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A generalized master equation previously proposed to describe oscillatory superfluorescence is numerically
solved in the case of strong ringing. When the atomic system is fully excited, anomalous fluctuations and
large atom-field correlations make the time evolution of the mean quaritities {e.g. , number of photons, total
population inversion) quantitatively different from those found in the semiclassical treatment. In particular,
because of fluctuations, the minima of the radiation output are notably larger than zero. On the contrary,
when the atomic system exhibits a sizable initial macroscopic polarization {superradiance), we find a
remarkable non-Markoffian effect consisting of a sizable delay in the radiation emission. However, in such
conditions all quantum effects disappear, as in the case of pure superradiance.

I. INTRODUCTION

Superfluorescence is cooperative spontaneous
emission of radiation from a fully excited atomic
system. Since this radiation process is started
by normal spontaneous emission, quantum effects
can be relevant. A semiclassical treatment of
superfluorescence reduces the problem to a suita-
ble damped-pendulum equation. As a result one
sees that the radiation output is proportional to
N' (N being the number of excited atoms) when

z-'~~~ «r,*,

where (i) K ' is the transit time of photons in the
active region; (ii) T„ is the characteristic time
of cooperative spontaneous emission and (iii)
T,* is the inverse of the inhomogeneous linewidth.

Furthermore, when Kr„» 1 (pure or Markoffian
superfluorescence), the output consists in a single
pulse of radiation, whereas for Krs 1(oscillato-ry
or non-Markoffian superfluorescence) the first
pulse is followed by a few pulses of decreasing
height. This nomenclature arises from the fact
that in the case of pure superfluorescence the ra-
diation field follows the motion of the atoms adia-
batically so that one can perform a Markoff ap-
proximation in the generalized master equation
(ME) for the atomic density operator.

The quantum effects in pure superfluoregcence
have been numerically analyzed. ' The main re-
sults are that (a) these quantum effects are im-
portant not only at the beginning of the emission
but also during the whole time evolution, and (b)
they do not disappear for very large N. More
specifically, the macroscopically relevant quanti-
ties, e.g. , the mean photon number or the mean
total population inversion, exhibit sizable fluctua-

tions especially in correspondence to the peak of
the radiation output. Moreover, these fluctuations
are not "normal, " since they do not scale as N' '
but as ¹ In Ref. 3 it is shown that these features
are intimately connected with the presence of
large atom-atom correlations which are the very
cause of cooperative emission.

The numerical analysis of Ref. 3 has been analy-
tically substantiated. 4 ' These analyses have also
shed light on the connection between the quantum
and the semiclassical results. From Refs. 3-8
it appears that the presence of large fluctuations
is due to the fact that in superfluoreseence the
pendulum starts from the very vicinity of the un-
stable equilibrium point, and this gives rise to a
large delay in the radiation. emission. Anomalous
fluctuations around an unstable equilibrium point
have been pointed out in Ref., 9.

In the present paper we, study the quantum effects
in oscillatory superfluorescence, i.e. , the impact
of quantum effects in the non-Markoffian case.
To this aim, we solve numerically the ME for
superfluorescence deduced in Ref. 1. This equa-
tion gives a full macroscopic and microscopic
description of this phenomenon. In fact, from its
solution we get, on the one hand, the time evolu-
tion of the mean values of the macroscopic quan-
tities, which can be compared with the results
of the semiclassical pendulum equation, and on
the other hand, we also get the time evolution of
the atomic and field fluctuations, of the atom-field
correlations, and of the probability distribution.

The superfluorescence ME is solved for a num-
ber of atoms up to 20, which seems already to re-
produce the macroscopic limit. The main results
are the following. One finds anomalous fluctua-
tions and large atom-field correlations which af-
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feet the mean time evolution of the macroscopic
quantities. In fact, as in the case of pure super-
fluorescence' the pulses are appreciably lower and
broader than the semiclassical ones. Further-
more, the effect of fluctuations on ringing (which
is the main non-Markoffian effect} is that the
minima of the radiation output are appreciably lar-
ger than zero. Correspondingly, the minima of
the total population inversion are appreciably lar-
ger than -N. If, on the contrary, the atomic sys-
tem has initially a sizable macroscopic polariza-
tion (superradiance), the quantum effects disap-
pear, exactly as in the case of pure superradiance. '
However, we find a remarkable delay in the ra-
diation output with respect to the case of pure su-
perradiance in which the peak of the pulse occurs
at t= 0. This is a non-Markoffian retardation ef-
fect.

Our results agree with the numerical analysis
recently performed in Ref. 10 on the basis of a
suitable phase-space description of oscillatory
superfluoresc ence.

In Sec. II we recall the operator ME used for the
description of superfluorescence and illustrate the
c-number equations that we solve numerically.
The numerical results are given and commented
on in Sec. III.

L„~W(t) = 5 '[H„~, W(t) ],

H~~ = jhgo(AR' A~R ), —

AzW(t) = K([A, W(t)A~]+ (AW(t), A~] t,

(2.1)

where (i) g, is the coupling constant in the dipole
and rotating-wave approximations,

go= (euro p '/ Vh)'t', (2.2)

with p, being the modulus of the dipole moment of
the atomic transition; (ii) K is the round-trip
transit time of photons in the i:avity,

K= c/2L; (2.3)

(iii) R' are collective dipole operators, and the
set of operators R', R, and R„where R, is half

II. THE EQUATIONS

We consider a system of N two-level atoms con-
tained in a "pencil-shaped" region of length L and
volume V. The one-mode model deduced in Ref. 1
describes the interaction between these atoms
whose transition frequency is z, and a single longi-
tudinal field mode resonant with them. Let W(t) be
the statistical operator of the whole system (atoms
plus resonant mode) in the interaction picture. It
obeys the following ME:

d W(t) = -i L~~W(t) + A~W(t),

the total population inversion operator, obey the
angular -momentum commuation relations

[R', R ]=2R„[R',R,]= +R', (2.4)

and (iv) A is the annihilation operator for photons,
which obeys the commutation relation

[A~, A]= -1. (2 5)

R'~m& =((2N+m)[2N+ m+1]] t'~m + 1),
m = 2N, (—2N —1)—, . . . , 2N —1, ~N.

(2.8)

Of course, Eq. (2.1) is equivalent to a set of linea, r
c-number equations forthe matrix elements

W„,~ „,(t) =(n, m W(t) ~n', m'&,

[ n, m) =
/
n) C3

[ m).

For initial conditions such that the fie'id is initi-
ally in the vacuum state, one has

W„„„,„,(t) = 0 for n, n'&N,

since the atomic system can emit at most N pho-
tons. Hence, Eq. (2.1) is equivalent to a number
of linear equations of the order of N'. Therefore,
we prefer to follow the method devised in Refs.
1, 11, and 13, which leads to a set of linear c-
number equations of the order of N'. To this aim,
we consider the operators

N, ,(t) = Tr, [(A'}~A~W(t) ] P, q o- 0 (2.7)

where Tr~ means partial trace on the field Hilbert
space. N~, (t) are operators on the atomic Hilbert
space alone. In particular, N, ,(t) is the reduced
statistical operator for the atomic system alone,
so that

Tr„N, ,(t) =1,

where Tr„means partial trace on the atomic Hil-
bert space.

On the other hand, N~, (t) with P+ q &0 allow us
to calculate the mean values of the field operators
and the atom-field correlation functions. In fact,
if 0„ is a generical operator of the atomic sys-
tem alone, the mean value of (A~)~A'0„ is given by

((A~)~A'O„&(t) = Tr„[O„Nq,(t) ]. (2.8)

In particular, Eq. (2.8) shows that N~, (t) is nor-
malized as follows:

»,N, „(t)= ((A')'A'&(t). (2.9)

Let us consider the basis ~n) in the field Hilbert
space:

A&A ~n&=n]n&, n=0, 1, 2, . . .
and the Dicke-state basis ~m) in the atomic Hilbert
space;
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For initial conditions such that the field is initial-
ly in the vacuum state, one has

N~, (t) = 0 for p, q & N.

By using Eqs. (2.5}, (2.7}, and the relation

Tr, [(A')~A A, W(t)]

(2.10)

= -n(P+q) Trz[(A~)~A'W(t)], (2.11)

one easily gets the following time evolution equa-
tions for N~, (t):

d—Np (t) = -K(P+ q)N~ (t)

Let us now introduce the c-number quantities

X~,(m, t) = (m+ p N~, (t) m + q},

with

(2.13)

m= -2N —min(p, q), -~N —min(p, q) -1, . . . ,

,N ——max(p,q),

where min(p, q) = p if p& q and min(p, q) = q if q& p,
and, analogously, max(p, q) = p if p&q and max(p, q)
= q if q& p. Note that Xo,(m, t) ~p(m, t} is the prob-
ability of occupation of the Dicke state ~m}. One
has immediately the relation

+go([R', Nq „,(t)] —[R,Nq„,(t)]
pN. ..(t)R' qR-N, ,(t)). (2.12)

X~,(m, t) = X," ~(m, t) (2.14)

Using Eqs. (2.6), (2.12), and (2.13), one obtains

—5I&,(m, t) = K(p+q-)X&„(m, t)+go[-qg'~'(p+m+ 1)X&,(m+1, t) -pg ~(q+m+1)'X&, ,(m+1, t)
8

+g'~'(p+m)X~ ...(m —1, t) -g't'(q+ m+ 1)'X~ ...(m, t)

+g'~'(q+m)%&„, (m-l, t) -gt'(p+m+1)X&„,(m, t)], (2.15)

where we have put

g(m) = (2N+ m)(2N —m+ 1). (2.16)

iq} + Kp =g+ sing. (2.17)

We have considered the case Kv'R= 0.1, where

R (2.18)

and we have solved Eqs. (2.15) for two different in-
itial conditions:

(a) Fully excited atomic system (superfluor-
escence), i.e. ,

w(o)= io, —.'N}&-.'N, oi,

Equations (2.15) are recurrence relations that can
be quite easily solved by means of a computer.
The number of quantities 'X~,(m, t) is of. the order
of N', as it follows from (2.10) and (2.13).

In Ref. 1 the finite hierarchy (2.15) has been ten-
tatively truncated by neglecting all the quantities
5I& (m, t) with p& 1 or q&1.'2 An analogous trunca-
tion has been performed in the phase-space de-
scription of the phenomenon, too." We must stress
that both truncations are incorrect. Therefore one
must consider the full set of equations (2.15). We
have solved them numerically for a number of a
atoms up to 20. The results are compared with
the solution of the semiclassical damped pendulum
equation

y(0) = arccos ', ,', p(0) = 0.—'N+ —' (2.20)

(b} System with an initial macroscopic polariza-
tion, i.e.',

w(o)= 0, 0)&o, o),

X~,(m, o) = 5~,5;,5„,. (2.21)

Equations (2.21} imply that (R,}(0)= 0 and (R'R }(0)
,N( ,N+ 1}. The —cor—responding initial condition

for the pendulum equation is

y(0) = 2v, q (0) = 0. (2.22)

The quantities X&,(m, t) are appropriately suited
to calculate in a straightforward way the most
relevant physical quantities. We enlist here th8
formulas which show how these quantities can be
calculated from X&,(m, t) and from y. We use an
index Q for the quantities calculated through the
quantum-mechanical equations (2.15) and an index
SC for the quantities calculated through the semi-
classical pendulum equation (2.17).

Equations (2.19) imply that (Rg(0) = ,N and (R'R—}(0)
The corresponding initial condition for the

pendulum equation, which simulates the action of
normal fluorescence at the beginning of the motion,
is

Xq,(m, o) = 5q 06, o5„~t,. (2.19) (A~A}o = Tr„N„,(t) =Q 'X, ,(m, t), (2.23a)
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(Rgo=g mp(m, t), (2.23b)

((A')'A'), = Tr„N, ,(f) =g 3I, ,(m, f}, (2.23c)

(R',)o=Q m'p(m, t),

(AtAR'R )&
——Tr„[R'R N, ,(t) ]

(2.23d)

= Q g(m+ l)X, ,(m, f), (2.23e)

(AAR'), = Tr„[R'R'N, ,(f) ]

= g g' '(m+2)g' 2(m+1)Xo,(m, t),

(AtA) so = (Nt „/4K)j ',
(Rs)so = gN cosp .

(2.23f}

(2.23g)

(2.23h}

III. NUMERKAL RESUf.TS

Let us review the results. Unless otherwise ex-'
plicitly specified, we refer to the case N= 20.

A. Initial condition (2.19)

(i) In Fig. 1 we have plotted the time evolution
of' (AtA) o (quantum-mechanical result) and (AtA)so
(semiclassical result). The time is scaled by v„.

The delay time tn (i.e. , the time at which the first
maximum occurs) and the ringing ratio R (i.e. , the
ratio between the height of the first two maxima)
are practically the spme in both cases (tn- 9.6,
R-2.9). But the peaks of the quantum-mechanical
curve are considerably lower, while the minima
are appreciably higher than the corresponding
semiclassical ones. In particular, (A A)o does
not vanish at the minima. Therefore the plot of
(AtA)o bears a stronger similarity to the experi-
mental curves. "'" The nonvanishing of (A. tA) at
any finjte time is an obvious quantum-mechanical
effect. In fact, (AtA) = 0 if and only if the field is
exactly in the vacuum state. But since the field
exhibits observable fluctuations [see (iii) below],
the mean value (AtA) is appreciably higher than
zero.

(ii) Figure 2 compares the time evolution of
(Rgo and (R,)so. The initial value of (R,)so is
slightly smaller than ~N because the initial con-
dition (2.3) for the pendulum equation corresponds
to

(R,)(0) = 2Ã(1 —1/N) .

The most rema, rkable feature is that (R, )o is
larger thap -2N at the minima. Again this is due
to quantum fluctuations [see (iv) below]. In fact,
(R, ) = -~N if and only if the atomic system is ex-
actly in the ground state m= -2N).

(iii) Figure 3 shows the time evolution of the
field-intensity fluctuations. More precisely, Fig.
3(a) gives the plot of"

o'(I) = [((A'A)), (A'A);]16/N',

while Fig. 3(b) gives the plot of the normally or
dered fluctuations

(AtAo' 2
N

0.5

ttqII)
I

I I \
~ FIG. 1. Fully excited sys-

tern: time evolution of the
scaled mean photon number
(A tA) 2/N, both in the semi-
classical (dotted line) and in
the quantum treatment (solid
line). In this figure and in
the following ones, we show
the results for N =20 unless
otherwise specified.
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we get

(A'A)(t) = — ds e r" "(R,)(s),1

0
(3 1)

(AtA &-2
CN

p (m) .6

.5

!

~g21

l

t

I

t'-16.2

.4

.3

-10 0 5

FIG. 6. Fully excited system: time evolution of the
probability of occupation of the Dicke states P (m, t).
The normalized time ~ is defined as 7.=t/7z. 7=6 cor-
responds to half maximum of (AtA); v=9.6 corresponds
to the peak of (A~A. )+ (delay time); v=16.2 corresponds
to the first minimum of (AtA)o, v=21 corresponds to
the second maximum of (A tA)@.

both in the quantum and in the semiclassical case.
Hence

(A'A), (t) —(A'A) (f)
t
ds e r" s'[(R, )o(s) —(R, )sc(s) ]. (3.2)

0

Now we have

«.&,(f) —(R.&,.(f)
[t

ds e x" "{(R3)o(s)—(R,')sc(s)

+ [(AtA)sc(s)(R, )sc(s) —(AtAR, )&(s)]). (3.3)

Therefore, if in the right-hand side of Eq. (3.3)
we replace (R, )sc and (AtA)sc by (R, )o and

(AtA)o, respectively, and take into account re-
mark (v), we have

0.5

01

I I I I I I

10 20 tg
R

FIG. 7. Comparison between (A tA) for N =10 (broken
li.ne) and N =20 (solid line) in the ease of a fully excited
system. For N =10 the time axis has been shifted in
such a way that the delay times t D for N =10 and N = 20
coincide.

30

d 2

(AtA) sc(r)=, T = t/7's,
1

d
ds Krone

'a" "sing (s) .
d7 "0

(3 4)

Since ra ~A ', when dy/dt= 0(1) we have that
(A A) ~fthm' But if, as we d. o, we vary N keeping
Kva fixed, (AtA) varies proportionally to R.

(R,),(f) (R,)„(f) 0~ (AtA) „(f)o- (A'A), (f) .

Now, the substitution of (R,) sc and (AtA)sc by
(R,)o and (AtA)o gives a substantially correct es-
timate in the neighborhood of the first maximum,
whereas it fails completely in the neighborhood of
the first minimum.

(vii) The quantities (AtAR'R ) and Re(AAR'R')
are very close to each, other during the whole time
evolution, in accordance with the claim of Ref.
13.

(viii) Figure 6 shows the time evolution of the
probability distribution p(m, f) of the Dicke state

m). Notice that this distribution is broad during
most of the time evolution. Notice also the oscil-
lations in time. The probability of the fully ex-
cited state P(aN, f) undergoes a practically expo-
nential decay: for N= 20 one has

P(10, f) = 1.8 exp( -0.535$/vs) .
(ix) Figures 4 and 7 show that the scaled quan-

tities exhibit only minor variations when N is
changed from 10 to 20. This fact is of course es-
sential to ensure that our results for the scaled
quantities are meaningful even if the value of N is
not very large.

Let us explain in this connection why (AtA) has
been scaled to N rather than to N' even if we are
describing superfluorescence. We have from Eqs.
(2.17), (2.18), and (2.23g)
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FIG. 8. Dependence of the delay time t & and of the
time tR {at which (R3) =0) on the number of atoms NR3=0
for a fully excited system with fixed K7z= 0.1,
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(x) In Fig. 8 we have plottedfo, r fixed Krs = O. l,
(a) the delay time tn vs lnN and (b) the time ts
(at which (R,) = 0) vs lnN. Roughly speaking, one
finds the linear relation

0
-10

s/z„=s ~
20 30

I

R

to= rs(1.82 lnN+ 4.1),

which agrees with the expression given in Ref. 10.
One sees also that there is a systematic delay be-
tween tz @nd tD. This is a non-Markoffian re-

3=0
tardation effect. In fact, as it appears from Eq.
(8.1), in the Markoffian case (Krs» 1) one has.
(AtA)(t) = (R,)(t)/2K-, so that tn coincides with the
time at which -(Rg is maximum, which in turn co-
j.ncides with t„3 a0

FIG. 9. System with an initial macroscopic polariza-
tion [(R3){0)=0): time evolution of the scaled mean
photon number (AtA) 2/N both in the semiclassical
(dotted line) and in the quantum case (solid line).

case; in fact, R is controlled by the quantity Xv~.
Furthermore, we find a spectacular non-Markof-
fian effect consisting in the presence of a notice-
able delay in the radiation emission. In fact, in
the Markoffian case, tD is zero for the initial con-
dition (2.21).

B. Initial condition (2.21)

In this case the quantum-mechanical fluctua-
tions and all their effects disappear. This is
clearly shown in Fig. 9: (AtA)sc and (AtA)
practically coincide. The ringing ratio R remains
essentially the same as in the fully-excited-state,
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