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The question of how the light output of a laser and its fluctuations depend on the optical-cavity length at a
given frequency is investigated theoretically for a laser oscillating in a single Gaussian mode. The treatment

is quantum mechanical, and is based on the Scully-Lamb laser model, except that a perturbation expansion

is used and possible cooperative atomic eff'ects are included. It is shown, with the help of some reasonable

approximations, that the probability distribution of the photon-occupation number can be cast into a form

that is similar to the Scully-Lamb formula, but with coefficients that depend on cavity length in a more

complicated way. Curves are presented that illustrate the behavi6r and should lend themselves to
experimental test.

I. INTRODUCTION

The question how the photon statistics of a
laser in the steady state depend on the length of
the optical cavity, with all other conditions re-
maining constant, has recently been examined. '
In the treatment it was assumed that a singl. e,
axial, plane-wave mode of the cavity of definite
frequency was excite/, so that the geometry was
as simple as possible, and that the active medium
occupied only a portion of the cavity volume. The
principal conclusions of that analysis were (a)
that below the laser threshold the light intensity
falls off with increasing cavity length, but that the
relative intensity fluctuations do not change, and
(1) that above threshold the light intensity does
not change, but that the relative intensity fluc-
tuations fall off w&th increasing cavity length. In
other words, the optical field becomes increasing-
ly coherent as the cavity length increases. Near
the laser threshold an intermediate situation is
encountered.

Although, in principle, these predictions should
lend themselves to experimental test, in practice
the situation is always more complicated because
the laser mode is never a plane wave. ' Most
commonly the field has a Gaussian distribution in
the radial direction, and a phase shift that also
increases radially in a Gaussian manner. ' More-
over, the spread of the Gaussian amplitude distribu-
tion varies with position along the laser axis.
These features have the effect of complicating the
length dependence of the photon statistics, as
compared with a plane-wave laser.

In the following we reexamine the problem of
how the photon statistics change with cavity length
within the framework of the Scully-Lamb theory
of the l.aser, ' with the help of the orthogonal mode
functions used by Kogelnik and Li.' We also
include possible c'ontributions from multiatom or

II. CAVITY MODE FUNCTIONS

We consider a typical laser of the form illus-
trated in Fig. 1, in which an optical cavity of
length l is formed by a plane mirror and a con-
cave mirror of radius R. Then the lowest-order
or )undamenta& mode function tt„(r, z) of the
cavity depends on the radial distance r from the
axis and on the axial distance s from the beam
waist, which is the position of the plane mirror,
and is given by'

r 2 &t"~.
ttoo(r, z) =],f ~

——' exP -i(kx —g(x))
), ttM)el i 8

1 ik
&I'(~) 2()(a))- '

Here k is the wave number, wo is the radius of
the beam waist, which is determined by the
geometry,

tos, = (2/k)[l(A —L)]'i', (2a)

and

to(z) = to,[l + (2z /k t)o]'s', t (21)

cooperative interactions within the laser, and we
show that these also have the effect of modifying
the photon statistics and their dependence on
cavity length. Unlike Scully and Lamb, 4 who made
use of the -Weisskopf-Wigner' procedure, we
proceed by a perturbation expansion, so that our
calculation is not applicable very far above thresh-
old. However, our procedure should be valid up
to pu~p parameter values of at l.east 10, and it
is only in the neighborhood of the laser threshold
that the photon statistics really reveal interesting
features.
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FIG. 1. Ggtline of the
laser geometry.
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where H (X} is the mth-order Hermite polynomi-
al, and the different mode functions u„„(x,y, z}
form an orthonormal. set, so that

Jt u*„(x,y, z)u~z(x, y, z)dxdydz =5„&5„~.

The electromagnetic field in the cavity can then
be given a representation in terms of the mode
functions u„„(r). Thus, for tile electric field
vector K(r, t), we write (in mks units)8 .

e(u„~'
E(r, t)=g " [&.(t) .(r)&.+H c j,2~0

where ~ is an abbreviated label for the mode
index mn and a possible polarization index, dq(t)
is the photon annihilation operator for an excita-
tion of the mode ~, and E& is a unit polarization
vector. In the following we shall, however, sup-
pose that it is possible to treat the problem as if
only a single mode, the fundamental, plays a
role in the laser mechanism, so that we can
dispense with the summation in Eq. (5) and drop
the mode label X.

We assume that the active laser medium is

The same expressions hold more generally for a
cavity formed by two curved mirrors, except
that Eg. (2a) for the beam waist has to be re-
placed by the more general relation

[t(ft'- t)(ft —t)(ft +tt '- t)j"
0 (tt +A ' —2t)

where A' is the radius of curvature of the other
mirror. The higher-order mode functions
u (x, y, z) are related to u,o(r, z), with
r =(x'+y')'", by'

vox
(2 ml 2"ml w(z)

located in the cavity between planes z =z, and
z =z„as shown, and that the medium extends
radially sufficiently far from the axis that at the
radial boundary u»(r„z) -=u(r„z) is very small
compared with u(0, z). Because of the Gaussian
r dependence of u(r, z}, and the rapid falloff with

r, these conditions are generally satisfied in
practice when the medium is close to the beam
waist.

III. EQUATIONS OF MOTION OF THE OPTICAL FIELD

We shall be interested in the question how the
light output of the laser and its fluctuations are
affected when the laser is oscill.ating in a single
mode and the cavity length l is changed, with the
r'esonant frequency and all the foregoing conditions
preserved. Superficially it might seem that there
would be little effect on the l.ight. However, a
closer examination of the problem shows that an
effect is to be expected because the coupling
constant between the atoms and the laser field
involves the cavity length, and the rates of stimu-
lated and spontaneous emission into the laser
mode must therefore depend on the cavity length
also.

In order to investigate this effect we adopt the
simple model of the laser that was introduced by
Seul. ly and Lamb. 4 They supposed that the laser
atoms could be treated as identical two-level
quantum systems with an energy separation I+0,
where ~0 is equal or close to the frequency ~ of
the fundamental cavity mode, and that the atoms
may decay nonradiatively out of the two levels
(1) and ~2) to various other states that do not
concern us at rates y, and y„respectively, They
modeled the laser-excitation and the laser-loss
mechanisms by supposing that excited atoms in
state )2) and unexcited atoms in state [1) were
introduced into the laser cavity at rates 8, and
R„respectively, although, ultimately, the
cavity Q factor was identified as being respon-
sible for the loss mechanism.

The energy of the coupled system of a field and
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2V identical atoms then takes the form

g A

H =If(u 0+8~3') +hfiddtd -2 Q p, E(r;, t)R~'), (6)

where', , R, ', 8,' are the three Pauli spin
operators for the ith atom, p. is the transition
dipole moment between levels [1) and [2) that we
take to be real, and rq is the position of the ith
atom. The last term in Eq. (6) represents the
interaction energy H, . %e shall find it conven-
ient to work in the interaction picture in which,
with the help of Eq. (5), 8,(t) can be expressed
in the form

( ~ l/2 N

H (t) ~

+ g. e g [f"( )ie i~at-+t"(i)tsiuloi]
L, 2e

t= i

x[ne '"'u(ri)+ate'"'ui(r, )]

where ~ ' and 5 are lowering and raising
operators for the ith atom. If we discard terms
oscillating at double the optical frequency on the
grounds that their contributions over any mea-
surable time interval are negligible, we can
simplify Eq. (V) to

)

E
H, (t) =SfQ [ttb ' te' "0 " 'u(r, )+H.c.)

with

Af=-p, e(Ii&o/2~, ) '.
It should be noted that, because of the L ~' di.-
mensions of the mode function u(r), f is not a

frequency but has the dimensions of (frequency)
x J3/2

In the Scully-Lamb theory~ it is assumed that
the atoms make their contributions to the field
one at a time, and that the total. rate of change of
the field may be calculated as a "coarse-grained
derivative, "by multiplying the change produced
by one atom by the rate at which atoms in the
same initial state are being introduced. Ne
shall adopt some of the same ideas, except that
we allow for the possibility of some cooperative
effects by treating the atoms collectively.

Suppose that at some instant t, N, laser atoms
are in the excited state ~2), and that the radia-
tion field is in some state characterized by the
density operator pz(t). We suppose that at this
moment the density operator P(t) of the coupled
system may be factorized in the form

N~

(h) PF(h) ', '
, 12i&(2i I (10)

Although we shall not explicitly allow for inho-
mogeneous broadening of the laser atoms, N,
could depend on the atomic frequency ~„so that
the possibility of inhomogeneous broadening is
not excluded. N, would then be the number of
excited atoms within a natural linewidth of the
cavity frequency ~.

These atoms and the field now interact according
to the interaction Hamiltonian H, (t) given by Eq.
(8) for a short time T, that we take to be of the
order of the lifetime 1/y, of the excited state.
From the equation of motion for P(h), the change
Spy(t) in the density operator of the field brought
about by the interaction may be expressed by the
perturbation expansion

i+T2 1 i+ T2 ti
5pT(t) = Tr~

~
.~ dt~ [H, (ti), p2(t)]+ .@2 dti dt, [H, (t, ), [Hi(t, ), p2(t)]J

t+ T2 ii t2
+ . , Ch, Ch, Ch, [H, (t, ), [H, (t,), [H, (t,), t),(t)]J]

t

i+ T2 tg i2 ts
dt dt dt ch [H (t ), [H (t ), [H (t ), [H, (h,), t),(t)]J]]+"~

]
where Tr& denotes the trace over atomic variables. The series is infinite in principle, but as is well
known from the Lamb theory of the laser, ' the fourth-order commutator already contains the essential
nonlinearity required for a steady state, at least not. too far above the laser threshold. Ne shall therefore
terminate the series after the fourth term. We make one other simplification. If the natural linewidtB,
is sufficiently small that we may take

~
~- &oo~T3 && 1, then all the integrands in Eq. (11)are almost inde-

pendent of the integration variables, and each integral yields a coefficient that is just some power of T,.
Finally, if the initial state P, (t) given by Eq. (10) is reestablished at some rate R, by some pumping mech-
anism, then the average rate of change of the density operator of the optical field is taken to be given by
R,5t)~(t), provided that the change R,5pz(h)T, brought about during the time T, is small.
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The change of p~(t) associated with the initially excited atoms is a manifestatipn of the laser gain mech-
anism. Losses can be introduced phenomenologically in a corresponding manner, as in the Scully-Lamb
theoxy, 4 by supposing that there is also a group of N, atoms in the lower state [1) at time t, that serves to
absorb some of the laser radiation. The corresponding density operator p, (t) for the coupled system of
these atoms and the field is given by

Ng

ti|(t) = Pz(t) ) ls)(1& I ) (12)

and they .produce a change in the density operator of the field in a time 1"„ that we take to be of order of
the lifetime 1jy, of the lower state, given by

k r~
(}p (t) =7|„—. . d(, [a,(t, ), (},(t)]+ . , dtd, (, [)(((,); [)(((.,), P(t )]]) (13)

We again take the-integrands to be almost independent of t, and t„and we deliberately terminate the per-
turbation expansion after the second term, which is proportional to the intensity of the radiation, because
losses associated with the optical cavity are gener'ally proportional to the light intensity. If we multiply
5]6~(t) given by Eq. (13) by the rate It, at which the initial, state P,(t) is reestablished, we obtain the average
rate of change of the density operator t)z(t) owing to the loss mechanism. Finally we combine the. rates of
change associated with gains and losses to obtain the master equation

dt, [H, (t, ), ti, (t)]+ . ', dt, dt, [H, (t, ), [H, (t,)P,(t)j].~.

The first- and second-order commutators are readily evaluated with the help of Eqs. '(8), (10), and (12).
Since the operators associated with different atoms, and those associated with atoms and fields at the
same time, commute, we obtain

. Ng

[B,(t,}()(t}] )(f g [, ()„(i)()b"~u(r,-)+Ct()~=(t)g 'u (r, )] P'~~li"), (15)

Ng

[H, (t, ), ti, (t)]=Sfg [QPz(t)b ']~u(rq) —pz(t)(tabb ']u*(r, )] J I
b[']bi~]t

when the time-dependent exponential factors are neglected, and

N2 N2 E~

[H, (t,), [H, (ta), pm(t)]]=(lf)'P g u(r()u(r~)
~

—APz(t)i@["]tb[']t ]
[b[~]tb[~]]

4= 1 j=g, fP j

N2

P (t)y $( ) t ' [b(J) t5(J)]b( )t~~
j9= l. f»

2 2 I'

+(hf)' Q Q u*(r, )u(r()~ -B~P~(t)(ib ' bt' t
~

[b"] b ~'J
4= j.~

(()(}ye(i(l)
' [jj(8)t (/&] ( ~))(yH (gt

II 4

j= le Ji' &
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N)

[&,(», ), [H (4) i((&H)=(mf)'g P»(»(»(»)I -» (~(»"'
i

[("""")'
k=i i= j, 4= le f& i

Nj

pm' (t)$(a)tt", (&)t
]q [f ())f)(J)t]

I

Nj

(~~,g g „,(-„(„(-)~ ~»» (»)(( )~(i&» -'
p( )b(~)»)

k= Z i~y g=j., gAi

Nj

PnP—(t) 'P'" ]' [&'"b'"']&"'~l +H.e.
)i=i, f&i

(18)

These expressions simplify substantially when we trace over atomic variables, and they lead to

Tr„[H,(t,), p, (t)] = 0 =Tr„[H,(t, ), P, (t)],

S2
»~[Hi(ti) [Hi(t2» P2(t)]]=(+f)' Q lu(r~) I'[P (t)M'+M'P (t) -2&'P (t)&] (20)

(21)
N1 (

Tr„[H,(t,), [H, (t,), P, (t)]]=(af)' p Iu(r, )l'[6 @P,(t)+P~(t)y tt 2yP (t)it j.
The higher-order commutators can be evaluated in a similar manner, except that the expressions get

progressively longer. After some rather lengthy but straightforward calculations we find that the third-
order commutator vanishes when traced over atomic variables, and that the fourth-order commutator
yields

»/[H, (t, ), [Hg(tm), [Hl(ts) [H1(t4) pm( )]JJj

N2

=(gf)'g g lu(r, )l'lu(r, )l'[-BM 'p&(t)& —8a P~(t)a'& —4a &a P) (t)& —4& Pz(t)M a+6M P~(t)M
k= 1

+MtMt pz(t)+PF(t)Mtadt +12it 'P~(t)it'+2'(t)0'6 '+28'it 'P~(t)j

, (gf)4 p I u(r,.)I'[-4l' pz(t)M'6-4ij'M'Pz(t)B 6M+'P~(t)M' Py+(t)M M +M an't Pz(t)]. (22)

When expressions (1,9) to (22) for the various commutators are substituted in Eq. (14) we arrive at the
following master equation:

=- ~A [Mt PJ(t) +P~(t)M 2ttt PJ, (t)BJ—~ C[dt t)P~(t) + P~(t)Q 8 —2ttP~(t)Bt J

+ ,'8 fa6t alt P~(t) + P—~(t)aQtPBt + 6Mt P~(t)Mt —48t p~(t)alt 8 —4dt Mt P~(t)a j
+ 8D [Mt QiV p~(t) + PJ.

—(t)lat &t + 6Mt P~(t)ddt —4iF P~(t)Mt 8 —4itt Mt PJ (t)ti

+2itait~'P (t)+ 2&P(t)iPQ 't+12it 'P&(t)B' —8dtPJ, (t)Q'& —8M 'P~(t)&], (23)

in which we have introduced the following abbre-
viations: (25)

i= I
(24)

N2

& = -.'(f&,)'&, Q lu(rs)l', (26)
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E2 N2

D =- -'.(f7', )'&, p Q l~(r~)l'In(r. )l'. (2'I)

C =cg/2sl, (28)
1

where l is the cavity length. B is a small satura-
tion parameter that determines the light intensity
at the laser threshold. D is a new parameter that
does not appear in the Scully-L~b theory, which
is evidently associated with cooperative atomic

As in the Scully-Lamb theory, 'A and C play
the roles of gain and loss coefficients, and C is
ultimately related to the cavity loss parameter L
representing the fractional loss per cavity transit
by putting

interactions since it vanishes if we allow the
atoms to interact with Qe field one at a time.
Whereas A. and B are proportional to the number
of atoms involved in the 1aser process, D is pro-
portional to the square of the number of atoms,
as expected for cooperative atomic interactions.

IV. PHOTON STATISTICS

If we calculate the matrix element of each term
in Eq. (23) between Pock states {n( and [n), and
make use of the fact that (n~ p~(t) ~n) =p(n, t}, the
probability for n laser photons in the optical
cavity, 4 we obtain an equation of motion for
p(n, t) in the form

ap(n)
et

= [-A(n+1)+B(n+ 1)']P(n) + [An -Bnm]P(n- 1) —CnP(n) +C(n+1)P(n+1}

+ —,'D[[2(n+1)'+ (n+1)(n+2)]P(n) —[2n'+4n(n+ 1)]P(n —1)+3n(n —1)P(n —2)] .

[p(n) p(n - 1—)j —[p(n —1) p(n —2}—j =p", (30}

where P" is a close approximation to the second
derivative of p(n} If we ta. ke the Scully-Lamb'
solution for p(n) in the steady state, which can
be cast into the approximate form

psL (n) = {const) exp[- ', (n/n, —a/W )'], — (31)

It will be seen that the term in D, representing
cooperative effects, contains contributions pro-
portional to P(n) and P(n- 1) that augment the B
terms representing successive photon emissions
and reabsorptions by a single atom. This is a
reflection of the fact that there are more ways in
which emission and absorption processes can take
place among a group of cooperating atoms. On the
other hand, the term proportional to p(n —2} rep-
resents a two-photon emission process that cannot
occur at all for singly excited atoms. It makes the
equation of motion significantly more complicated
than that of ScuQy and Lamb' in that it couples
p(n) not only to p(n - 1) and p(n+ 1) but also to
P(n- 2). Fortunately, we can introduce a simpli-
fication by writing

as a zeroth-order approximation to P(n), we can
make an estimate of P", Here no is of the order
of the mean number of photons present at the
laser threshold, and a is a dimensionless laser
pump parameter that is negative below threshold
and positive above threshold. From Eq. (31) we
find

p" = [p(n)/n02][(n/no —a/P2 )' —1]; (32)

so that, in the neighborhood of threshold, and
for those values of n for which p(ri) is not negli-
gible, P" is of order P(n)/no. If we substitute for
p(n-2) in terms of p" from Eq. (30) into Eq. (29),
we find that the term in D cari be rewritten

D[(5n+2)p(n) —5np(n —1)+ ~n(n —1)p"j.
Since n and no are typically of order severaal
thousand, and P" is of order P(n)/n'„we see that
the term 2n(n - 1}P"is expected to be very small
compared with the dominant terms 5np(n) and
5nP(n —1), and may be neglected With th.e help
of the further approximation of replacing
(5n+2)P(n) by (5n+5)P(n), Eg. (29) simplifies
and can be written

sp(n) 2

~t
= [-{A—5D)(n+1)+B(n+ 1)2]p(n) +[(A —5D)n —Bn jp(n —1) —Cnp(n)+C(n+1)p(n+ 1)

p(n)+ 1 ~ p(n —1}-nCp(n)+(n+1)Cp(n+1),
-(n + 1)(A —5D) n(A —5D)

(33)
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to the first order in nB/(A —5D).
This equation has precisely the same structure

as the Scully-Lamb equation of motion4 for p(n),
except that the coefficients are different. The
steady-state solution may therefore be written
at once, in complete analogy with their calcula-
tion, and we obtain

(A -5D}/C
p(n) =(const)'

l 1 /(A D) ) .
r~0

(34)

The term in D, representing cooperative effects,
now appears in association with the gain coeffi-
cient A rather than with the saturation coefficient

B as in Eq. (29). The net effect of the cooperation
is to reduce the laser gain by making reabsorption
somewhat more probable, although, as we show
below, the ratio of D/A is expected to be small
in practice. We might point out that Dicke super-
radiance, ' which is probably the most familiar
form of cooperative atomic interaction, but is not
adequately described by our single-mode treat-
ment, would also have the effect of reducing the
laser gain by depleting the excited population.

With the help of Stirling's expression for the
factorial in the denominator in Eq. (34), and with
the introduction of threshold and pump parameters
n0 and a defined by'

Q lu(r )I'
1=1

(35)

and

N2 E N

p
' — R, T, ~ „,, 5R2 ™

0 i=1 ~= 1 $= 1

Eq. (34) takes the familiar form

p (n) = (const) exp[- —,'(n/n, —a/v 2 )']. (37)

The same result is also obtained from semiclas-
sical theories' dealing with the light intensity,
if we identify intensity with the photon flux per
unit area averaged over the cross section of the
laser beam. However, the manner in which P(n)
depends on cavity length l through the parameters
no and a defined by Eqs. (35) and (36), will in
general be different when compared with the
familiar laser theories. The number n0 is
(~w)" times the average photon number at the
laser threshold, and the pump parameter a is
zero at threshold where the gain just equals the
loss, and is generally a small positive or negative
number in the neighborhood of threshold.

(t(r, t)& = 2, lu(r)l'g np(n)
0 n=0

n, h~,( 2 exp(- 4am)

[1+ f{) (39)

V. LENGTH DEPENDENCE OF THE LIGHT INTENSITY

AND ITS FLUCTUATIONS

T e light intensity I(r, t) may also be definedm
s (r, t) ~ K ' (r, t), where g '(r, t) and
~' (r, t) are the positive and negative frequency

parts of the real electric field f(r, t). Hence from
Eq. (5) we have, for a single-mode laser field at
an internal point r,

I(r, t}= (Se/2e, ) l u(r) l'd~ (t)l(t) . (38)

With the help of Eq. (37) we then find that (cf. Ref.
9) in the steady state

where n, is given by Eq. (35), and again from Eq. (37}

{(~(r,t)'& {(&n)'&
(E(r, t)&* (n&'

a exp(- —,'a') . 2 exp(-~ ) ( 2 exp(- —,'a')
&l

v~m[1+erf(~a)] v[1+erf(m~)]' 5 v~v[1+erf(~a)] i (40)
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The dependence of the light intensity and its fluc-
tuations on cavity length / are therefore completely
determined by the manner in which n0 and a given
by Egs. (35) and (36) vary with l. We therefore
start by examining these parameters.

The summations in Egs. (35) and (36) can be
well approximated by integrals. Thus if the active
medium is in the form of an axial cylinder of
radius r0 lying between the planes z =z, and z =z,
as in Fig. 1, if the laser atoms are uniformly
distributed with density g, and if p2 is the prob-
ability that an atom is in the upper or excited
state at any instant, then

I
"o

ju(r, )['=P,q „' dz J 2vrdr(u(r, z)J',
&-" 1 gg 0

(41)

in practice, the integrals are easily evaluated.
We may then replace the upper limit of the r
integral by ~ to a good approximation, and we
find with the help of Egs. (1) and (2b)

N2 g2 00

g ( u(r, )(2=pm@ dz 2' drt u(r, z)('
gl

=Pm&[(zm- zx)/1]

exactly as for a plane-wave laser mode xo and

N2 oo

Q lu(h)l'=p, n «2~«lu(~, z)('
i= j. gg 0

p, rln /—2,P I
an '

[,(R,)],i.
N2 N

p g l»i» ii*1»i» &I*
-tan '

[1(R- l)]"') ' (45)

2 0 )2
~ pg dz 2mrdr u rz '&, 42

gy 0

The last expression may be further simplified
if z„z,« [l(R - l)]'~, as is sometimes the case in
practice, in which case the tangents are approx-
imately equal to the angles, and we have

u r, 4=p2q dz 2m'dr u r z
gg 0

Po i~(z2 zi)
Q I ( ~)l 2„P[,(R,)]ii' (46)

(43)

When the radius r, of the active medium is ap-
preciably larger than the effective beam radius
w(z) [given by Eq. (2b)] of the Gaussian mode
throughout the medium, as is frequently the case

However, even in this limiting case, the depen-
dence on cavity length / is more complicated than
for a plane-wave laser mode, ' for which the same
sum is proportional to 1/P. From Egs. (35), (36),
(44), and (45) we then obtain

and

[3(z,—z,)/l(f T,) ][1--,P,q(f To) (z, z,)/l]
(k/2z'P)[tan ~[z2/i+2(R —l)~+] - tan [z~/l+ (R —1)+ ])

IR.(fTo)'P.n(z. —z.)/l][1 —-'P.n(f T,)'(z, —z,)/l]
vino) cg/2wl (48)

If we neglect cooperative effects, represented
by the term

5D/& =SP2n(f T,)'(z, —z, )/l,
for the moment, then the ratio a/no given by Eq.
(48) is independent of cavity length l, exactly as
was found for a plane-wave laser. ""However,
no, which is proportional to + for a plane-wave
laser, has a much more complicated l dependence
when the mode is Gaussian, and the same applies
to the pump parameter a. The terms representing

cooperative effects, when they are significant,
further complicate the l dependence of both n0 and

a, and also make their ratio dependent on cavity
length E to some extent.

We can obtain a rough estimate of the conditions
under which cooperative effects play a role, by
noting that this requires

P.n(f T.)'(z. —z )/l +1.
ff we make use of the definition (9) for f, and
recall that 3veo kc'/p, 'oP is the natural lifetime T
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FIG, 2. Relative change
of the light intensity (I)
with cavity length l for
various initial values of the
pump parameter +, for a
laser with z2/R = 0.175 and
z~/R = 0.083. The full curves
apply to a Gaussian mode
and the broken curves to a
plane-wave mode.
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of the upper- to lower-state transition, we obtain

which depends on T„T, l, and on the number of
excii;ed laser atoms within a cylinder of length
~, —~, and radius ~. Wi(h some typical parame-
ters for a smaQ inhomogeneously broadened
He.Ne laser x2, xs X 6328 A, T2 = 10 nsec, T = '700

nsec, i~30 cm, s, -s, =5 cm, q=2x10" atoms/

cm3, PAL=10 ~, we find

5D/4 =s (fT,)'Psq(z, —s,)/f 10 s,
so that cooperative effects would be very small.
However, they may become larger under other
circumstances or in other lasers.

In order to illustrate the behavior and to allow
a comparis. on with the results presented in Ref. 1,
we show in Figs. 2 and 3 how the light intensity
(I(r)) given by Eg. (39) and the relative intensity
fluctuations given by Eq. (40) change with cavity

I.O
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FIG. 3. Relative change
of the relative intensity
fluotustions ((EI)t) /(I) 2

with cavity length l for
various initial values of the
pump parameter a, for a
laser with z2/R = 0.175 and
z ~/R = 0.083. The full
curves apply to a Gaussian
mode and the broken curves
to a plane-wave mode.
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and we may look on this equation as furnishing a
convenient test of the length dependence of the
laser field intensity. In a conventiona1. plane-
wave-laser theory the right-hand side would
simply be proportional to 1/E. Moreover, at
constant pump parameter, ((bI )') is proportional
to the square of (I).

Figure 4 shows a plot of the variation of both
(I) and ((M )') at constant a with the ratio f/R
over a certain range, for a laser for which

z, /R = 0.1'l5 and z, /R = 0.083, both without and
with the inclusion of cooperative effects. In the
latter case we have taken the factor
P,q(f T,)'(z, -z, )/R to be 0.03, which is about 10
times larger than it would normally be in a small
He:Ne laser, but it might reach this value in

other higher-gain lasers. For comparison we
also show the corresponding behavior of a plane-
%ave laser. The plane-wave curves 4 and D
and the Gaussian-wave curves B and E actually
cross over when l/R =0.75. The differences
between the various curves, while they are not
very large, should be clearly distinguishable
by experiment. The departure of the mode from
a plane wave should therefore be manifest in the
photoelectric counting statistics . .
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