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The normally ordered correlation function and the power spectrum (cross spectral tensor) of a thermal
radiation field existing inside and outside a one-dimensional optical cavity which transmits radiation at one of
its end surfaces are calculated on the basis of a multimode formulation of the field developed in a previous
paper. The correlation function is found to consist of a series of trigamma functions resulting from retarded
correlations due to reflections at the cavity end surfaces. The power spectrum is a product of the Planck
distribution and the mode functions of the universe which have a periodic factor with the period being equal
to the cavity mode separation. For the purpose of obtaining a description of the cavity which allows one to
deduce its thermal noise property, a form of fluctuation-dissipation theorem is derived which connects, in a
one-dimensional space with arbitrary structure, the normally ordered correlation function with the
admittance for the electric field probed by a current. Application of this theorem to the model cavity leads to
an explicit and simultaneous description of the fluctuation and dissipation associated with all the cavity
modes. The dissipation is shown to be due to radiation of electromagnetic energy into the free space. The
above relation is reduced, under the assumption of high cavity quality factor and of single-cavity-mode
selection, to that of a Markovian noise associated with a single decay constant. The consistency of these
results with the field commutation relation is examined.

I. INTRODUCTION

In this paper the properties of the thermal radia-
tion field in a space including an optical cavity with
output coupling are considered by use of a model
of the cavity. The main purpose of this paper is to
bridge, by way of an example, the coherence theo-
ry of the blackbody radiation and the theory of
thermal noise in a laser with particular attention
to a rigorous treatment of the output coupling of the
cavity and to the description of the exact spatial
behavior of the radiation field.

The coherence properties of the blackbody radia-
tion have been the subject of numerous papers. '
Among these, of particular interest to us are those .

which considered the consequence of a nonuniform
geometry of the space on the coherence, "and
those which discussed the coherence on the basis
of the theory of optical measurement in terms of
normally ordered correlation functions. ' A]so of
interest to us is the one which extended the con-
cept of the power spectrum to the one including
two space variables (cross spectral tensor'). How-

ever, there has been no treatment of an optical
cavity with partial transmission.

On the other hand, there has been much effort to,
describe the radiation field in a laser cavity' ' or,
more generally, the radiation field undergoing dis-
sipation without violating the commutation rela-
tion, which requires the introduction of thermal
noise. Although thermal noise is quantitatively in-
significant in the optical region, its proper treat-
ment constitutes a part of exact quantum-mechan-

I

ical theory of the laser. Most laser theories in-.
troduced the thermal noise via a heat bath made up
of oss osc 1 a ors'' or a sor ng a oms, ' which
by virtue of their assumed local flatness of the
absorption spectrum lead to a Markovian noise
and a single decay constant for a single idealized
mode of the laser cavity. We shall call such a
theory a quasimode theory. " These approaches to
thermal noise have the disadvantage of failing to
describe properly an ideal laser cavity for which
the only loss comes from the output coupling where
the cavity loss should appear without introducing
any absorbing particles, and where the thermal
noise can be attributed to the thermal radiation it-
self which penetrates the cavity through the coupl-
ing. Also, they fail to describe the laser output,
i.e. , the field- coupled out of the cavity. The form-
er point was improved by Lang et al. by use of a
multimode formulation of the field of the universe
in which the cavity is enbedded. "' They showed
that a Markovian noise assoc iated with a decay con-
stant can be derived from the initial thermal radiation
field. We have developed a multimode theory of
the cavity and of the laser that can overcome
both of the above disadvantages. In Ref. I6 (here-
after referred to as II) we obtained the quantum-
mechanica1 coherence function of the laser output
in the subthreshold region as a function of both
space and time variables, and gave some discus-
sion on the range of validity of the Markovian ap-
proximation of the thermal noise.

In this paper we investigate, by way of an exam-
ple, the coherence properties of the thermal radi-
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ation field in a space including an optical cavity in
terms of a normally ordered correlation function"
and the power spectrum (cross spectral tensor').
Using this knowledge we investigate the noise char-
acteristics of the cavity as a laser resonator. For
this purpose we describe the cavity or the space
outside in terms of the admittance probed by a cur-
rent and derive a form of the fluctuation-dissipa-
tion theorem which connects the normally ordered
correlation function of the thermal radiation field
with the admittance. Application of the theorem to
our model cavity gives a relation which describes
the fluctuation of all the cavity modes simultaneous-
ly. This relation is a generalization of the simpl-
est form, i.e., a Markovian noise associated with
a single decay constant for a single cavity mode,
assumed in quasimode theories. ' " The former
relation is shown to give the latter simplified re-
lation when the cavity has a high quality factor and
the noise is considered within a band of width equal
to the cavity-mode separation and centered at a
cavity-mode frequency. In the following, we use the
model of the one-dimensional optical cavity which .

we analyzed in Ref. 13 (hereafter referred to as I).

II. DESCRIPTION OF THE QUANTIZED RADIATION FIELD

In this section we summarize the quantum-mech-
anical formulation of the field developed in I. %e
consider a one-dimensional space where physical
quantities are functions only of spatial va,riable z
and time t. The universe is bounded at z =-, d and
at z =L by. perfectly conducting walls. The region
-d(z (0 is occupied by a slab of a nonmagnetic
dielectric with the dielectric constant & which con-
stitutes the optical cavity. The region 0(z (I is
a vacuum with the dielectric constant & . We limit
our consideration to thy field component in a par-
ticular direction, e.g. , in the x direction. Then
the vector potential and the electric field of our
radiation field can be expanded in terms of the
normal modes of the universe as

&(z, t) = PQ, (t)U, (z),

E(z, t) =- g S', (t)U, (z), .

where

The normal modes have different expressions for
inside and outside of the cavity:

U)(z) = (2/e'L)'i'N)u)(z),

N. =(I -Stein k'd) 'i'j j

u, (z) =sink', (z+d), -d&z &0

(6a)

(Gb)

(6c)

= (c'/c') coskid sinkoz + sink', d co skoz,

0 &z &L (6d)

where c' and c' are the light velocities for outside
and inside of the cavity, respectively, and k,'. =(d~/
c and ki& =

&u,/c'. The factor K is equal to 4r/
(1+r)', where r is the ref lectivity at the coupling
surface given by (c'- c')/(c'+c'). The normal
modes have positive frequencies and the density of
modes per unit angular frequency is given by

p((o) = L/cow =p.

0 =o), —iy, , (8a)

&o,„=(2m+1)v/r, ,

y, = (c'/2d) 1n(1/x),

r, = 2d/c'

(Bb)

(8c)

(Sd)

The quantity ~, is the cavity round-trip time. The
cavity mode separation is

(8e)

III. QUANTUM-MECHANICAL COHERENCE FUNCTION

The state of the field corresponding to that of
bla, ckbody radiation or thermal radiation can be
described by the density operator in the photon-
number representation'

In Eqs. (6b) and (7) the quantity L is assumed to be
large and quantities that are small compared with
it are omitted.

The modes (quasimodes) of our cavity have the
. frequencies

Q,.(t) = (5/2&v, .)'i'[a,.(t)+ at(t)],

&,(t) = -f(2I(d, )'"[,(t) —a', (t) ] (4)
(9a)

(9b)

[a, , a, ]= [a', , a,']=0,

[a(, a', ]= 6u

(5a)
P= 1/kT,

fn, &= f(n,.]&.

(9c)

(Sd)
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We assume that the thermal radiation field with
the above property is prepared at. t =0 and the field
oscillates freely afterwards. We will work in the
Heisenberg picture so that we understand that the
density operator in Eq. (9a) does not. change with
time t. We use the following notation to denote the
ensemble average of any operator O(t} with respect
to the thermal radiation field at t =0:

G(z, t', z', t) =G(z', t', z, t), (16a)

G(z, t, z, t') =G+(z', t', z, t) (16b)

The right-hand side of Eq. (14) depends on the time
variables only through the difference t —t' showing
the stationarity of the field. We have the symme-
try properties

(O(t)& = Tr[p O(t) ].
Then it is easy to show that

(10) For the calculation of explicit expressions for the
correlation function, we expand the product of the
mode functions in Eq. (14) in a Fourier series '":

(E;(z, t}&=0,

where

1/2
Ef(z, t)=g ()(I U&(z)a&(0)e ' (12)

1 (-r)"cos2nk,'d].+5tta 0, ff

is the positive frequency part of the electric field
operator. The suffix T denotes the thermal field.
This quantity is equal to the noise term E,(z, t) in
Eq. (6a) of II. The quantum-mechanical coherence
function may be defined as the average of the nor-
mally ordered correlation function"

G(z, t, z, t) =(E,(z', t')E;(z, t)& (13)

where E is the negative frequency part of the elec-
tric field E having only creation operators. Cal-
culating the trace we have

X u,.(z ')'u, (z) .
\

Since the product of cosine functions and u,.(z ')u~(z)
gives terms of the form exp(i(d, r), formula (14)
results in a series of integrals of the form

r )fran, exp[i (d,{r t+ t —') ] 'lId(() p ())
exp(PS(d, .) —1

= —,&e'(( —i ), (1)))

where 4' is the trigamma function. " Define a
function Q by

G(z', t', z, t) = Q (n)&U)(z')U, (z)e '"J" ' ' (14}
(t (u) = )'I()I i+u/PI) (19)

where

(,&=(,'(o),(o)&=( '"" —1) '
Then we have, using Eqs. (17)-(19)and consider-
ing the stationarity of the field,

G(z' 0 z t) =4 i i@ I 4'(term)+0(t +rao)++(-r}"[4(t+r,„)+4(t+r,„}-4(t+r, „}—&«+r .)l I

-d&z'&0, -d&z &0 (20a)

() () I p(ter, o) —rp(t+v'6, ) —(1-r') ( r)" 'y(ter, „)-I, 0&z', 0&z (20b)

(I+r)(»)' "
(-r)"[(t)(t~r,„)—P(t yr, „)], d&z'&0-, 0&z,4m&'c'I' (20c)

where we used the notation

Q(t a r) = (t)(t + r) + @(t—r), (20d)

and
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8 —8
1n 1c c~

s'-z 8 +8 +2d = 8+8'+2d
4n cl

.(20e)
gz' ~+a' s ~' ~ zl+2d

50 0 6n 0 + 0 1 +,Bn 0 1c c C C C C

where 7', is the cavity round-trip time which ap-
peared in Eq. (Sd). In Eqs. (20a)-(20c) the func-
tion Q represents the form of the correlation which
might be obtained in a free one-dimensional space.
The infinite number of terms with decaying ampli-
tudes represent the retarded correlations owing
to reflections at the cavity end surfaces. In particu-
lar, the term containing v'» is the correlation function
corresponding to that of free space, terms containing
T41 and t«represent the effect of a single reflection at
the coupling surface at z = 0. Terms where n ~ 1
represent the retarded correlations owirig to mul-
tiple reflections at the cavity end surfaces. This
is understood by noting the appearance of nv', in
the retardation times in Eq. (20e). In Eq. (20b) the
factor 1-r' is.the product of the transmission co-
efficients at z = 0 by which the wave amplitude
changes as the wave goes into and out of the cavity.
In the limit r-0 (c'-c') the three functions re-
duce to the same form having onl. y two terms with
&» = (z —z ')/c' and r„=(z+a '+ 2d)/c'. The former
term represents the propagation in free space and
the latter the reflection at z =- d, respectively.
In the limit r 1(c'-- 0), Eq. (20b) reduces to the
above form with d=0, and Eq. (20c) vanishes. The
function 4 defined by 4 (y) = P(t), where y = t/Pt is
depicted in Fig. 1. This function represents the
correlation in a free one-dimensional space and
its spread gives the measure of nonwhiteness of
the thermal radiation owing to the quantum nature
of the field. We see that the time spread of Q is
of the order of PK and the corresponding bandwidth
is kT/5 It can be show. n that

Thus, for large y or in the classical limit (h-0)

4(y) -v&(y) —iP/y = —i f*(y), (22a)

so that

y(t) -—ipa g*(t), (22b)

where the function f is given by'

i;(t) =——is&(t) = i-e'"'d(0.
0

(23)

As can be seen by Fourier transforming this equa-
tion, Q(t) represents a white noise in the positive
frequency region in the classical limit.

Higher-order correlation functions may be given
in terms of the above first-order correlation func-
tions since the quasiprobability distribution for the
field amplitude of the thermal radiation field can
be shown to be Gaussian. '

IV. POWER SPECTRUM

Re@(V)

Next we consider the power spectrum. For the
sake of convenience in later discussions, we de-
fine it as follows. Consider the spatial correla-
tion, that is, the correlation function of Sec. III
with t =t' (or t =0). Then the contribution to this
quantity from a unit frequency band may be defined

so that

v2 1 —y2 cosec y
2 y2 (2la)

Re4 y dy =w. (21b)

On the other hand, the imagina, ry part of 4 has no
compact expression, but has an asymptotic form"

0 V 8

8 1
lim Imc'(y) =-—lny = ——.

4e ey y' (21c)

Imc'(y) dy =0.
~40

(21d)

Since Im4(y) is antisymmetric in y, as can be seen
from Eqs. (18) and (19), FIG. 1. Real part and the imaginary part (multiplied

by -1) of the function 4 (y). These curves are drawn
by numerical differentiation of the digamma function
tabulated in Ref. 18.
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as the power spectrum in a wide sense. %'e have
from Eq. (14), using (7),

I(z', z, a)) =— G(z', O, z, t}e'"'dt . (28)

Thus by definition the power spectrum is

that is, this power spectrum is the Fourier trans-
form of the correlation function. In this sense our
power spectrum is equivalent to the cross spec-
tral tensor of,Mehta and Wolf. ' The inverse rela-
tion is

I(» ',z, &o) =P(&())
2 (n„)U„(z ')U„(z)H(«)),

g4)

where

(25) r 40

G(z', 0,», t) = I(z', z, &())e '"'d&))
0

.(29)

1, (o&0
H(~) = —,', &o =0

0, (o &0.
(26)

We see that the power spectrum has the envelope

n(u(n„& =bur [exp(PS(o) 1] ',—

Obviously, I(z, z, &u) ~M, that is, the power spec-
trum in the usual sense is non-negative at any

spatial point as expected. It has the symmetry
property

I(z,z ', e) =I(z ', z, v) . (2&)

If we use Eqs. (7} and (14), it is easy to show that

which has the value P ' =kT for small values of &u

and decreases monotonically with increasing value
of v falling to &kT at &v =1.26kT/R.

The explicit expression for the power spectrum
may be obtained by merely substituting the mode
functions of Eqs. (6c}and (6d) into Eq. (25). In-
stead, we use Eq. (28) and Fourier transform each
term in Eqs. (20a)-(20c) and rearrange the terms
After some calculation we have

1 t z-z') ( z+z'+2d& 1-r'
I(z', z, &u)= »h&o(n„} cos) &. , ~-cos ~~, —

( 1, 2
H(&),

2~g'g " ( g ~ ~ c j 3. +r +2r cosRY,

—d&z'&0, -d&z &0 (30)

1 ( z-z')
o 0&~&n } cos I& 0 I

—cos le o +S) H(e), 0&z', 0&z

4

2r+ (1+r') coercer.
1+r 2+ 2r cos&0v'

(31a)

(1 —r ') sinurv',
1+r'+ 2r cos&ur, '

g&))(n ) 1+r z z'&,& z z'+2dI =(z', z, ~) = &g2 cos &)) ()-—g
~

—8 —cos &()
—

() + &
—~ H(&&)))2sz'c' (1+r'+ 2r coster, )'~' c c'

& (

c' c'

-d&z'&0, 0&z (32a}

(1+r'+zr coster, )'~' '

r sin+T'
(1+r'+2r cos&uv', )')" '

For the limiting cases of x-0 or r- 1, similar
arguments can be given as those for the correla-
tion functions given below Eq. (20). We see that
thy power spectrum has a periodic structure with
the period 2z/r, which is equal to the separation of
the cavity modes &v, implying that the power spec-

trum is made up of contributions from the cavity
modes. Indeed we can obtain an expression which
explicitly shows the contributions of individual
cavity modes to the power spectrum. We note that
in the general expression (25) the factor 1P„=(1 —X
sin'k'„d) ' included in U„(z ')U„(z) has simple poles
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at (e = &o, +iy„where (e,„is given by Eq. (Bb), but
here m takes all integer values. This is easily
verified by use of Eqs. (8b) and (8c) and the defin-
ition of K given below Eq. (6d). Thus, from the
Mittag- Leffler theorem"

(33)

Substituting this into Eq. (25) we have

J should not depend explicitly on the field operat--
ors. If the field-atom interaction in a laser begins
at t =0 and if the current has a density g(z, (e) in the
space and the frequency domain, the laser field
for large t may be written

E (z, t')=

fdic,

f de Y(z, z, a))g(z, v)e '

" a(u(n ) y„
+&r'(z, t), (36)

x u„(z ')u„(z)H((u) . (34)

Here we ignored the terms of negative values of
m, since a negative value of m gives a negative

which ha;s no real physical meaning. Also, a
term with negative co, is relatively small and can
be ignored for sufficiently high frequency v in
which we are interested. We see that each cavity
mode contributes a term with a Lorentzian profile
with a width of 2y, . In the limit r-1 (y, -0), we
have a series of impulse functions located at v,
for inside the cavity. (For outside, we can show
that the power spectrum is governed by h&o(n„) in
this limiting case. )

V. ADMITTANCE AND THE FLUCTUATION-DISSIPATION

THEOREM

Je '"'F(z, zo, v) =lim(E'(z, t))t-~
(J': at z, and coupled at t = 0), (35)

where the thermal average is taken in order to ex-
tract only systematic motions. We understand that

The laser may be considered to consist of the
optical cavity and the current sources which repre-
sent the atoms. The current sources excite the
laser field which, in turn, drive the sources. The
former process may be described in terms of
suitably defined admittance of the space including
the cavity. For the definition of the admittance,
consider a current source located at z =z, which
has a sinusoidal time dependence Jexp(-i~t) 6(z-z, )
and is coupled to the field at t =0. We assume an
interaction linear in the field amplitude and in the
current. The location of the source may be either
inside or outside of the cavity. If outside, the
source represents a laser amplifier. We define the
admittance as the asymptotic ratio of the field in-
duced at z to the current as the time f, goes to in-
finity. More precisely, we define

H =Ho+H (3Va)

where"

H, = gg(@~atria, , (3Vb)

and the interaction Hamiltonian is given by"

H„,= — A(z, t)Re [Jexp(-i(ot) 6(z —z, ) ](fz,
d

(3Vc)

which reads by Eqs. (1) and (3)

ta
H„,= —g ( ~

(a~+ a~) U (z )Re(Je '"').

We can shelve for each of the field operators a~ and
construct E'(z, t) using Eqs. (2) and (4). The exact
solution is, using Eq. (12),

where Er'(z, t) is the thermal fluctuation of the field
given by Eq. (12) which exists in the absence of the
sources. Here we are assuming that the thermal
fieM is not disturbed by the introduction of current
sources, which implies that Eq. (36}is subject to
a perturbation approximation. The current g may
be related to E'(z, t) by the atomic equation of mo-
tion and may contain atomic noise operators which
are associated with the pumping and damping of the
atoms and are responsible for the quantum noise.

The use of admittance as the descriptio'n of the
laser cavity is advantageous, in view of the pres-
ence of the fluctuation-dissipation theorem, in
studying thermal noise of the laser cavity or of the
laser field. The remainder of this section will be
devoted to the calculation of and discussion on the
admittance and related fluctuation-dissipation theo-
rem. In order to obtain the expression for the ad-
mittance we calculate the field excited by the cur-
rent Jexp(-i~t) 6(z —zo) using the Heisenberg equa-
tion of motion. For the present purpose J may be
considered to be a classical quantity. The total
Hamiltonian reads

fil (] 8 &(co-co~)t j e-i(au+ao&)t
E'(z, t)= g (=U(z)U (z,)~ . Je '"' J*e* '(+E;(z, t)2j ~ ' ' ( v-~, ~+~, )

(38a}.
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Since we are interested in the response of E'(z, t) to the current J'exp(-i&et) we ignore the second term.
This amounts to a rotating wave approximation and, since m~&0, frequency m should be positive and large
for this approximation to be justified. This is consistent with the approximation made in deriving Eq. (34).
Then we have

f i 1 e i(au rut-&t

E'(z, t) = P ~

= U (z)U„(z ) Ze '"'+E'(z, t). (38b)

By the definition Eq. (35) we have, using Eq. (11),

ReY(z, z„&v) = —2tt p(ar) U„(z)U„(zo)K(&o) (40a)

(40b)

I' ReY(z, zo, &u')
fmF(z, zo, &tt

=— 4d
'll 0 CO —40

(40c)

where the function K is given by Eq. (26). We have
the symmetry property

Y(z, z', &d) = Y(z', z, &d), (41)

Y(z, z„hatt) =-
2 Q.U„(z)U,(z,)C(td- td,), (3~)

where the function f is given by Eq. (23). Since
&~&0, this is nonvanishing for ~ &0 as required.
Of course, this expression could be obtained by the
standard linear-response theory, "and this can be
shown to be equal to that part of the usual admitt-
ance for the total electric field E which is non-
vanishing for positive frequency co." We have,
using Eqs. (7), (25), and (23)

relation function of the thermal radiation field we
can obtain the description of the cavity using this
equation and Eq. (40c). Conversely, if we know
the admittance we can obtain the correlation func-
tion by an inverse Fourier transform of Eq. (42) .
If we admit that the distribution of the field ampli-
tude is Gaussian for the thermal field we can say
that either one of these two knowledges is sufficient
to determine the thermal noise completely. We
note that Eq. (42) is valid. if we replace the thermal
distribution (Qb) by any other stationary and well-
behaved distribution.

The term dissipation requires some interpreta-
tion since we are not assuming any loss oscillators
nor absorbing atoms, but our space is assumed to
be bounded by perfectly conducting walls. We now
show that the dissipation associated with the real
part of the admittance comes from the electro-
magnetic energy flow to a great distance in the
positivez direction. First we calculate the average
energy desnity W(z, t) for large t at z induced by'
the current source J'exp(-i&et)6(z -zo). Using Eq.
(36) for single frequency td and Eq. (11) and their
Hermitian adjoints we have

that is, the field at z induced by a current source
at z ' is equal to the field at z' induced by the same
source located at z.

From Eqs. (28) and (40b) we see that the real
part of the admittance is related to the correlation
function by

Std(n„) ReF(z, z ', (u)

W(z, t) =(z(z) [E (z, t)E'(z, t)-Er(z, t)Er'(z, t)])

= z(z) iJ i2F*(z,z„(u)F(z,z„(o), (43)

where z(z) stands for zo for z &0 and z' for -d&z
& 0. This is independent of time t. However, the
total energy W„, delivered to the space by the
source does not saturate. To show this we calcu-
late

G(z' 0 z t)e'"'dt. (42)
W 4O

This is a fluctuation-dissipation theorem. "~' This
implies that if we know the normally ordered cor-

L

W„,(t) = W(z, t) dz.
d

Using Eqs. (38b) and (11) we have

(44)

L [j[2 (e (ot te cat. t)( etolt e t4&2t)

W„,(t) = dz z(z) Q Ut(z)Ut(z2)U2(z)U2(zo)
-d 9 tk ((d .—(d ( (tt2 —(d

(45a)

Using the orthonormality of U's [Eq. (43) in I] we
can convert the double sum into a single sum and
get

Thus, for large t'

d W„,(t)= 2 IJI [U (zo)]

(46)
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The second form was obtained by use of Eq. (40a}.
This form for the power dissipation is well known
in electrical engineering. Therefore, for large
t Eqs. (43) and (46) show that the energy density
induced by the current source is constant anywhere
but the total energy delivered is proporitonal to
time t. This discrepancy can be solved only by
considering that the energy is flowing to the "deep
space. " This can be confirmed by calculating the
Poynting vector for the induced field at a distance
from the cavity and from the source J considered
above. The induced Poynting vector at z may be
defined"

S(z, t) =(E (z, t) x H'(z, t) -E (z. , t) x H'(z, t)) . (47)

where p is the magnetic permiability of the vacuum.
Comparing Eqs. (1)-(4) and retracing the proced-
ure from (37a) to (39) to obtain the admittance for
&', we can easily show that the admittance for A'
is merely the admittance in Eq. (39) divided by iu&.

With this in mind and proceeding as in Eq.. (43),
we have for large t

S(z, t) = . iZ i'F*(z,z„(o)—Y(z, z„(u). (49a)2 9

ice p ez

Using Eq. (52c) below for a source located inside
the cavity and Eq. (52b), with z &z„ for outside
we have (S/Sz)Y = (i&a/c') Y. Thus

H'(z, t) = ——A'(z, t),
1 9

p, ez
(48)

For calculation of H' we note that in our one-di-
mensional space" S(z, t) =(iZi'/pc')iF(z, z„&u)i',

which reads, by Eqs. (52c) and (52b),

(49b)

S(z, t) =
(

I JI' sin'k'(z, +d)
1 —Esin jp'„d '

[(c /c') cosk'„d sink z, + sink' d coskoz„]'
~l 0 1 —Xsin'k'„d

(49c)

(49d)

Comparing this with Eq. (6) we have for any location of the source z,
gl

S(z, t) =~@piJi.[U„(z ) j', z &max(z, 0) (50)

where p is given by Eq. (7). This is equal to the power dissipation in (46):

S(z, t) =
d
—W„,(t) . (51)

Therefore, we conclude that our power dissipation is owing to electromagnetic radiation into the free space.
This is an irreversible process. That the power flow is constant for large t and that no return flow ap-
pears in spite of the assumed presence of the wall at z =L are convenient consequences of our formulation
of the field where we made L to be infinitely large and eliminated it in advance except for the ones appear-
ing in the normalization factor N& of the mode functions and in the density of modes p. Under this formul-
ation the largest time t required in the calculation of any physical process can still be smaller than the
time required for light to reach the boundary at z =L and to come back.

The explicit forms of the admittance read

1 . Iz —z '
I . z +z '+ 2d 4r exp(2ied/c') sinu)(z+ d)/c ' sin&@(z'+d)/c'

F(z, z ', &u} = — » expiate ~ -expire2g~c c 1+r expj2iudy'c j

—d &z ' & 0, —d &z & 0 (52a)

lz —z 'I
0 0 exp' co' 026c c

z + z', expire [(z +z ')/c'+ 2d/c']—r exp i&a 0 —(1—r')c' 1+r expj2i~dp'c j

.1+r . z '+ d exp[i&@(z/c'+ d/c')]
c 1+rexp(2i~d/c )

0&z', 0&z (52b)

(52c)
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In the derivation of the above results~ we used for-
mulas (40b) and (40c), the explicit forms of the
power spectrum given by Eqs. (30}-(32), and a
Fourier expansion similar to the one in Eq. (17}.
In using Eq. (40c) we made the approximation that

"cosa{d', "cosa x+ ~
, d(0'=I dx.

(0 —(d (-X) (53)

This approximation is fairly accurate as long as
we restrict ourselves to high frequencies. This
restriction is consistent with the rotating-wave ap-
proximation made in Eq. (38b). In conclusion we
note that formulas (39)-(41) for the admittance, the
fluctuation-dissipation theorem (42), and the for-
mulas concerning power dissipation (43), (46}, and
(49a), do not depend on our particular cavity model
but hold for arbitrary, one-dimensional "lossless"
structure with coupling to the free space. The de-
rivation of Eq. (51), which was made by use of our
model, is to be regarded as a special proof of the
energy-conservation law under the presence of a
current source an6 an optical discontinuity.

VI. CAVITY NOISE CHARACTERISTICS

To begin with we note that the general feature of
the noise characteristics of the cavity is given by
the fluctuation-dissipation theorem (42) and for-
mula (39) for the admittance. In this section we
give a formulation which is useful when we con-
sider a particular cavity mode, and using this for-
mulation we derive the usual form of the fluctua-
tion-dissipation theorem assumed in most quasi-
mode theories of the laser.

We define the field amplitude of a particular cav-
ity mode of which the real part of the frequency is
u, by

E'(&o„z, t) =E'(z, t)e'"&'. (54)

Obviou. sly

plied by exp[i&a, (t —t')] and the power spectrum
a'nd the admittance are given by Eqs. (25) and (39),
respectively, if we replace ar in these equations
by &o, + &v. Then we have [cf.Eqs. (40b) and (40c)]

mI(&o„z, z„&o)
I (d +(d tE

COC+ 40

"d&o' ReY{e„z,z„e')
m~({dc& 8

~ go~ M)
7l' (0 + (0- GO

p
~

QlC

(60)
In particular, Eq. (34) is rewritten

yc
y, '+ ((a+ (o, —(u,„)'

x u„„(z)H(&o,+to) . (61)

The fluctuation-dissipation theorem (42) reads

K(&u, + &o)(n„,„)ReY(v„z,z', &o)

] ce

G(~„z', 0, z, t)e'"'dt . (62)
2

Next we show that our thermal fluctuation leads,
under certain conditions, to a Markovian noise.
We consider the thermal field inside the cavity. As
seen from Eq. (61) the power spectrum has contri-
butions from individual cavity modes each having a
width of 2y„so that if y, is much smaller than the
cavity-mode separation ~~„ the power spectrum
in the region

~

ro —~,
~

& —,'«o, can be approximately
given by a single term that corresponds to ~,.
Thus

f((u„z', z, to) = ',„"',', u (z') u„(z)If((u, + &u),
a(o.(n„,} y,

7f& d y +Q)

ia)-(u, i&-,'a(o, (63)

provided
(E'((o„z, t)) = 0. (55) y, «4m, , (64)

We introduce new definitions for the correlation
function, the power spectrum, and the admittance
associated with the above mode amplitude [cf. Eqs.
(13), (28), and (35)]:

G(ur„z', t', z, t) = (E (&o„z', t')E'(&u„z, t)),
00

f(&o„z',z, &o) =— G(&a„z', 0, z, t)e'"'d t,
~ OO

J'e '"'Y((o„z,z„(o)= lim(E'((u„z, t)}.

(56)

(5V)

(58)

In Eq. (58) a probing current

Jexp[-i(&o, + &o)t]6(z —z,)

is assumed which is coupled to the field at t = 0.
The correlation function is given by Eq. (14) multi-

y, «kT/ft . (65)

Now we further assume that Eq. (63) is true for any
frequency ~, that is, we ignore contributions from
all the cavity modes other than

where we replaced u„,„(z')u„,„(z) by u„(z')u„(z)
since under the inequality (64) the inequality

~
&v

~

&y,«4', holds for important frequency compo-
nents, so that inside the cavity, these components
have essentially the same spatial waveform as that
of &u, . Also, we replaced S(ur, + &u)(n„„)by $&u,

(n ). This is allowable as long as )
&o ~«kT/beholds'

for important frequency components. If we take
the inequality

~

&u
~
&y, into account the last condi-

tion is satisfied provided



668 KIKUO U JIHARA

I(~„z',z, &u) = [same as (63)], —~, & ~ & ~ . (66)

Evidently this is valid on a time scale greater than
the reciprocal- cavity-mode separation 4v, '. Then
substituting Eq. (66) into (59) and (59) into (60)" we
have

1 1I'(~., z', z, ~) = —,id, .„u„,(z') u„,(z) (67)
C

We should have, in the absence of the source,

d E'((o„z, t) = -y+'((o„z, t) +f(z, t) .

Then it follows that

&f (,t)f(, t)&= ~'„', ..—~E-( „",t)

(74)

The corresponding correlation function is given by
Eq. (62}. It follows under condition (65) that

G(~ z' t' z t)= c "e u (z')g(o n )

xu„(z)e re(' '( (68)c

8(e, t( fg(e, e=)e ' "d~,
mOQ

we have, using Eqs. (58) and (67), for large t

&E'((o„z, t))

dao d~' —, , u„g, u„g

(69)

x H(w, + v')y(zo, &u, + (u')e '"'. (VO)

Differentiation with respect to time t changes the
integrand by a factor i~'=--y, (+,. y— t&u'), so that
we have

—,&E ( „., t)&=-y.&E'( „,t)&
'dz

,do u„(z,) u„(z)g(z„ t)e'"~',

(71)
where we used Eq. (69) in the second term. Thus
we should have

d E (+ce z e t}= yQ'(~ e z
e
t)-

'dz,
,d u„(z,) u„(z)

with

xA(z„ t)e'"&'+f(z t), (V2)

I

(V3)

Under the inequality (64) this function is slowly
varying on a time scale greater than 4co,', which
is consistent with the condition stated below Eq.
(66). Noting that the amplitude ratio x of the neigh-
boring impulsive functions Q's separated by r, in
the exact correlation function Eq. (20a) is equal to
exp(-y, r, ) [see Eqs. (8c) and (8d)], we can say that
the above correlation function is, roughly, the en-
velope of the exact correlation function. If the cav-
ity mode is excited by a current distributions(z, t)
in the cavity which has the Fourier components
8(z, ~) given'by

x
~

—+y, Z'((o„z, t)

8 6 (s s
+p + +p

x G((o„z', t', z, t) .
Using Eq. (68) we can show that

&f'(z', t')f(z, t)) =2y,G(~„z', t, z, t)6(t- t') .

(75)

(76)

Since G(&u„z', t, z, t) is constant in time, we have a
Markovian noise for the field amplitude of the cav-
ity mode &o,. The set of equations (73), (74), and
(76) gives the usual form of the description of the
thermal noise in a quasimode theory of the laser. '"
(Usually the mode functions and the space variables
are omitted. ) Approximations used in deriving
these equations are the inequalities (64} and (65).
Also, contributions from other cavity modes than
co, were neglected. It is to be noted that a high
cavity quality factor is not a sufficient condition for
a Markovian noise, but that it is necessary that the
contributions from other cavity modes than the one
under consideration be neglected. Physically, the
latter condition corresponds to a situation where a
single mode of the cavity is selected by some
means internal to the cavity or where the noise is
detected with a limited bandwidth. When we con-
sider the cavity to be coupled with a current source
which is nonlinear in nature, the latter situation
cannot be used as the interpretation of the mathe-
matical model, since the source may mix the con-
tributions from different cavity modes and the
mixed contributions cannot be filtered out in the
detection stage. Thus the former situation, physi-
cal selection of a single mode within the cavity, is
more appropriate as the interpretation of the mod-
el that leads to a Markovian noise. It should also
be noted that to have a thermal radiation field is
sufficient, under the prescribed conditions, to de-
rive a Markovian noise but it is not necessary. . It
can be seen that the necessary condition is that we
have a field with stationary, well-behaved distri-
bution around the cavity mode under consideration.

In II we had a thermal driving term for a single-
cavity mode which is Markovian on a time scale
greater than the reciprocal-cavity half width y, '
[cf. Eq. (15) in II] and than the reciprocal-cavity-
mode separation t( ~,' [see below Eq. (20) in II].
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The latter condition is consistent with the condition
stated below Eq. (66), but the inequality (64) was
not required in II, This is because, in a laser, the
linewidth 4~, which is the effective cavity half
width under the presence of the laser active medi-
um, can be much smaller than the cavity half width

y, ', so that y, need not necessarily be small.

VII. PRESERVATION OF COMMUTATION RULES

Here we examine the consistency of our field
fluctuation with the field comlutation relation.
First we consider the fluctuating part of the field
E'(z, t) =Er(z, t) given by Eq. (36) with 8 = 0 the ex-
plicit expression of which is given by Eq. (12).
This is freely oscillating by assumption. There-
fore, it is evident that in this case the field obeys
the correct commutation relation. To confirm
this we calculate

{[E,(z', t'), E,(z, t)])

=G(z', t', z, t)-c(z, t, z, t )

+Gt(z', t', z, t)- G&(z, t, z, t ). (77)
Here

Gt(z', t', z, t)

=(E;(z', t )E;(z, t))

~ [ (n&)+1]U&(z')U&(z)e '"&t" " (78)
f

where in the second line we used the commutation
relations (5a) and (5b}, and definitions (12) and

(15). Using Eqs. (14) and (VB), the symmetry pro-
perties (16a) and (16b), and similar relations for
Gt we have

( [E,(z, t ),E,(z, t)])
= g ih~&U&(z')U&(z) sin~&(t —t') . (79)

The right-hand side is just the commutator for a
freely oscillating field, of which a special example
for —d &z'& 0 and 0&z was given in Eq. (64) and be-
low in I. We note that the proof of Eq. (79) does not
depend on the special form of the distribution (9b):
it can be proved by use of Eqs. (5a) and (5b) even
if we do not know anything concerning the initial
distribution.

Next we examine the field given by the approxi-
mate expression (74). Integrating Eq. (V4) and its
Hermitian adjoint and using Eq. (V3) and similar
equation for the corresponding adjoint we have

([E'((o„z',t), E ((u„z, t)])
—([E((g z 0) E((g z 0)])e- c

t t
ggt hatt tey~( te+t 2t )

0 0

x ([f(z ', t'),ft(z, t")]) . (80)

= (0+,le'd) u„(z') u„(z) . (82)

This equation can be consistent with the commuta-
tion relations (5a) and (5b) as long as we write

E'(u& z t)= Qa(a ei"c')i

il2xi, M) u„(z),
I

(83)

and choose M& such that ZPI&'= 1. Obviously this
is consistent with Eq. (55). To be consistent with
the power spectrum (66) which was the starting
point towards the expression (V4} we should have

(a~a ) = (e'""c—1)-'f f

y,l
p y, '+ ((o~ —(u,)' ' (85)

where p is given by Eq. (7). Thus in this second
case we cannot preserve the original commutation
relation given by Eq. (V9) since we abandoned the
use of exact-mode functions, but we can retian the
respective commutation relations (5a) and (5b) for
each freedom (mode) of the field.

In the limit of infinitely large cavity quality fac-
tor, that is, in the limit thaty, -0, we may have
from Eq. (85)

Mf=&f „
where we have, recalling the form of the mode
function (6c) for inside the cavity,

&+dE'(z, t) =iai ' i, sinter,
I, 2 (Ed ' c'

with

(8V)

[a, a~] =1, (88)

which is equavalent to the usual expression for the
field of a single quasimode of the cavity. In this
limiting case we, of course, have no thermal noise
affecting the coherence of the field. In fact we have
from Eq. (76), for y, -0,

(f'( ', t')f(, t)}-o. (89)

For a single- cavity mode, theref ore, our cavity is
noiseless if we have no output coupling. As was
mentioned below Eq. (34), a perfect cavity has dis-

We use Eq. (V6) and the analogous equation

(f(z, t)f'(z', t')) =2y,c'(&„z,t, z', t}5(t- t'), (81)

the pair of identities (14) and (78), and the symme-
try property (16a) for G and analogous equation for
G~ to obtain

([E'((u„z', t), E ((u„z, t)])
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crete modes each of which oscillates in an exactly
sinusoidal manner, i.e. , without fluctuation nor
damping.

Thermal noise appears when output coupling is
introduced which allows ambient thermal radiation
to penetrate the cavity and at the same time causes
a systematic motion in the cavity to be damped by

radiation to the outsi:de. This is the content of our
fluctuation-dissipation theorem (42) or (V6).
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