447
2.4668
2.5775
2.6400
2.6175
2.5756
2.3812
2.5544
2.5252

TABLE I. Measurements of the period of the pendulum
and the function f(&) given by Eq. (43), for helium at dif-
ferent pressures and T =294.1+0.2 K. The min/mum
value of the period, which was found at 9.2+0.5 m Torr,
was used as To in Eq. (43). The error in the measure-
ment of the pressure and period are +0.5 m Torr and
+0.002 sec. The error for f{n) is +0.04.

TABLE II. Measurement of the viscosity of helium at
a pressure of 400 Torr and T = 294.5 +0.2'K by using the
logarithmic amplitude decrement P =(inAO- lnA~)l&T,
where T is the period of the pendulum and A~ is the am-
plitude of oscillation after & periods startirig from the
one corresponding to the amplitude Ao. The amplitudes
were measured on a curved screen of radius equal to 210
cm and located at this distance from a small mirror on
the quartz fiber of the pendulum. The error of the am-
plitudes measured on the screen is +0.1 cm. The period
of the pendulum in the above conditions is T =71.973
+0.005 sec. P=(2.79+0.01) &10 3 sec ~ and the viscosity
g =259.6 +0.5 pp was obtained without taking into account
geometric corrections (corrections arising because of
ends, edges, defects of the walls, etc.), and slip factor
corrections rsee Eq. {41)].

AN. (cm) P X103 (sec ~)

0
0.5

4

1.5
2
2.5
3
3.5
4
4 5
5
5.5
6
6.5
7
7.5
8
8.5
9
9.5

10

41.58
37.68
33.95
30.88
27.70
25.30
22.62
20.70
18.5
16.90
15.19
13.81
12.41
11.32
10.12
9.25
8.22
7.60
6.79
6.18

2.737
2.816
2.756
2.822
2.761
2.820
2.769
2.813
2.780
2.798
2.784
2.80Q
2.781
2.805
2.784
2.815
2,778
2.797
2.788

was obtained. The same was done for other points
within the studied range of pressures, and essen-
tially similar standard deviations were obtained.
We have used the conservative value of 0.005 sec
for the vertical error bars in Fig. 3. For the pres-
sure, the horizontal error bars are 1 mTorr.
In spite of the fact that we are interested in rel-
ative measurements instead of absolute ones, in
order to check the apparatus reliability, we have
done measurements of the absolute viscosity g in
the continuous regime, in a range of pressureS
goirig from 1 to 400 Torr. To do this, a curved
screen was used located at 2.10 m from the axis
of the instrument. Following the motion of the re-
flected light from the mirror attached to the quartz
fiber, the amplitude decrement of the pendulum
was recorded. Table II shows the value of P
= (2.79 +0.01)x 10 ' sec. ' taken from the measured
amplitude and the period T =71.973+ 0.005 sec.
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This gives a value for the viscosity of helium q
= 2LMB/A of q = 259.6 p, P, without taking into ac-
count geometric and slip corrections. The geo-
metrical corrections arise because of ends, edges,
and defects of the walls, and the fact that we have
neglected effects occurring because of the cylin-
drical symmetry of the system. " The absolute
value of the viscosity of helium at 21 C is 194.1
p, P (see Sec. IV).

IV. DISCUSSION

f(n)

3

2-

0.
I I

5 10 20 30 40 p (mTorr)

1.64 3.28 6.57 9.85 13.13 n(cm ~)x10'"

1.95 0.97 0.49 0.32 0 24 ((cm)

FIG. 4. Values of the function f(n) calculated from
Eq. (43) and the experimental values of the period of
Table I.

Figures 3 and 4 show T and f(n) as functions of
n using the numerical values of the Table I. In the
horizontal axes of these figures, the density is al-
so expressed in terms of the mean free path / and
the pressure. From the density interval &n be-
tween two consecutive maxima or minima of the
oscillatory shape of the curves, and making use
of Eq. (35), it is possible to calculate the mean
cross section of helium. Since the first two oscil-
lations are the clearest, we take the experimental
value &n = (3.94 + 0.65) && 10"molecules/cm'. This
corresponds to a pressure interval of 12+ 2 mTorr
and give% a, value of v = (2.45 + 0.3) x 10 "cm' for
He. Using the approximation g =7)d', where d is
the molecular diameter, we obtain for helium d
= (2.79 + 0.15) && 10 ' cm. From tables, "the ac-
cepted values for d at 293'K are d„=2.30 & 10 '
cm, d„„=2.65 ~ 10 ' cm, and d„= 1.90 & 10 ' cm,
where d„, d„, and d„are the molecular diameters
calculated from thermal conductivity, Van der
Waals excluded volume, and viscosity, respec-
tively. Notice that our measurement of d is based
on the way in which the viscosity oscillates with
pressure in the transition regime instead of the
constant value that the absolute viscosity has in the
continuous regime as is done for the determination

of d„. Therefore, our determination of. d is ot a
different nature than that corresponding to d„, d
and d„. The overall agreement between our value
of d and d„, d„, and d„ is good. This is an jndj.
cation that the oscillation of P,„with decreasing
pressures in the transition region detected in our
experiment corresponds to a good measurement
and gives reliability to the proposed model.

Let us discuss now the problem of the value of
ap. If we compare Figs. 1 and 4 we see that despite
the drift of the experimental curve appearing in
Fig. 4 towards higher values of f(n) as n increases,
the shape of this curve corresponds to the shape
of theoretical curves of Fig. 1 for ap's smaller
than &I/L. Notice in Fig. 1 that for a, &&u/L the
oscillations of f(n) start at f(n) &1 for n near to
zero. This leads us to exclude a, ~ &u/L, since
in that case either the oscillations do not occur
(when the equality stands) or the first oscillation
starts with f(n) &1 for n near to zero (see Fig. 1).
Therefore, from the shape of the experimental
curve of Fig. 4 we conclude that a, &nu/L for the

. system we have studied. Furthermore, the rather
important values that the amplitude of oscillations
shows in Fig. 4 is an indication that a, is notice-
ably different from nu/L. This together with c,
«M/L (&u/L = 0.03 sec ' in our experiment) makes
it plausible that ap is close to zero.

%e calculate now ap from the experimental curve
of Fig. 4 and Eq. (43). The amplitude of oscil-
lations of f(n) depends strongly on the value of a,.
Systematic errors in the amplitude of oscillations
have little influence on the separation &n in density
between maxima and/or minima of f(n), which we
have used to estimate the atomic cross section for
helium. However, these errors may affect
strongly the determination of ap There errors are
essentially of two types. First, we have taken Tp
in Eq. (41) as equal to the minimum value of the
measured periods, i.e. , equal to the minimum of
the curve appearing in Fig. 3. However, the true
value of the period when there is no friction can
be expected to be below the minimum of the curve
represented in Fig. 3. Though we think that the
true value Tp is not far below the value we have
actually used, this error will produce an overall
vertical displacement of the curve in Fig. 4 to-
gether with a rather small deformation of the curve
consisting essentially in flattening it. The region
of the curve most modified by these changes will
be that near to the minimum marked m, in Fig. 4
[see Eq. (43)]. To partially compensate for this
type of error in the evaluation of a„we will use
the &f(n) corresponding to the difference between
the two extrema of f(n) marked M, and m, in
Fig. 4. M, and m, correspond to still quite clear
oscillations of f(n). Furthermore, M, and m, are
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consecutive extrema of f(n), and thus the drift of
f(n) towards higher values as n increases will not
yerturb our measurement very much.

Another .source of systematic errors is related
to the fact that we have not taken into account geo-
metric factors (corrections arising because of
ends, edges, defects in the walls, etc. ). This we
have roughly compensated for by introducing the
factor 5 = ri/-ri, where q= 194.1 p, P and il =259.6 p, P
aI e, respectively, -the usually accepted value for
the viscosity of He at T = 293'K and the viscosity
of He obtained with our instr&ment by measuring
the logarithmic amplitude decrement P of the pen-
dulum at 400 Torr and T = 294'K (see Sec. III).
This factor 5 multiplies the factor ML/A in the eq-
uation for ii if we obtain it from Eq. (41) by taking
f(n) = 1 [note that f(n) = 1 for the conditions corres-
ponding to the rather high density in which we have

measured P]. Therefore 5=0.75 will appear multi-
plying 'Eq. (43). By measuring &f(n) in the experi-
mental curve appearing in Fig. 4, multiplying it by
0.75, and calculating the difference between the
two values off(n) corresponding to &oL= &w and
a&L = s& &n Eq. (34), we have obtained ao= -0.03
+0.04 sec '. This crude determination of a, is
consistent with a, 0.
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where c —= 8 &/8 T is the specific heat per molecule.
Assuming that c depends very s&owly on the tempera-
ture, as is usually the case, theri the above relation
for Qg reduces to

BT s 383T
Q = —3 nv cl ——~~nv cl

Then by following similar steps as in Eqs. (21)-(35) for
the case of P „, we obtain

AT
~~

bo sinQL
o )

g
sinQL

( DI.

where k is the coefficient of thermal conductivity of
the substance, b T=T(L) —T(0), bp= (BT/Bz)~ p and
0 =v 2no. Here again if b p is considerably different
from 6T/L, oscillations of Q, could become sizable,
and the separation in density between the oscillations
are the same as for the case of P8~. However, in
practice, the method to obtain boundary conditions
such that b p & 6T/L may be different from the method
to obtain ap & 4u, /L in the case of Pg„(see the end of
Sec. II). Note that the dependence of c on T for the
gas far from the boundaries (c can be taken as inde-

1
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Eq. (2.54) of p. 308 and Table 5 of p. 310.

~4In the case of thermal conductivity, by following the
same rough approach as was done for P,„ in Eqs.
(1)—(5), we find similarly for the heat Qux Qg the rela-
tion

Q = —3nv l —ggnv 3l
8 E

Bz Bz

where e is the mean energy per Inolecule. If we
write this expression in terms of the temperature
gradient, then

BT ~ 3 8 E BT 8 E BT 8 T
z = —3nvcl Bz

—
&8 nvl „8Ts Bz 8 T2 Bz Bz

QE' BT
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pendent of 7 in this region) may be different from that
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boundary. This may introduce an additional complica-
tion to the problem.
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The true period of the pendulum without friction
[To in Eq. (43)] can be expected to have a somewhat
smaller value than the period corresponding to the
minimum of the curve appearing in Fig. 3. Although

we can neglect the friction produced by the fiber of
quartz, there still remains some friction produced by
the gas when densities are around the density corres-
ponding to the minimum of the periods represented in
Fig. 3. On the other hand, we couM not eliminate
this residual friction by producing an extreme Knudsen
regime because of the limitations of our instrument.
The Knudsen regime becomes predominant for pres-
sures smaller. than 1 mTorr in Fig. 3, Then it may be
expected that when we approach zero pressure start-
ing from 1 mTorr the period goes down to a value
smaller than that of the lower period actually repre-
sented in this figure.
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