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Dynamics of helicoidal ferroelectric smectic-C liquid crystals
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The order-parameter fluctuation spectrum of a chiral system undergoing a helicoidal ferroelectric smectic-
A ~smectic-C phase transition is evaluated both above and below T, . The transition is produced by a
condensation of a coupled tilt-polarization soft mode. The "in-phase" amplitude fluctuations in the tilt and
the polarization represent the soft mode of the low-temperature phase, whereas "in-phase" orientational
fluctuations represent the Goldstone mode which is recovering the continuous symmetry group broken at T, .

I. INTRODUCTION

It has been recently shown' that the smectic-C
liquid crystal. line phase is ferroelectric if the
molecules are chiral (noncentrosymmetrical) and
have a permanent dipole moment transverse to
their long molecular axes. In the high-tempera-.
ture smectic-A. phase the molecules ag,e rotating
freely around their long axes, which are oriented
perpendicular to the smectic layers (n, 40,
n, =n, =0). The point symmetry of each layer
corresponds to the group D . The transition to
the ferroelectric smectic-C phase is induced' by
the two-dimensional representation E„and the
poi.nt symmetry of the layers is reduced to C, .
The order parameters of the transition are the
components of the in-plane Spontaneous polariza-
tion P„and P,—describing the ordering of dipoles
transverse to the long molecular axes —or the
quadratic combinations (, =n, n, and $s =n, n, of
the components of the molecular director n

(describing the orientation of the long molecular
axis), which transform as well according to the
representation E,. As far as group theory is
concerned, the dipole ordering-type description
(P„,P, ) and the tilt-type description (n, n„, -n, n, )
of this phase transition are equivalent
(P„=constn, n„P, =-constn, n„). In view of the
smallness of the observed' in-plane spontaneous
polarization and the small difference in the-
smectic-A smectic-C transition temperatures
between chiral and nonchiral modifications of the
same compounds, it is clear, however, that the
tilt. of the long molecular axes with respect to
the layer normals (which is a consequence of
nonzero values of n, n„and n, n, ) is the primary
and the polarization only a secondary order pa-
rameter. The spontaneous polarization is thus
induced by the molecular tilt and the ferroelectric
smectic-C liquid crystals are improper ferro-

electrics.
Indenbom, Pikin, and Loginov have shown' that

there are no third-order invariants in the expan-
sion of the free energy in terms of the order
parameters, so that the transition may be of
second order. There is, however, a Lifschitz
term'4

BE Bg,
&t B,'-4„' (la)

or

(1b)

producing a helicoidal distribution of the molec-
ular tilt and the spontaneous polarization as one
goes from one smectic layer to another. The
periodicity of the helix will be, in the general
case, incommensurp. te with the one-dimensional
translational periodicity of the smectic-A. phase.

The symmetry properties of the high-tempera-
ture phase allow for two types of coupling terms'
between the molecular tilt and the dipolar order-
ing: a bilinear "piezoelectriclike" coupling" '

P,gs -P,g, (»)

and

P, =Dn, n

P~ = -Dn~n„,

(2b)

(2c)

and a flexoelectric term'

P, '+P, (sa)

which results in a proportionality between polar-
ization and thy bending and twisting of the mo-
lecular director in space,

between the polarization and the tilt, which results
in
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pose of this paper to perform the same analysis
for a helicoidal. smectic-C ferroel. eetric, where
terms (la) and (3a) are present in the free-energy
expansion.

-8$, -8)2
(3b)

The "flexoelectric" coupling term (3a), which
may be more important than the "piezoelectric"
term (2a), has so far not been taken into account
in phenomenological theories" ' of ferroelectric
liquid crystals.

Previously' we discussed the static and dynamic
properties of a spatially homogeneous ferroelee-
tric smectic-C system, where the ferroelectric
ordering is induced by the bilinear coupling be-
twe

H. FREE ENERGY

The nonequilibrium free-energy density above
a smectic-A- smectic-C transition can be for a
spatially inhomogeneous system of chiral mol-
ecules with nonzero transverse dipole moments
written

en the polarization and the tilt. It is the pur

g=Z~+2&(A+4)+ 4b((g +5,')' &+k, s
' —5, s

' + 2&33 s
' + s

' +n(/+5', ) 5, s' -5, s
'

+ —(P2+P', ) —p, P„'+P„' + C(P„g, -P„$,)

Here g„ is the free-energy density of the
smectic-A phase in the absence of smectic-C
fluctuations, $, =n, n„, g, =n, n„n=(n„, n„, n, ) is
the molecular director, K,3 is an elastic constant,
a = n(T —T,), b = const & 0, and ail other coeffi-
cients are assumed to be constant. The coupling
with the density fluctuations has not been taken
into account in the above treatment.

The inhomogeneous fluctuations in the smectic-
A phase, induced by the I ifschitz term A 40,
will generally take on the form of a "right"-
(q&0) or a "left"- (q&0) handed helicoidal wave.

Introducing

I

lem, there are'no x, y„u,v„x,v„or u, y, cross
terms above T„and we have for each q two de-
generate helicoidal "tilt-polarization" waves,
which are shifted in phase for &m: qz- qz+ &w.

The breaking of the cylindrical symmetry below
T, will remove the degeneracy of the above two
modes.

III. STABILITY CONDITIONS

The equilibrium values of the polarization and
the tilt are obtained from

eE eZ eZ aE
axq gq ~Qq ~v~

g, (z) = g (x, cosqz —y, sinqz),

g, (z) = P (x, sinqz+y, cosqz), (5b)

where, for T &T„ the quartic terms in the tilt
have to be included.

One solution of this system, which corresponds
to the smectic-A phase, exists at all tempera-
tures:

P, (z) = g (-u, sinqz —v, cosqz), (5c) x(o) „(o) @(0) v(o) 0 (8a)

P„(z) = P (u, cosqz-v, sinqz), (5d)

—pq(x, u, +y, v, ) —C(x,u, +y, v, ) . (6)

In view of the cylindrical symmetry of the prob-

we find above T, the harmonic part of the non-
equilibrium free energy per unit volume —aver-
aged over the helix —in the q representation as

1 L
Ag dzI
1 1 1—a+Aq+ -X33q' (x', +y', )+ —(u', +v', )

w

whereas another, which corresponds to a heli-
coidal ferroelectric smectic-. C phase with either
P, 40 or P„CO ate=0,

x(o) +(0) 40 (0) v(0) =0

or

y(0) v(0) g 0 x(0) g(0) 0~ vq ~ xq ~Qq

(8b)

will exist only below a certain temperature T,.
To see which of these two solutiond —(8a) or

(8b)—represents a stable state, we have to find
out which corresponds to a minimum of the free
energy. The condition for the stability of a given
solution can be expressed as the requirement that
the inverse susceptibility of the system is a
positive definite quantity. To perform this cal-
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culation, let us l.ook for the stability limit of the
high-temperature phase against a helicoidal fluc-
tuation in the tilt angle 8 and the pol.arization I' of
wave vector q:

T,(q) = To+ (1jo')[(flu' -K»)q

+2(ep C-A)q+eC'j, (14)

t', =58, cosqz, P„=-5P,sinqz,

g, =53,sinqz, P„=5P, cosqz.

(9a)

(9b)

The harmonic part of the nonequilibrium free
energy per unit volume, averaged over the helix,
now becomes

1E = — &gdza
0

d1cq 0 (15)

as

(16)

The critical wave vector q„ for which T,(q) is
highest is obtained from

= z a(58,)2+Aq(55, )2+ z K»q'(55, )

+ (1/2e)(5P, )' —(yq+ C)55,5P, .
The first derivatives are

(1O)

It should be noted that & p.
'

&X33 and, in view of
the magnitude of the coupling constants C and
A, qo. is rather small.

The smectic-A. - smectic-C transition tempera-
ture is thus obtained as

and

' = (a +2Aq+K»q')58, —(p.q+ C)5P, (11a)
T,(q, ) = T, + — sC '+1 2 (e p, C -A)2

~E, 1' = —5P, —(p,q+C)55„~P, (11b)

and the stability limits of the smectic-A. phase
are determined by this eigenvalue ~ of the inverse
susceptibility matrix of the high-temperature
phase (T&T,): P, =e(p, q, +C)8„T&T, (18a)

and is always higher than T,. The difference
between T,(qo) and T, measures the effect of the
coupling of the tilt to the in-plane polarization.
Below this temperature, 80 and Po are different
from zero. For @=0, the pitch of the helix and

q, are temperature independent and we find

g2y

pe-,a

$2+
8a 9+a

g2p

8 Bj'

$2E
QQ 2

and

52O = (n/b)(T, —T), T & T, .' (18b)

Thus we find the equilibrium val.ues of our order
parameters as

a+2Aq+K»q' —A, , (pq+C)-
t'l, '~ =8,cos(qp), Pl„'~ =-

P, is(nq~},

)f2'~ =8,sin(qp), Pl~~ = ,Poc(st).
(19a)

(19b)
-(p,q+ C), 1je —A.

which first becomes zero on lowering the tem-
perature T.

The two eigenvalues of Eq. (12) are

For g 0, the pitch of the helix and q, will be
temperature dependent:

1 2b b~'
q.(T)=6 q.(T.)- —„+4 q.(T.)+-„)

&„,= —,
' ((a+2Aq+K»q~+1/e)

+ [(a+2Aq +K»q' —1/e)'+ 4(pq + C)']'~'j

(13)

3 u(T —T)
E33- g 6

(19c)

and have to be positive for any q for the high-
temperature phase to be stable.

It is clear that for && 0, ~, &0, and that it is ~2
which determines the stability limit of the
smectic-A. phase. The temperature at which ~2

vanishes depends on q:

where q, (T,) is given by Eq. (16). The relation
between PD and 8o as given by expression (18a) is
still valid, though in view of q, =q, (T) the tem-
perature dependence of these two quantities will
not be exactly the same.

In the following we shall put g =0.
\
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IV. DYNAMIC PROPERTIES

A. T)T,

and

1—= r,e(pq, + C)'+ r, —, T & T, .1
(24b)

Neglecting inertial terms, we get the Landau-
Khalatnikov equations of motion as

dg, ~E d(2 &E
dt '&( ' dt

(20a)

(20b)

g, (t) =8, cos(qz)+ 53,(t) cos(qz) —53,(t) sin(qz),

(21a)

$,(t) =rosin(qz)+58, (t) sin(qz)+58, (t) cos(qz),

(21b)

P„(t) = -P, sin(qz) —5P, (t) sin(qz) —5P, (t ) cos(qz),

dP„~E dP, ~E
2gP & dg 2gp

where E= (I/4) J gdz and the kinetic coefficients
I', and 1"2 vary only weakly with temperature.
Expressing g„g„P„,and P„ in terms of "am-
plitude" 5B, (( 80, 5P, (( P, and "orientational"
53,i8„5/2 &P, ftuctuations,

= e(pqo+ C)

5P 1 1
58 . r r, , I', e(gq, +C) (25b)

describes the "out-of-phase" fluctuations of the
same quantities.

The dispersion relations of the two modes,
1/r and I/r. , are as well significantly different.
For T =T, and q q, we find for the "soft" mode
a "spin-wave-like" dispersion relation:

1/r is thus the doubly degenerate "soft" and
I/r, the doubly degenerate "hard" mode of the
smectic-4 phase. 'The eigenvector of I/r de-
scribes the "in-phase" fluctuation in the polariza-
tion and the tilt of wave vector qo,

~

~

5P'
(25a)58,g-@,, -

whereas the eigenvector of the "hard" mode
I/r.

(21c)

P„(t)=P, cos(qz) + 5P, (t) cos(qz) —5P, (t) sin(qz),

(21d)

r,r,x
q, [I',e'(pq, + C)'+ I', J

whereas the hard mode is "opticlike":

(26a)

and linearizing 'the above system, we see that for
T & T, (where 8 OP, = 0) the "amplitude" and
"orientational" fluctuations are uncoupled for all
q vectors and are degenerate.

In this case we can use expressions (Ba) and
(9b), and the linearized equations (20a) and (20b)
simplify to

1 &E,—(58,) = I', (22a)

(22b)

For the critical wave vector q =q, [see Eq. (17)]
and T-T', we find

where E, is given by expression (10). The two
(doubly degenerate) solutions (I/r), of the above
system, describing the exponential approach of
the fluctuations in the tilt angle and the polariza-
tion to equilibrium, are

(I/i), = z([I', (a+ 2Aq +E„q') + I;(1/e)]

+([r,(a + 2Aq NE„q') —I;(I/e) J'

+4r, r2(pq+ C)'P~'). (23)

, ), ,2, (t q. +C)'(q-q. )

(25b)

It should be noted that in contrast to the homo-
geneous case, ' treated previously, 1/r is finite
at T = T, for q =0, if qok Q. In the absence of
coupling between the polarization and the tilt, the
"hard" mode would become the T-independent
polarization rotation mode, whereas the "soft"
mode would become a pure "tilt" mode.

B. T&T,

In view of the nonzero value of Po= (P~', P„', 0)
and 3,=(g,'~, g, 'l, 0) [see Eqs. (19a) and (19b)]
the symmetry of the high-temperature phase is
broken below T, and the degeneracy between the
"amplitude" and "orientational. " fluctuations is
removed. Inserting expressions (21a)-(21d) for
fluctuations g, (t), $,(t), P„(t),P, (t) with the critical
wave rector q, into expression (4} we find

4E= —,'[2o(T, —T)+e(pq, +C)']65', + e(pq, +C)25322

+ (I/2e)(6P', + 6P22) —(j,q, + C)(5P,58, + 6P,55,),
(27)

1 r1 n/e
)r, e(pqo+ C)'+r, (l/e)

(24a)

where we used 5', = (n/b)(T, —T) and Po
= e(pqo+ C)80.

It is clear that for q =qo the amplitude fluctua-



R. 8 LINC AND B. ZEKS

tions (5P, i( Po, 53, ~PO) are uncoupled from the
orientational fluctuations (5P, &P„58,&8,), so
that the 4 & 4 secular matrix, x'esulting from
Ec[s. (20a) and (20b), factorizes into two 2 x 2 ma-
trices. One of these matrices describes the
orientational and the other the amplitude fluctua-
tions. For q =q„such a factorization does not
seem to occur.

The eigenfrequencies of the amplitude fluctua-
tion modes 58, and 6P, are obtained as

(1/T) = —'[I' [2o.(T -T)+e(pq +C)2]+I' (I/e)

a((r, [2n(T, —T)+ e(pq + C)'] —r, (1/e)]2

+4r,r, (l q, +c)') "7 (28a)

for q =q„T&T,. These frequencies for q =q,
are the same as (I/r), above T, if only o.(T —T,)
is replaced by 2n(T, -T). This is, of course,
the usual "molecular-field-approximation" re-
sult. The "out-of-phase" amplitude tilt-polariza-
tion fluctuation mode is the "hard" mode (I/v, ),
and the "in-phase" amplitude fluctuation mode is
the "soft" mode

(
I, - 1",
58» r, e(pqo+ C)

' (32)

V. DIELECTRIC RESPONSE

'.f one includes in the equations of motion the
terms arising from the coupling of the polariza-
tion to a time-varying electric field of wave
vector q applied parallel to the smectic planes,
we can evaluate the dynamic susceptibility
x(» q).

For a response to a homogeneous external.
field, we find above T, the dynamical suscepti-
bility X(~, q =0) of our system as

x(~, q =o) =x, (~)+x-(~)

(33)

The temperature dependence of the helicoidal
order fluctuation modes is presented in Fig. 1
for both q =q, and q = 0. The results for q =q,
are similar to those for q = 0 in the homogeneous
case, ' where only the bilinear coupling between
the polarization and the tilt was taken into account.

I/v~(qo) =2r, a(T, —T) (28b)

which vanishes at T =T,.
The eigenfrequencies of the "orientation" fluc-

tuation modes 58, and 5&2 are, on the other hand,
obtained for q =q, from Smectic C Smectic A

r, t(~q. +c)'- I/~, -r, (l q. +c)
-r, (pq, + C), (1/ )1e, —I/r

(29)

as

I/Ti =0, q =qo, T & T, (30a)

1/7, =r,e(p q, + C)'+ (1/e)r, , q = qo, T & T, .

The in-phase "orientational. " fluctuations in the
tilt and the polarization 1/r, represent the Gold-
stone mode of the ferroelectric smectic-A- smec-
tic-C transition, which tries to recover the con-
tinuous symmetry group which has been broken
(D„-C, ) at T,. The eigenvector of this mode is

1

Xq

Smectic C

Tc

I

Smectic A

=0

2 g ~q +C ~ (31)

It costs zero energy to excite this mode for
q =qo =2m/L, or what is the same for A. =L where
I is the pitch of the helix, at any temperature
below T,.

The frequency of the "hard" orientational mode
I/r, is temperature independent below T,. Its
eigenvector represents the "out-of-phase" orien-
tational. fluctuations in the tilt and the polarization:

I

&c

FlG. 1. Temperature dependence of the order fluctua-
tion modes of (a) the critical wave vector qo =2m/I and
(b) the wave vector q =0 at the helicoidal ferroelectric
pmectic-A —smectic- C transition. 1/7& represents the
Goldstone mode of this transition which recovers the con-
tinuous symmetry group broken at &, (D„-Cz).
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where

and

(34a)

X(,q = 0} ([ —1/, (0)j[z —1/ (0)]

X [i (o —1/7, (0)][i (u —1/7, (0)jj ',
T & T, . (35)

X+(0) = e
~ T & T,

and that of the "soft" mode as

(35a)

g2C2
(0)

(
)' g 2

)
g y T&Tg (35b)

The dielectric strength of the soft mode is thus
zero, X (0) =0, in the absence (C=0) of bilinear
coupling between the polarization and the tilt. In
contrast to the homogeneous case, ' there will be,
strictly speaking, no Curie-Weiss -anomaly in the
homogeneous dielectric constant at a helicoidal
smectic-A- smectic-C phase transition, even
though C &0. In view of the helicoidal. distribution
of the in-layer polarization in the smectic-C
phase, the dielectric response for T &T, will be
given by

1/7 (q = 0) = I',[u(T - T,) + (X„-6ga)qs], T & T, .
(34b)

The dielectric strength of the '*hard" mode is
thus obtained as

At q=0,

1/7, (0) = 1/v;(0) = 1/T, (q,) = 1/T, (q,},
whereys both the Goldstone [1/7, (0)] and the soft
mode [1/v;(0)] will have nonzero excitation fre-
quencies at T =T, which will increase with in-
creasing T, —T in the smectic-C phase (Fig. lb}.
The dielectric strength of these two modes,
X,((v=0, q =0) and X,(&u=O, q=0), will be zero even
below T, for C =0. Dielectric measurements are
thus a very sensitive test of the nature of the
coupling responsible for the occurence of ferro-
electricity in l.ibid crystals.

The order-parameter fluctuation spectrum
derived in this paper could be conveniently mea-
sured by laser-light-beating spectroscopy or by
dielectric relaxation spectroscopy if C 0. No
such measurements have been reported so far,
though the critical exponent for the fluctuation in
the tilt of the molecular director has been re-
cently determined. '
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