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Effect of syace charge on free-electron-laser gain
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The first-order correction due to space-charge efFects to the small-signal gain of a free-electron laser is
calculated classically. For a current density of 10 A/cm2, an interaction length of 1 m and an electron beam

energy of 20 MeV, the maximum small-signal gain is reduced by about 0.5% while for 10' Amp/cm, it is
reduced by about 5% The. .reduction is proportional to (ran/c) /ys =S, where m is the electron plasma

frequency, L is the interaction length, c is the velocity of light, and mc y() is the initial electron energy.
S = 0.092 in the former case and 0.92 in the latter.

I. INTRODUCTION

In a recent paper' Kroll has given a small-
signal classical theory of a free-electron ampli-
fier and has included the effects of space charge
in a plane-wave approximation. In this paper the
theory will be extended to the case of finite-length
interaction region in the small-cavity limit' in
which the width of the electron-momentum distri-
bution function is small compared with the cavity
linewidth. This limit is appropriate for the recent
Stanford experiments. '4 The theory presented here
is valid in the large-signal-large'-space-charge
regime, but the gain reduction owing to space
charge will be calculated in the small-signal-
small-space-charge regime only.

In order to obtain higher-output power from the
free-electron laser, it has been proposed' that a
storage ring be used in order to increase the elec-
tron density. In this paper we shall obtain the
limit of electron densities at which the Coulomb
repulsion between electrons cannot be ignored.
We obtain the lowest-order correction to the gain
owing to space charge. It should be noted that
this calculation does not take into account the
phenomena of wave-wave interaction. Stimulated
scattering processes have been examined in the
recent work of Kwan, Lin, and Dawson. '

II. THEORY

The analysis follows closely the theory in Ref. 6
with the addition of space charge. We neglect all
dependence on the transverse variables ~ and y
so that the transverse canonical momentum is a
constant of the motion. Since transverse-momen-
tum spread is negligible compared with the longi-
tudinal-momentum spread, we take the transverse
canonical momentum to be zero. Thus the trans-
verse mechanical momentum is

pr =~ y vr = -eAr(e, t),

where e and m are the electron charge and mass,
respectively, v& is the transverse electron veloci-
ty, y= (1-ps) 'ts, and Ar is the transverse vector
potential of the circularly polarized dc magnetic
field plus the circularly polarized scattered-radia-
tion field. Under the Weizacker-Williams approxi-
mation we replace the dc magnetic field with an .

approximately equivalent plane wave. Thus,

Ar(e, t) = e [A;e 'l~'""&'l+A, (e, t)

x e '" ' " 'j+(c.c.), (2)

%here

e, =(x+ij)/v 2 .

If B, is the dc magnetic induction and X, =2tr/k, is
the dc field period, then we have for the equiva-
lent plane wave'

kiA; =Be/(1+Pc) =sB,
kc =k, (1+Pe) =2k;.

(4)

(&)

P, is the incident electron velocity divided by the
velocity of light and is assumed to be near
unity. A, is the scattered-radiation field in the
forward direction and we have'

ycs =k,/4k; =Ac/2X, .
Thus, for fixed Ap & may be varied by varying
the electron energy, which is given by gpss&'.

The relativistic equation of motion for the z
component of the electron momentum is given by

2

az (7)

where E, is the electric field owing to the electron
Coulomb repulsion. If we make the slowly varying
amplitude and phase approximation for A (e, t),
from (2) and (7) it follows that

2

(A,*A, e" -A,.A,*.e 't) +eE„
dt my

where
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k —= k, +k;, 4v =—w, —m;, ( = kz —6{4t.

Under the slowly varying amplitude and phase
approximation for A, {s,f), the wave equation for
A~ reduces to

S 1 a) . i~F(fr ~ e )e'&~' "8')
+ lA (z f) =

Bg -c Bt] ' ' 2k (10)

where Sr is the transverse-current density and F
is a filling factor given roughly by the ratio of the
electron-beam cross section to the cavity cross
section. We have used the relations

(12)

where p is the charge density.
The electron distribution function h(z, p„ f) obeys

the Vlasov equation

=ck and & =ck

in obts. ining (10).
The space-charge field obeys Poisson's equation

Finally, if we use the charge density given by
(14), Poisson's equation becomes

gg. ~ 2

e ' = dp, g(~, t, p).~Z E'o
(19)

The coupled equations (17) for the field intensity,
(18) for the distribution function, and (19) for the
space-charge field are the equations which deter-
mine the gain in the presence of space charge.

In passing, one should note that for the self-
consistency, one would have to satisfy the equa-
tion of continuity. One can show that under the
operating conditions for the free-electron laser,
it will be satisfied automatically within a negli-
gibly small error when (17)-(IS) are satisfied.

III. SMALL-SIGNAL-SMALL-SPACECHARGE SOLUTION

From the equation of motion (7) or {8), one sees
that the "incident" and scattered fields form an in-
terference field, or trapping "potential, "that
propa, ga.tes with velocity"

A h dp,
~t z ~

+
dt ap

where the electron charge density is given by

0(z, 0=ef dP, 8(z, t0,}, , (14)

& = b&u/k = (&u, —~;)/(k;+0, ) =(8},/k, = C,

where we used (6) when @02» 1. The electrons
that are traveling slower than v are speeded up
and those traveling faster are slowed down. This
bunching causes us to look for solutions in which
the space-charge field has solutions of the form.

and the transverse-current density is given by

Jr(z, t) =e
eE, = g(z, t)e' +g—*(z, t)e ' + ~ ~ ~ . (21)

where we used (1).
If we use (15) and (2), (10) becomes

(15)
In addition, to lowest order when the field is

absent, (18) reduces to

gy (o) By (o)
(+v, =0.

BA, 1 BA, ze'+ .

(A; e'~ +A, ) —dp, .c Bg 2k, mc'ep

(16)

lf we multiply both sides of (16) by A,* and its
conjugate by A, and add, we obtain

2

ze'E
(A;A,*e '~ -A)A, 8'~) —dp, .

(17)

If we use (&) in (13), we obtain for the distribu-
tion function

8h Bh ze'k
+~, + eE, — (A~A, e'~' Bz ' my

-2;A, ' '}) =0. ()8)

Let us consider the case in which electrons are
injected at a constant rate so there are no elec-
trons/m' in the interaction region. A solution of
(22) is then given by

h'o} = n, 6(p, —p,) (23)

(24)

If we now expand h to lowest order in e'A., and
VlZ'. )

h=h ' +h "+A~" + ~ ~ ~, (25)

under the small-cavity limit in which the electron-
momentum distribution is very narrow compared
with the "cavity" linewidth.

Next, since space-charge waves that propagate
as (21) will interact most strongly with the inter-
ference field, it is plausible to subtract the effects
of the background charge density. That is, we
replace Poisson's equation by'
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then (18) becomes

~t &z

while (24) becomes

g I (0)

z

yo = [1 +(p~/mc)'P ~'.

If we substitute (21) and (28) in (27) and make
the slowly varying amplitude and phase approxi-
mation on g(z, t) we find that

ie'&o~A;*A, kF &A(~, z)
v c2y4zt=

g p

eg (2) ze' a&)~ . (27)a . -- P

That is, eF, is of order e'A, since h ' is of order
e 'A, .

We may solve (26) easily by a Green's function
and find

'
[A/A, e'~A(p, z}+(c.c.)j

kohl k 85(pg —po

0 z

(28)

where we used the result that

g I (0)
= —(tte'~ +g*e +) . (35)

Pz

When we use (33) and (23), the Green's-function
solution of (35) is given by

k
(34)

~Pz pz —p0 ~&T0

when integrating (27) by parts. Also we used (20).
To order e'A„(18) now becomes

gg(2) g p(2)

t ' ~z

plus higher-order terms, where

p. = k —h(u/v, = k(l —v /v, ),
Z(t, z) -=(1—e-'~')/t,

and

(29)

(30)

(,) eo (o~4A(A, k S5(P, —Po)~

8
x ge'~ dz'A p.„z' e"'" "+ c.c

0 0

(36)

(dp -=Roe /5feo .
Also we have that

(31) when &, =&.
When we use (28) and (36) in (17), and integrate

over dP, by parts, we obtain
I

(
s i s, „s» ' »'~»i;~' SS' sing, » —s,»»osis» »S)* i

+
C

((6poz —~z') cos poz —(6 —3 p2oz') sinpoz
6 p,(

(37)

Since the right-hand side is independent of the
time, we obtain the steady-state gain G,

I

and the space-charge reduction parameter S is
given by

L « „»IA.I'=g.,„[A(y) -»(y)], (38) I.' Jl.'
(43)

where I. is the interaction length,

0

is the maximum small-signal gain~ at X
= 2.6,

where

y = t,& =-~.L(1 —v./v. ),
2 -2 cosy -ysiny

y '0.13502

(24 —6y') cosy +(18y —y') siny —24
6y'O. 135 O2

(40)

(42)

where J is the current density.
Note that as v = c- vo, y -0 and A(0) = &(0)—0,

that is, there is no gain when the electrons travel
in synchronism with the interference wave. Gain
and loss exactly cancel in this case. Also note
that we have normalized A so that A,„A(2.6)
—= 1.0.

In Fig. 1 we have plotted the small-signal gain
without space charge, A(y}, as open circles, the
space-charge reduction S&(y), as Y's and the net
gain, A(y) —SB(y), as X's for a current density of
10' A/cm', an interaction length of one meter,
and a beam energy of 20 MeV. S = 0.092 in this
case. The reduction in gain is about 0.59o and is
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FIG. 1. Plot of the small-signal gain without space
charge (open circles), space-charge reduction (Y's) and
the gain including space-charge reduction (X's) for
8 = 0.092.

QE T UNING

FIG. 2. Plot of the smaO-signal gain without space
charge (open circles), space-charge reduction (Y's),
and the gain inclgding space-charge reduction (X's) for
S =0.92.

barely visible. In Fig. 2 we repeated for a current
density of 10' A/cm' and found approximately a 5%
reduction in the gain. We took the filling factor to
be unity.

IV. CONCLUSIONS

The first-order correction of the small-signal
gain owing to space charge has been obtained for
the free-electron laser. The gain is reduced by
about 0.5% when S = 0.092 and by about 5/q when

8=0.92. The excitation of the electrostatic field
appears to be the source of the gain reduction.
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