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Stability analysis of dissipative structures in a nonlinear diffusion-reaction problem
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Topological-degree and Lyapunov-potential techniques are used to study the stability of nonlinear
dissipative structures found in a problem involving autocatalysis and the Langmuir-Hinshelwood adsorption
law.

I. INIOOUCTION

Recently there has been an extraordinary im-
petus in the study of nonlinear nonequilibrium
phenomena (Hefs. 1, 2, and for a discussion of
physical and nonphysical problems, see, for in-
stance, Ref. 3). Most of the works refer to the onset
of new phases, usually with a higher degree of
ordering and synergesis; these nonequilibrium
phases arise or bifurcate from some primary,
r ather disordered, basic states that become un-
stable at weli-defined critical values of certain
parameters. Very little is known, however, about
tbe stability of the ordered branches that exhibit
either time periodic (limit cycle) behavior, non-
uniform distribution of concentrations, tempera-
ture, etc. , or ordered convective motions (Benard
cells, Taylor vortices, etc.). In a recent review
Normand, Pomeau, and Vel.arde' have discussed
the useful perturbative approach originally due
to Landau and Hopf for hydrodynamic convective
motions (see also Refs. 4 and 5). In the present
paper we use more refined, and nonperturbative
mathematical techniques to dicsuss the stability
of ordered phases (dissipative structures) in dif-
fusion-reaction systems. These techniques (topo-
logical degree of a mapping, and Lyapunov's "po-
tential" method) seems to us of useful and wide
applicability in nonlinear problems that at present
belong to general physics.

If one wishes to consider a realistic model prob-
lem containing a minimal set of the most relevant
physicochemical components, a tentative case is
one with the following items: (i) autocatalysis, of
which a typical step involving binary collisions
only is X+ Y-2X, in which X and Y denote con-
centrations of species X and Y; (ii) a saturation-
adsorption law such as the Langmuir-Hinshelwood
law in heterogeneous catalysis, 6 which mathemati-
cally is just the functional law called Boiling's law
in ecology, and in enzyme-controlled biophysical-
chemistry, the Michaelis-Menten law. In the sim-
plest case it corresponds to a reacti'on rate like X/(1
+ qX), where q denotes some characteristic para. —

meter that yields the strength of the saturation;

BX BX (l.la)

X(0)=X(l) = const (l.lb)

on the interval I0, I]. D is the mass diffusion con-
stant of X (we have taken D„«D„D ~).
term Y,X comes from the autocatalytic step with
Y', being a fixed value (D„-~). We shall take this
constant equal to the fixed value at the steady state
when there is no mass diffusion: Y, =1 —qA. On
the other hand, to this value Y, corresponds a
steady-state value to X, =A, /(1 —qA) that we take
as tbe boundary value in Eg. (l.lb) (for details,
see, Hefs. 7 and 8). The change of variables

X=A/(1 —qA)+ u (1.2)

transforms Eqs. (l.la) and (1.1b) into the following
Schrodinger-like equation:

8—u= hu+f(u)D Bt ) (1.3a)

f(u) =—A. + (1 —qA)u—,(1.3b)
1 A+ (1 —qA)u

and (iii) diffusion of matter, should energy dis-
sipation and convective motions be disregarded.
Lastly, for an isothermal process with two species
participating the simplest case corresponds to
one with large separation in the diffusion con-
stants.

Under the circumstances just described above
the model problem is contained in the following
physicochemical scheme:

X+ Y 2X, Q P,
in which% and P also denote concentrations of
products that we keep constant in the simplest
case. S accounts for the saturation law. Various
aspects of the mathematical analysis of such a
physicochemical scheme have been described in
Hefs. '7 and 8, and under the approximations (i)-
(iii) the most simple case is a one-dimensional
line process. It leads to an evolution and eigen-
value equation which in dimensionless form is
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u(0) = u(1) = 0, (f..3c)
7

(a)

in which 4 denotes the Laplacian here in dimension
1.

In the following we shall denote by u(x, t, (]}})the
solution to Eqs. (1.3a)-(1.3c) with initial condition
u(x, 0, {t})= {t}(x). The steady-state solution u, (x)
to Eqs. (1.3a)-(1.3c) originate in the eigenvalue
problem

R

4u, +f(u, )=0,
u, (0) = u, (1)= 0 .

(1.4a)

(1.4b)

The functions u(, t, (t}) and u, ( ~ ) belong to a space
B of functions defined on [0, 1] with continuous dif-
ferentials, that vanish on the boundaries of the
interval.

Let u(x, vo) be a formal solution to Eq. (1.4a)
obeying the initial data u(0, vo) =0 and 22'u(0, v, )=v, .
Then there is an obvious first integral to (1.4a)

(b)

Z=-,' [Vu(x, v,)]2+E[u(x, v,)], (1.5a)

( )
"

( )
1 (1 —qA)u' u(l.-qA)
D 2 q

v -7»
I
{+7({—dd)x I)

(1.5b)

It appears that for a given k ~ 0, u(x, v,) will be
a solution to Eqs. (1.4a) and (1.4b) if any of the
following conditions are satisfied:

&0

FIG. 1. (a) Qualitative sketch of the steady-state
solutions parametrized by vp=vp(A) ' q = 2.0 Dg
= 0.002, (b) Qualitative'sketch of T as a function of vp
for the same values of q and Dz. The branches RS and
TU in both cases are in correspondence with each other.

(2.1)

(i) (k+1)T,+kT2=1,

(ii) k T, + (k+ 1)T, = 1,
(iii) (1+k)(T, + T,) =1,

(1.6a)

(1.6b)

(1.6c)

The origin is asymptotically stable for

A c (0, A ) u (A„1/q),
A, = 0.5 a 0.5(1 —4w'D}'~',

(2.2a)

(2.2b)

in which

T, ,=v2 f Z[[ (xx, v,)]-F( )2']7d {, (1.7x)
0

F(52„)= 2V('), (1.7b)

and k iS an integer: 0, 1, 2, . . . . Figures 1 and 2
provide a qualitative sketch of the multiple steady-
state solutions for the values q=2.0, D =0.002,
and Ac (O, q ').

The solutions u, (x) =u(x, vo), X{=[0, 1]depend
on the parameter eo, and vo 0 yields the homo-
geneous steady-state solution.

and it is unstable for A (= (A, A,). In the case
D& & the origin is asymptotically stable for A,
(= (0, 1/q) and no other steady state exists.

A dit'ferent matter is the stability of nonuniform
solutions, and we shall use two methods to study
the problem: (i) method of topological degree, and
(ii) Lyapunov's potential method (direct method).

III. APPLICATION OF THE TOPOLOGICAL-DEGREE

METHOD

The solution u, (x) to Eqs. (1.4) can be written

a

x.{x)= —f G{x,x}f[x,({)]d{
0

II. STABILITY OF DISSIPATIVE STRUCTURES =-a(A, q, D)u, (x), (3.1)

The linear stability of steady states u, (x) is re-
lated to the eigenvalue problem

where H denotes a nonlinear operator on B, and

G(x, g) is the Green. 's function corresponding to
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Case: q 2.0, A*0.15, 0), ~0.002

Tg tT)+Tg

T2

FIG. 2. Five steady-state solutions that appear at
q =2.0, Dx—- 0.002, and A = 0.15. They correspond to the
open circles shown in Fig. 1(a).

(1.4). The steady states are the fixed points of
H. %e shall associate an index y related to the
rotation of H on an infinitesimal sphere around

u, (x) on 8 [for details, see, Refs. 2 (Appendix),
12 (Appendix), 13.

Let I. be the linearization of H around u, (x).
Then y= (-), where P is the sum of multiplicities
of the eigenvalues p,„ to the problem

(3.2)

in the segment [0, 1]. Thus, in our case we have

found that for given q and D, y has the following
v.alues:

+1 if Aeven ~A ~AO

y = -1 if A' "&A &A"",
0+2

where 0&A&1jq, and

qA~" (1 —qA)',") = Dm k', k = 0, 2, 4, . . .
qA'~~(1 —qA'~~) =Dm (k+ 1)2 k = 0, 2, 4, . . . .

Thus, the origin changes its topological degree
at the bifurcation points.

The degrees of the remaining stationary solu-
tions follow from the fact that the sum of all de-
grees of the steady states to the left of a bifurca-
tion point equals the corresponding sum for those
to the right, i.e., for given q and D the operators
H(A, q, D) and H(A', q, D) are homotopically e((luiva-
lent on the sphere that encloses all steady states
arising between a and a'.

Shown in Fig. 3 are the topological degrees of
the several branches found with variable A, and
given @=2.0 and a=0.002.

Luss and Amudson (Refs. 10, 11, and see also 12,
p. 90) have shown that a necessary and sufficient
condition for the eigenvalues X„of E(l. (2.1) to be
negative is that E(l. (3.2) would not have eigen-
values in the closed interval [0, 1]. Thus, all so-
lutions u, (x) with (-1) are unstable, though not all
u, (x) with degree (+1) are asymptotically stable.

We speak of stability or instability with respect
to the norm of the Banach space B. Given h(=8,
jj k jj

= supp Vk(x) j) for x (= [0, 1], thus u, (x) is said
to be asymptotically stable if for given &&0 there
exists 5 & 0 such that if

jj p -u, (x) jj =sup[Up —V'u, (x}]&5

for x(= [0, 1] it follows that

jj~(x, f, y) ~,(x) jj= sup[jr~(x, f, p) -VN. (x) j)-0
for x(= [0, 1] and f-~. For any function (t) (=p

vo '

(1 —qA)'
D ~ ) ((+q(( —qA)sr, (x)g) ~' '

(3.3a)

(t) (0) =0„(1)=0 . (3.3b}

For the trivial fixed point, u, = 0, it is easily

FIG. 3. Topological degree or index corresponding to
the various steady-state solutions for q= 2.0 and Dx
= 0.002.
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sup&I @(x}I}-c sup[I y'(x) I]

for x c [0, 1], in which C is a constant that does
not depend on the uniform convergence of

I
vu (x, f, g)

—vu, (x) I, ensures the pointwise convergence
of the functions themselves.

IV. APPLICATION OF LYAPUNOV'S DIRECT METHOD

From Sec. III it remains to study the stability
of solutions with degree +i. This can be achieved
with the help of a Lyapunov functional" on B

1
&(4)= I 2(&()'-&(())d*, (4.1)

with E defined by Eq. (1.5b). The functional V
has the following properties: (i) For a solution
u(x, f, (t)) to Eq. (1.3)

—V[u(x, f, y)]-0 .d
(4.2}

(ii) The equal sign in Eq. (4.2) corresponds to the
case of a stationary solution only.

I

(iii) V[u, (x) + h] —V[u, (x)]

= W(u. , h}+(Illhlll'), (4»
where

W(u„h) = — (Vh)' —
I

—f(u, (x))
I

h' dx (4.4)
1 ('I, (d
2 go (dQ j J

and

ill&IIII =($ (~»'d*)'* (4.5)

Then the stationary solution u, (x) is asymptoti-
cally stable if V has a local minimum at u, (x) and
unstable if V has a local maximum.

Qhafee and Infante' have proved that for systems
defined by Eqs. (1.4) one has the following: (i) if
a positive constant c &0 exists such that

tion to (4.7) for initial conditions Z(0)=0 and
Z'(0) =1 is such that Z(g)=0. The utility of Jaco-
bi's equation to study second variations of V
around u, (x) and consequently the stability of u, (x)
comes from the following results: (i) If Eq. (4.7)
possesses a conjugate point gc(0, 1], then there
exists h, cB such that W(u„h, ) &0, and u, is un-

. stable. (ii) If Eq. (4.7) does not posses a conjugate
point in (0, 1), then Eq. (4.6) is satisfied and u, is
asymptotically stable.

Nothing is said about the case of 1 being the con-
jugate point, in which case there is marginal sta-
bility.

The solutions to the Jaeobi equation (4.7) are
obtained by differentiating u(x, vo) with respect
to the v, corresponding to u, (x). The analysis of
Eq. (4.7) follows the pattern presented in Ref. 9.We
get (i) for a given triplet (q, A, D„) if there is a
solution corresponding to T= T„ it is asymptot-
ically stable; (ii) all other nonuniform steady-
state patterns are unstable in poi.nts where the
slope, dT/dvo&0, is positive; and (iii) for the
patterns with negative slope, dT/dvo&0, nothing
can be said using the work of Chafee and Infante
as the function f(u) in Eq. (1.4a) does not satisfy
their hypothesis; as a matter of fact it does not
comply with the condition f(u)u '-0 as (u) -~.

However, as they have topological degree (-1}
they are unstable.

Thus, for given q, D„we have (i) for A c (0, A )
U (A, , 1/q) with A, given the only asymptotically
stable steady-state pattern is the homogeneous
solution. If A, is not real, the homogeneous solu-
tion is asymptotically stable in the region A
c (0, 1/q); (ii) for A c (A, A,) the solution corres-
ponding to T, is the only asymptotically stable pat-
tern.

Figure 4 provides the diagram of stable branches
for @=2.0 and D„=0.002.

W( (4.6)

for every hc B, then the solution u, (x) is asymp-
totically stable (with the definition given in Sec.
III). (ii) u, (x) is unstable if there exists h, cB
such that W(u, (x), h, )&0.

The Jacobi equation corresponding to the Lya-
punov functional V and solution u, (x) is"

Z" + —, [u,(x)]Z =0 .Ir (4.7)

Then g c (0, 1] is a conjugate point when the solu-

FIG. 4. Plot of the asymptotically stable steady-state
branches that appear at different values of A, with q
=2.0, and Dx= 0.002.
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0.5
with

(5.3a)

t=0 V=-3.04
r'/

t~5 V=-438
t=N V=-4.58

h =A /2(1 —qA)+A/q+ (1/q2) ln(1 —qA) &0 .

(5.3b)

(b)

If we take the family of functions k, cB,
h, (x) = c sinmx,

it follows that

(5.4)

= -109,0

2.0

1.0

= -44.5

0
0.5

FEG. 5. Spatial nonuniform concentration profjles of
reactant X along the line r(0, 1). ForA =0.25, q=2.0,
and Dx= 2 X10, the only asymptotically stable steady
state corresponds to T2. (a) Gives the time evolution
of a concentration profile placed at time t = 0 in the do-
main of attraction of T2. As time goes on the value of
the "potential" V decreases to relative minimum V.

= —4.59, which corresponds to the steady-state solu-
tions; (b) corresponds to an initial condition outside the
domain of attraction of T2, and the system does not
tend to any steady-state solution; rather the potential
grows unbounded to —~.

V. GLOBAL STABILITY

If for a given triplet (q, A, D„) we have

min[V(h}]=V[u, (x)], (5.1)

for all A. cB, we say that u, is globally stable or
stable in the whole.

For the values of (q, A, D„) where the homo-
geneous solution is asymptotically stable

(5.2)

Whereas, for those values for which the stable
solution corresponds to T„ it is

V[h, (x)]= (c'/4D„)[m'D„- (1 —qA)]+ O(c) . (5.5)

Thus, for (1-'qA}&v'D„ the V function can be
made as small as we please. It suffices to take
c as large as we need. Consequently, the cor-
responding asymptotically stable steady-state
solution cannot be stable in the whole (globally
stable}. To establish this property it suffices to
give as an initial condition to Eg. (1.3), a function
that yields values, of V smaller than -0, to
prevent the function u(x, t, &f&) from evolving to the
solution u, (x) for this would contradict relation
(4.2). Nothing can be said, however, when (1 —qA)
&n'D„. Thus, at least for some range of values
of the parameters, there is no global stability to
the solution. Finally, all that remains is to men-
tion that computer -runs confirm all conclusions
presented above. Besides, Fig. 5 shows the evo-
lution of the solution u(x, t, P) to Eqs. (1.3) with
@=2.0, a=0.002, and A =0.25. For these values
of the parameters the asymptotically stable steady
state T, is not globally stable and the solution
u(x, f, @) goes or does not go to T, depending on the
initial condition f(x); in both cases the Lyapunov
function decreases.
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