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ac Stark sylitting in doubly resonant three-yhoton ionization with nonmonochromatic fields
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We present a-theory of Stark splitting in doubly resonant three-photon ionization (three-level system) with
nonmonochromatic fields. The asymmetry of the peaks of the resonance curve due to Stark splitting is shown
to be reversed when the laser bandwidth is larger than the width of. the atomic transitions of the resonant
states. It is further shown that ionization as well as the probe field have a significant effect on the features
of the splitting. Similar effects are found with monochromatic fields in the presence of an additional level
near the initial level (four-level system). The results of the analysis are in general qualitative agreement with
existing observations.

I. INTRODUCTION

Optical double resonance provides a simple tech-
nique for the study of intense field effects on atom-
ic transitions. As is well known, an atomic trans-
ition undergoes Stark splitting under the influence
of a (near-} resonant intense field. One way of
interpreting this effect is to consider the atom and
quantized radiation field as a single quantum sys-
tem. ' If the lower and upper atomic states

~
1)

and ) 2), respectively, have energies S+, and S~„
and the (near-} resonant incident radiation contains
n photons of frequency , the uncoupled states
I && -=I 1) I &) and I

II &
=

I 2 & I
& —1& have energies

K&@„=1&v,+~@co and @~a =K~, + (n —1}5'&o which are
(nearly} degenerate if ~—= (u, —ar, . The degeneracy
is removed when one includes the interaction V

coupling the field to the atom. In the simplest case
of exact resonance (~ =~, —&u, }, the "new" ener-
gies of the states of the coupled systems (dressed
states) are given by N~'=--,'@(&u„+~a}+-,' (&~ V~ A)
and are separated by (&~ V~A) which is referred
to as the dynamic (or ac} Stark splitting or the
Rabi frequency. For this splitting to be observ-
able, it must of course be larger than the natural
width of level

~ 2). It can then be detected through
the observation of a weak transition from level [ 2)
such as spontaneous emission or a weakly driven
induced transition to a third level (double optical
resonance in a three-level system}. The effect of
ac Stark splitting on the frequency spectrum of
resonance fluorescence has been studied in con-
siderable detail in.the last two years. As for its
effect on double optical resonance, measurements
of the absorption spectrum by Bonch-Bruevich
et al.' seem to be one of the first observations.
More recently, Stark splitting effects have been
observed in two additional types of experiments
on three-level systems: Spontaneous emission

experiments, "in which the fluorescence from
the uppermost (third} level was used as the signal
for the detection of the Stark splitting of the trans-
ition

~ 1)—~ 2). Ionization experiments' ' in
which the splitting was detected through the ob-
servation of the total ionization from the upper-
most level. Thus not only can ionization be used
for the observation of Stark splitting effects but
conversely such effects do influence resonant
multiphoton ionization.

Theoretical papers on double resonance have
been concerned with either the absorption or emis-
sion spectrum and the analysis has been mainly
limited to steady-state solutions. ' " In this paper
we present a theory of Stark splitting effects in
doubly resonant three-photon ionization. The
presence of ionization which constantly depletes
the uppermost level introduces a qualitative new
feature with a significant effect on the dynamics
of the system. As a result, no steady. state exists
and the behavior is inherently time dependent
which requires the complete solution of the differ-
ential equations for the density matrix or the
probability amplitudes. Because of the number of
equations involved, the solution is of course ob-
tained numerically. Moreover, ionization has a
number of further consequences on the dynamics.
The widths of the peaks resulting from the Stark
splitting are profoundly influenced by the strength
of ionization. In fact, the peaks may be oblitera-
ted if the ionization becomes too strong. Also the
heights of the peaks are affected by ionization.
Owing to the absence of a steady state, most of the
features of the peaks depend on the interaction
time. As the interaction time increases, the peaks
broaden and in the limit of long times —strictly
speaking infinite —the peaks will disappear since
all atoms are ionized independently of the probe
frequency. Thus a three-level system with ioni-
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zation exhibits several new interesting features
which in addition to their relevance to Stark split-
ting experiments are of relevance to processes
related to possible applications such as isotope
separation.

As already implied above, in a double resonance
of the type

I» "-I2& " =l3&,

the total signal of ionization from level I 3) —as
a function of the second photon frequency ~& —ex-
hibits two peaks when the intensity of the beam of
photons , is sufficiently large to cause Stark
splitting. The shape and detailed structure of the
two-peaked curve depend on the atomic param-
eters, and the strength and stochastic properties
of both the strong field ((d, ) and the weak probe
field (&o, ). A nonresonant n-photon process de-
pends only on the nth-order correlation function of
the field where all field factors are evaluated at
equal times. In a resonant process, however, be-
cause of the highly nonlinear nature of the satura-
tion, the interaction depends on multitime field
correlation functions of all orders. " -Thus the
Stark splitting in a double resonance experiment
contains information about all stochastic proper-
ties of the field and provides its unique signature
with many possible applications in the laboratory.

In Sec. II we consider the familiar three-level
system, ' "appropriately extended to include
ionization. We employ the density matrix in the
semiclassical formalism with the fields treated
as stochastic processes. The fields are here as-
sumed to have constant amplitudes but phases
fluctuating with Wiener-Levy statistics. The fluc-
tuation of the phase gives the field a finite band-
width. Note that certain aspects of the effect of
nonmonochromatic fields on three-level systems
have been discussed in Refs. 8-10 whereas Refs.
11 and 12 deal with monochromatic fields. A num-
ber of other papers" "have in the last decade or
so discussed the effect of nonmonochromatic fields
on various resonance processes. In Sec. III we
study the behavior of a four-level system with-
ionization. in a monochromatic field. This is sim-
ilar to the three-level system except that now the
ground state is assumed to consist of two closely
spaced levels both of which are dipole-connected
to the intermediate level. Coupling these three
levels w'ith a strong field and probing —with a weak
field —the transition from the intermediate to the
upper level, the total ionization exhibits three
peaks. Although the behavior of this system is
substantially different, under certain circumstan-
ces certain of its Stark splitting features can be
mistaken as those of a three-level system in a

nonmonochromatic field. Moreover, a four -level
system of this type can be found in real atoms. In
Sec. IV we present representative results of nu-
merical calculations. The emphasis is on the ef-
fects of the fj.nite bandwidth of the fields, the
strength of the probe, and of ionization on the pro-
cess under consideration. Finally, in Sec. V we
discuss approximate analytic solutions that can be
obtained if one assumes weak ionization. Then a
steady-state approximation can be made which en-
ables one to exhibit certain results in closed form.
These results provide additional insight into the
physical interpretation of the role played by the
laser bandwidth.

II, THREE-LEVEL SYSTEM WITH IONIZATION

We consider an atomic system with a ground
state I l &, two excited states I 2) and I 3&, and an
ionization continuum denoted by I

t ), with respect-
ive energies )2(0„ i = 1, 23, l (&u, & (d, & (d, & ~,).
The transitions I l & I 2& and I 2&—I 3& are as-
sumed to be dipole allowed while I l) I 3& is
dipole forbidden. In view of existing relevant ex-
perimental results, we also discuss the case of
an electric quadrupole I 2) I 3) transition. The
atom is assumed to interact with two linearly
polarized nonmonochromatic fields written as

E,(t) =e [e,(t)e' ''+c.c.], (la)

E2(t) =e2[ e2(t)e' 2 +c.c.], (lb)

where e, and e, are unit polarization vectors, ~,
.and ~~ the center frequencies of the respective
spectra, and e,(t) and &,(t) fluctuating complex
amplitudes representing stochastic processes.
The mathematical treatment in this paper is rig-
orous when the field undergoes phase fluctuations.
As discussed later on, the quantitative treatment
of amplitude fluctuations is extremely difficult and
only partially understood. Their effect will be
compared qualitatively to that of phase fluctua-
tions.

In the case of phase fluctuations we write

e, (t) =e, e'~ ('), e, (t) =e, e'~2('), (2)

and

( e& (42(&g) —42(&2))) e-) J tq-&2l /2 (3)

(ei($2 (2y)- 2)2 (t2)1) e yJ t~ &2) /2
t (4)

where &, and && are repl constant amplitudes with

Q, (t) and $2(t) being fluctuating phases assumed to
be uncorrelated Wiener-Levy stochastic processes.
Note that a Wiener-Levy process —also known as
Brownian motion —is a normal process with inde-
pendent increments and as such is a special case
of a:Markov process. ~v For.this type of process
we have the autocorrelation functions
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where y, and y, are the full widths at half maxi-
mum (FWHM) of the spectrum of E, (t) and Eq (t),
respectively. The angular brackets in Eqs. (3)
and (4} indicate stochastic averages. The center
frequencies , and & of the I orentzian spectra
are here assumed to be in (near) resonance with
the transitions I 1)—I 2) and I 2) I 3&, respect-
ively. The detunings from resonance are defined
as +~ = +4a —2~ clnd +~ = y —~2 where +jy = j

It is also assumed that the states I 1&, I 2&,
and I 3& are chosen so that either (or both) of the
near-resonant frequencies , and & have suffici-
ent energy to ionize state I 3) by the absorption of
a single photon.

The observed quantity is the total ionization
during the time of interaction between atoms and
radiation. The probability of ionization during
time t, averaged over the field fluctuations, is
given by

where (pq, (t)&, t =1,2, 3 are the diagonal density
matrix elements averaged over the fluctuations
of the fields. %e consider the equation of motion
for p(t) in the rotating-wave approximation and
introduce the slowly varying amplitudes o&& (t} de-
fined by

The resulting equations are

l~ &&
+t &, +—(I + y)&l o„(t)

= ——[o»(t)- o»(t)] ms~e' ~ '
2 22 83

+ 'o„(t)u)s. e '~ &'—
,

—„o„(t)=I',e,,(t) g Im[o', ;(t)~„,e-~~ "J„

=r,o„(t) Im[o„(t)o .e-'~. ~'l

o„(t}o„,e 'o~&" ], (10}

l(dt +1 q+y]l o'»(t}=—Im[omq(t)v„~e ot' ])

where ~, and I', are the spontaneous decay rates
of levels I 2) and I 3&, respectively; I"», I'„, and
~3, are transverse re laxation rate s which are as-
sumed here to be purely radiative (I'» = I'„ I'»
=I', +I"„ I"» =I',). y is the one-photon ionization
rate" from level I 3), which is linear in the in-
tensity of the fields and independent of their
phases; the parameters +~, =2N 'p„'&, &, and

» = 'p, „~&&& are the Rabi oscillation fre-
quencies of»the transitions I 1)—I 2& and I 2)—

I 3) with p» and p» being the respective
electric-dipole vector matrix elements.

When I 2)—I 3) is an electric quadrupole transi-
tion —as has been the case in a relevant experi-
ment'6 —we replace the dipole interaction
-p»' &b&& by the quadrupole interaction

3

—e(dg C
~

g'

where e is the electronic charge„& the speed of
light, Q the quadrupole dyadic, and &, the unit vec-
tor in the direction of propagation of the fieM
which is assumed to be a plane wave. In this case,
the term I'p»(t) will not appear in the right-hand
side of Eq. (10); because if I 2& and I 3& are con-
nected through a quadrupole transition, state I 3)
does not decay to I 2& spontaneously. Depending
on the angular momenta of the states

I 1&, I 2&,
and I 3&, state I 3) may decay to I 1) in which case
I",&»(t} will appear in the right-hand side of Eq.
(9). An example of this case would consist of the
states I 1& =I 3&&, I 2& =I 3P,g, &, and I 3& =I 5I', g, &

in sodium. On the other hand, one could have I 3&
=I 4&,g, & instead; in which case I 4&& does not de-
cay spontaneously either to I 33 & or to I 3I'& ex-
cept via cascade transitions. If the interaction
time is sufficiently short, these cascade decays
can be neglected and I',a'»(t) does not appear in
the right-hand side of either Eq. (9) or Eq. (10).
For interaction times long compared to the longest
lifetime in the cascade, one must consider the rel-
evant branching ratios and insert part of I",o»(t)
in Eq. (9) and part of it in Eq. (10).

To calculate the average probability of ioniza-
tion [Eq. (5)], we perform a statistical average
on the stochastic differential equations (6)-(11)
for the density matrix elements. Taking a formal
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stochastic average of Eqs. (9)-(11)over the fluc-
tuating phases we obtain,

d-&v„(t)&=1",&o, (t)& +1m[&v„(t)vz, e ' ~e "i& ], (12)

=r, &o„(t) &
—1m[&a„(t)(d„.e-" '

&

&o„(i)~„,e "~'"&], (l8)

(
—eP, ey)(a„(t))= —Im[(a„(t)ta„,e ' 'I' t)] &}4)

We now need to calculate the correlations
&v„(t)&u„,e ' ~p &'l& and &o„(t)~» e '~(" '&I,nte-
grating formally Eqs. (6)-(8) and then eliminating
o'»(i), we obtain

a„(t)=—I f e"p[i.'4, *ap](t' —t}]ta„.exp[( p. (tt')][ (at') — (at')] t'e
0

g'I

[ex[p"te' ]p('- }] It' fttexp[[t (x tx )e (I' . yt])(t t}]
0 0

"{~4 exp[i [ 4p(i') —4& (i ')]]o„(i")

—&s.~s~exp[i (4.(i")- A. (i')]jo„(i"))«"
t

23(i) = —
2

exp ([i&,+ —,'(&» + y) ](i' —i)) &t&~, exp[i&,(t') ][a„(t')—o»(i ') ]df '

exp/[i&, + a(f'»+ y)](t'- i)] df' exp{[i(~,+ n, )+-', (r»+ y)](f" i')]
0 0

z( exp[i [&4(i")—(t& (i')]] o'„(i )

—mz, exp[i[ P, (t ) —Q, (t')]] g2~(t "))dt (16)

Next, we multiply both sides of Eq. (15) by 4&„.exp[-i(I&, (f)] and Eq. (16) by &»exp[-i(t&p(i)] and take the
stochastic average over the phases (I}, and Qp~, g

&a„(t)ta„.exp[ (4.(t}]}=-If exp[[(X, el(p„+y. )1(t' — t}}a.4[&a( 'I) &- &a( 'I) I&te
0

t

0 0

&a,.(t&ta texpf-tp, (t}l&=—I f exp[[(4. +'(p.:.+I'+I )](I'-t}]ae,[&a„(t.')& —&a„(t')&]ttt'

gs

exp[i», +3 (1'»+y+y()1(t '-i))«' expI [i (n, +a, (1»+y+y, +y, )](t'- t))
0 0

x f ~4&&,.('" )~s.exp[-i4.(i")]&

(18)
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In obtaining the equations above, we have used re-
lations of the type

=&&,(t')exp[-t4. «)]exp(-t[4.(t)-I.(t")]]&

=(g (t )exp[-tg (t )])

x(exp[ i[ P, (t) —g, (t )]}), (20)

where g& g'& f". These decorrelations are validbe-
cause a Wiener-Levy process, such as Q, (t), is
a process with independent increments. " Func-
tions of different independent increments can be
decorrelated rigorously.

A few parenthetical remarks concerning the
above decorrelation are perhaps in order at this
point. The decorrelation of atomic and field vari-
ables is not valid in the general case, but often is
made as an approximation. It can be shown" that
the decorrelation is valid only for fields whose
+th-order correlation function satisfies the rela-
tion

where &, &&,&'' '&&,„,&&,„. Fields with constant
amplitudes and Wiener-Levy statistics for their
phases, as the ones discussed here, satisfy the
above relation. The other well-known model field,
the chaotic field, does not satisfy Eq. (21) and
cannot be decorrelated from the density matrix
elements rigorously. " Actual laser fields which,

exhibit amplitude, frequency and phase fluctua-
tions, and whose stochastic properties are un-
known, could not be expected to satisfy Eq. (21).
The correlation between fluctuations of the pertur-
bing field and fluctuations of the unknown atomic
response is the heart of the problem in studying
resonant processes with nonmonochromatic fields.
Exact solutions to such problems cannot be found,
in general. The decorrelation approximation, al-
though very good when the bandwidth of the radia-
tion field exceeds the natural atomic widths and
the average Rabi oscillation frequency (below
saturation), is very inadequate for a general
stochastic field of high intensity (above satura-
tion)." In the decorrelation approximation, one

effectively neglects higher-order correlations of
the field and thus cannot distinguish between fields
with entirely different stochastic properties. High-
er-order field correlations play a very important
role in the intensity regime above saturation and
because of this any theory that makes the decorre-
lation approximation is inherently a eak-field
theory. Since Stark splitting is a high-intensity
effect, the decorrelation approximation for a gen-
eral field, in either double resonance or resonance
fluorescence, can lead to erroneous results.

One can consider' special cases, mathematically
simplified, for which closed-form solutions for
the density matrix can be obtained. The stochastic
average over the field can then be carried out on
the solutions rather than the equations of motion.
In such cases of course the problem of decorre-
lation does not arise. Such models have been con-
sidered by Przhibelskii and Khodovoi' and also by
Zusman and Burshtein. " These authors assume
that only E~ (t} is strong and nonmonochromatic
while E,(t} is a weak monochromatic probe. Note
that the role of E, and E is exactly the inverse
of that assumed in the present paper. They as-
sume further that o»(t) =1 and o»(t) = v»(t) =0.
These assumptions allow them to obtain in closed
form a stochastic expression for the absorption
spectrum of the ( 1)-

~
2) transition and to com-

pare results for phase and amplitude fluctuations.
Their assumptions, however, are not satisifed
in recent experiments on double resonance. ' '
l'hus these simplified models do not shed much
light on these experiments.

If we examine the equations for the density ma-
trix elements averaged over phase fluctuations,
we see that they are equivalent to the equations
for the same atomic system, but with effective
transverse relaxation rates I',*,= I'»+ y„ I'32 'I'32
+ y„and I"3*,= I'„+y, + y„ interacting with two
monochromatic fields of the same average power
as the nonmonochromatie ones.

Note that amplitude fluctuations would have a
more complicated effect on Stark splitting. In the
case of amplitude fluctuations, the Rabi fre-
quencies &„, and &„& themselves are fluctuating
quantities which effectively broaden the transitions.
Since the Rabi frequencies are intensity dependent,
this broadening is also intensity dependent and it
can exceed the laser width. This is unlike phase
fluctuations where the broadening is equal to the
laser width. The exact shape of the split double-
resonance curve in the case of amplitude fluctua-
tions would depend on the particular stochastic
properties of the fields.

The average probability of ionization [Eq. (5)]
can be evaluated using the equivalent mono-
chromatic model mentioned above. Separating the
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real and imaginary parts of the off-diagonal den-
sity matrix elements of the equivalent mono-
chromatic model, the differential equations can be
written in matrix notation

cl—$
& (t) =Q M(& S ( (t), i = 1, . . . , 9

where Sq and Mq& are real quantities. The solu-
tion of Eq. (22) can be written analytically

9 Q

5((') =2 Z &'~"&'i"~~(t=o)&""
j =g k=g

(23)

where ~& are the eigenvalues of the square matrix
~and ~ and L ~' the corresponding eigenvector
and reciprocal eigenvector. Using Eqs. (5) and
(23) we can calculate numerically the average
probability of ionization for arbitrary interaction
parameters. Results of such calculations are
presented in Sec. IV.

III. FOUR-LEVEL SYSTEM PATH IONIZATION

This section is devoted to the analysis of the ef-
fect of Stark splitting on a system not directly re-
lated to recent experiments. Under certain con-
ditions, however, its peak asymmetries for mono-
chromatic light could be mistaken as those of a
three-level system with nonmonochromatic light.
There are of course fundamental differences be-
tween the two systems and it is only under par-
ticular experimental circumstances that they may
exhibit some resemblance. In addition, it is pos-
sible to envision experiments in actual atoms to
which the model would be applicable. In this paper,
we are interested mainly in the theoretical aspects
of its behavior.

Consider an atomic system similar to that of
Sec. II except for the initial state which is as-
sumed to consist of two states denoted by I+1)
and with an energy separation 8'&. An example
would be a pair of hyperfine levels. The other
states of the system are denoted by I2& and I3& as
i.n the three-level system of Sec. II.

We shall also use this section to illustrate the
use of the resolvent operator in the study of
Stark-splitting problems. This has the advantage
of a smaller number of equations —four in this
ease —as compared to the density matrix which
would lead to 16 coupled differential equations.
However, the resolvent operator —which is equi-
valent to working with the Schrodinger equation-
has the disadvantage of not allowing the correct
treatment of spontaneous decay. Although it can
account for the spontaneous depopulation of ex-
cited states, it can not account easily for the
repopulation of the lower states. As a.,result,

where H, is the atomic Hamiltonian, H„ the Hamil-
tonian of the radiation field, and V the interaction
between the two. The eigenstates of H, which are
important in the resonant interaction of the atom
and the field are

I&&=1-1&ln.(c., n~~&&,

I» = I+1&ln.~., n,~,&,

Ic&= 12&l(~. -1)(o. & ~o&,

I» = I3&l(n. -1)~., (n~ -1)~~&,

IZ& = It&l(n. —2}~., (n, 1}(c,&,

I»= lf&l(n. -1)(u. (~ -2)(o &,

(24a)

(24b)

(24c)

(24d)

(24e)

(24f)

where n, and n, are the initial numbers of photons
with frequency ~, and sob, respectively. The de-
tunings from resonance in this case are defined as
4, =v, —(&()~ —&(), —& 5) and 4, =—(d& —(()».

1

At time t=0 the system is assumed to be in the
state II&=2 '~'(I&&+ I»), with the atomic popula-
tion divided equally between the two states of the
doublet ground state. We will use the resolvent
operator

G(z) =1/(z —e), (25)

to calculate the time evolution operator

()(t)= . fe"'G(s)dz, (25)

and from it calculate the probability of ionization.
Writing Eq. (25) in the form

(z —H, —V) G(z) = 1, (27)

and taking matrix elements between the initial
state and the eigenstates of H, given in Eqs. (24a)-
(24f), we obtain

~A }GAl ~ACGCI (»)
~s) Ger —~scac~ = 2 (29)

this formalism is valid only as long as the inter-
action time is shorter than the spontaneous life-
times of the states involved. This of course is not
a serious limitation in a number of experiments
with pulsed lasers. Moreover, in ionization ex-
periments the probability of ionization can exceed
the probability of spontaneous decay thus mini-
mizing its importance.

In this section, the fields are assumed to be
monochromatic since our aim is to show how the
presence of a second initial state causes the
sam. e reversal of the asymmetry as the nonmono-
chromatic field in a three-level system. The ra-
diation field is quantized in this formalism and
the total Hamiltonian of the system "atom plus
field" is written

H=H +V=H, +H„+V,
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(z +C) CI VCAGAI VC BGBI VC D GDI

(z —~D) GDI —VDC GCI

(30)
I'I BDI I DDI

( )„
E~ —~ ~ —y

t' IV I' V

~~A —'tds ~A —&S ~

V~~Gsr+VDJ:GEI g 4)1 d(v, =0, 31
(35)

(z —&vB) GBr —VBDGDI =0

(z —&D) GDI —Vr D G Dr
= 0 ~

(32)

(33)

where the integral has been evaluated at z = w„.
The parameters be, and y are the energy shift and
the ionization width of level I3) owing to coupling

(z —&D) GDI —VDc Gcr =o

where

(34)

In Eq. (31},g(v, ) is the density of the continuum
states. ,Substituting the values of 6» and G»
from Eqs. (32) and (33) into Eq. (31), that equa-
tion becomes

with the continuum. The energy shift 4m3 will be
neglected here. Although it is relatively easy to
calculate and include in the treatment, it does not
add to the physics of the problem at hand.

Using the relations ~B +A+ ~& +g A+ g ~ bl&
coo=su„+ & 0 —b, —b, and letting z=x+co» we can
write Eqs. (28)-(30}and (84) in matrix form:

0

VAC

VBC

GAI

BI

2-z/2

2-z/2
(36}

VDC
1 1x —2 &+&g+&2+ r&7 ~g)z

The probability of ionization is given by

~.,(t) =1 — g IU„(t)I'. (»)
S =A sB,C,D

The probability amplitudes Usr(t) are obtained from
the resolvent operator using Eq. (26) and have a
time dependence of the form

4

Usr(t}=e '"A g Csze "&', (88)
h'= j.

where x~ are the four eigenvalues of the square
matrix in Eq. (36). If levels I2) and I3) are coupled
very weakly (IVc Dl «

I V„cI, I VBC I ), then x, = &u'D

—~z =
& 6 —b, —b, —

& iy which 4s independent of
IVAcl IVBcl and IVcDI ~ The other three eigen-
values are functions of 5, &» IV„CI, and IVBCI.
The ionization as a function of b, will have three
resonances at &, = —,'6 —&, -x„ i =1,2, 3, cor-
responding to the condition Re(xA) = x, . Numerical
results are presented in Sec. IV.

1V. NUMERICAL CALCULATIONS AND DISCUSSION

A. Three-level system

1. Monochromatic fields(y =7& = 0)

We present now typical results of numerical
solutions corresponding to incident fields that are
synchronized rectangular pulses of duration T. If

m~, » ~», y, F„F„the probability of ionization
as a function of 4, has two peaks at 6,
~ s [-b, + (b', + &o'B,)'~'], just as the absorption and
emission"'" lines. For 6,, =0 the resonance curve
is symmetric while for A, t0 it is asymmetric.
Depending on whether 4, is positive or negative
the peak which occurs at the negative or positive
value of h„respectively is larger. In the limit
4, » ~~, the dominant peak occurs at b., = -&,
which is the condition for two-photon resonance
at weak fields. In the same limit, the other peak
at b, =0 vanishes. Note that this vanishing peak
corresponds to a one-photon resonance in the
I2)- I3) transition. Whereas the separation of
the two peaks for a given detuning 6,, is almost
entirely dependent on ~~„ the asymmetry of the
peaks depends on many other parameters, such
as, the probe interaction m~~, the ionization rate
y, the natural decay rates I', and F„and also. on
the interaction time T. As we shall see in Sec.
IVA2, the asymmetry also depends dramatically
on the spectral widths of the fields. In real
atoms the asymmetry should also depend on the
structure and degeneracy of the states. In view of
all these factors, it is not surprising that while
there is good agreement between theory and ex-
periment in regard to the magnitude of the split-
ting, the same cannot be said about the asymmetry.
The asymmetry depends on the details of the over-
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FIG. 1. Probability of ionization for a three-level-
system vs detuning of the probe laser. The laser fields
are monochromatic.
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FIG; 2. Probability of ionization for a three-level
system vs detuning of the probe laser. The laser
fields are nonmonochromatic.

all interaction while the splitting depends only on
the strongly driven transition.

Figure 1 shows the dependence of the asym-
metry on y and (d». In these calculations we have
taken T = 600 nsec and F, = 6.3&&10' sec '. F3 has
been assumed to be much less than y and has been
neglected. The other parameters are as specified
in Fig. 1. Comparing Figs. 1(a) and 1(b) we see
that as y is increased by a factor of 10 the asym-
metry ratio decreases' by about a factor of 2 while
at the same time the peak ionization decreases-.
Comparing Figs. 1(a) and l(c) we see that by in-
creasing ~„,by a faIctot of 500 the asymmetry
ratio is also decreased by about a factor of 2.
At the same. time the increase in the probe inter-
action causes broadening of the resonances.

Z. Nonmomoehr'omutic fields

As we saw in Sec; II, . the effect of the phase
fluctuatioris, .when averaged, is equivalent to
changing the effective transverse relaxation rates
from F», F», and F to 1"~~=F»+y„F32 F32
+y„and F3*,= F»+y, +y, . Therefore, since the
asymmetry depends on the transverse relaxation
rates, we expect it to be affected by the widths
of the fields. Figure 2 shows how dramatic this
effect is, when we compare it with Fig. 1. Making
both fields broad and leaving all other parameters
the same as in Fig. 1(a} the asymmetry reverses
[Fig. 2(a) ]. The reason for this reversal is that while
both the one-photon and the two-photon resonances
are broadened by the spectral width of the fields, the
broadening of the ~l)—~2) transition, which is
nonresonant (E,c0), favors the resonance which
corresponds to the one-photon resonance in the
[2)—~3) transition. In Fig. 2(b) where the probe
field E,(t} is monochromatic, the asymmetry re-
mains reversed and increases compared to the
case in Fig. 2(a). However, in Fig. 2(c) where

only the probe field is broad the asymmetry is the
"normal" asymmetry as in Fig. 1 where both
fields are monochromatic. This clearly shows that
it is the broadening of the strongly driven ~1)—~2) transition which reverses the asymmetry.

The reversed asymmetry for nonmonochromatic
fields has been observed in recent experiments
on doubly resonant three-photon ionization. ' In
the initial experiments of Moody and Lambro-
poulos, "the observed asymmetry was reversed,
but their measurements were limited to small de-
tunings (~A, ~

s y, ). More recently Hogan and
Smith continuing their work have reported that
for large detunings (~h, ~ &4y, ) the asymmetry
reverts to normal, as for monochromatic fields.
In the model used in this paper with the assumed
Lorentzian spectra the reversed asymmetry is
found to persist for detunings of several hundred
laser widths (y,). This is owing to the long wings
of the Lorentzian line shapes whose contribution
turns out to be comparable to the off-resonance
two-photon absorption. This suggests that the
actual line shapes in the experiment decreased
much more rapidly in the wings. In fact they are
expected to have a cutoff. Under such conditions
of course the asymmetry reverts to normal as
soon as the atomic line is outside the laser line
shape. Note that for small detunings the actual
line shape is not very important. Owing to the
lack of a realistic model for the line shapes of
the lasers used in the experiments, ' ' we have
not attempted quantitative comparisons especially
in connection with the return of the asymmetry to
normal. All other parameters used in our calcula-
tions, however, correspond to the experimental
conditions. Thus we can obtain several of the
qualitative features of the experiment including
the reversed asymmetry for small detunings. We
do not of course expect the single-mode field with
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under nonmonochromatic fields. Recall that for
the three-level system, the asymmetry reverses
when 6, changes sign. For the four-level system
the relative spacing of the peaks as well as their
relative heights depends on the magnitude of
V&&, V'~|.-, and 6, relative to 6. For YQQy

much larger than 5 the central peak moves to-
ward one of the side peaks and becomes vanish-
ingly small [Fig. 3(c)]. In this limit the four-level
system tends to behave like a three-level system.
For V„~ = V~~, and &, =0 the central peak disap-
pears apparently owing to interference effects.

The different behavior of the four-level system
as compared to the three-level system points to
the important role that the hyperfine structure of
atomic states can play in experiments of this type.

0 -2 —I

I

0 I

(f),,/2V„)

FIG.-3. Probability of ionization for a four-level
system vs detvrifng of the probe laser. The laser fields
are monochromatic.

phase fluctuations to represent the actual pulsed
dye lasers which most likely exhibited significant
amplitude and frequency fluctuations as well. We
expect to present the results of more realistic cal-
culations in a future publication.

B. Four-level system

The results presented in this subsection illus-
trate the behavior of the four-level system and
show how the presence of an additional state —near
the ground state —modifies the resonance curve
of the three-level system. In Fig. 3 we show the
ionization as a function of probe frequency for
three cases. As expected the strong field gives
ri,.se to three peaks, that is as many as there are
(near-) degenerate states of the system "atom-
field. " Note that in all three cases the asymmetry
is opposite to that found in a three-level system
interacting with monochromatic fields. It is pos-
sible in an experiment one of the three peaks to
be small and undectable. The remaining peaks
would then exhibit what we have called reversed
asymmetry thus mimicking a three-level atom

&oii& =1 —&o22& —&oss&

(o») = (1/I;) Re(i(o»)io~, ),
(o„)= (1/I;) Re(i(o„)&u„,),

(39)

(40)

(41)

where, after some algebra, (o») and (o») can be
cast in the forms

V. STEADY-STATE APPROXIMATION FOR THE

THREE-LEVEL SYSTEM

As pointed out in Secs. I and II, the probability
of doubly resonant three-photon ionization has to
be calculated numerically, in general, if a quan-
titative comparison between theory and experiment
is to be achieved. It turns out however that certain
qua1itative features can be exhibited analytically if
judiciously chosen approximations are introduced.
A case in point is the effect of the finite laser
bandwidth on the peak asymmetry. To obtain a
manageable analytical expression, we consider a
special case in which ionization is sufficiently weak
to be negligible, as a first approximation. Then
one can neglect the derivatives d(o, z&l/dt, which is
equivalent to exploring steady-state solutions of the
system. As we shall see below, even with this ap-
proximation, the relation between peak asymmetry
and laser bandwidth. remains the same as in. the
rigorous solutions of the previous sections.
solutions of the previous sections.

Introducing the approximation d (a,i)/dt =0, the
populations of the three levels can be written

and

-i/»B. (ST + I/4~R. )T((oii& —(o22&) —i/»B. 4~/A'(&o22& —(oss&)
(RT + I /4(dye)(ST + I/4cos ) —(I/4&os (dory)

-i/'2, (»+I/4 '„,)T(& „&-(„))- /8 '„. „T(& „&-& „))
(RT + 1/4ors&)(ST + I/4oiz, ) —(I/4ois, ioiil, )

(42)

(43)
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with

R = i~, + —,'(r»+ y.),
~=»2+ 3(r»+ya) ~

T =i(b,,+b,,)+ —,'(I'»+y, +y, ) .

These coupled equations are still too complicated
to allow one to recognize the effect of y, and y~ on

(o»). Further simplification is obtained if we in-
troduce the weak-probe approximation, i.e., as-
sume

~'„,«~„„(r„+y,)', (r„+y,)', (r, +y.+ y,)'.
Then we can write (o») as

1/4(u'„,'-'=( " '..I

*

v .)

(44)

This expression is similar to Eq. (3) of Ref. 11
which was derived for monochromatic fields. The
quantity in the square brackets is independent of

I

&, and is equal to the population of level
~
2) for

+„~=0. The quantity in the curly brackets is a
resonant function of 4, with two peaks at the roots
of the quadratic equation

—I/4v„, +(r +y )(r +y )=0.
The peaks are better resolved for Rabi frequencies
large compared to the various widths. Let us
then assume uP„, »(r»+y, )(1»+y, +y, ) in which
case the peaks occur at

(45)

where the signs of the square root are chosen so
that )&,' ~

~ (b,, ~, for both positive and negative
values of 4,. Note in passing that for b', »+~,
the two roots are

b2 =-6,. and b2 = ~uPs, /6~.

Thus, for 6', »~~, the peak at 4,' corresponds to
a two-photon resonance in the ~1)- ~3) transition,
while the peak at b,, (in the limit ~, - 0) cor-
responds to a one-photon resonance in the ~2)- ~3) transition.

The peak values (o»(h,')) for arbitrary values
of 4~ are given by

I/4&@'„, 1 [(~,.~;)/~;] (y./r. )
RR*+ '„,(R +R*)/2r, (r"y. y.) [(~, &.')/~: j(r..r,.y, ) I"; (46)

From Eq. (46) we see that for 6, =0 the two peaks
have equal heights. For h, o0 we have (b., +b,')/
6,' &(b,~+6, )/6, and the relative heights of the
two peaks depend on the value of the ratio y,/I;.
If y, & r„ the peak at 4,' is higher than the peak
at 5,,". This is in agreement with the predictions
of monochromatic theory (y, = y, = 0). If y, = r„ the
two peaks are equal independently of 4,. Finally,
if y, & r, the peak at 4,' is smaller than the peak
at 4, . A physical interpretation of this effect can
be given by considering energy conservation in
the ~1)- ~3) transition in the limit b, ', »uP„, . In
that case Eq. (46) reduces to

I/4~R.

X sa
r3+y, +@~ r3

& 4&ze
&" ("»= ~;+I/2~ (1+y./r, )

The forms of Eqs. (47) and (48) show that the peak
at 4,' corresponds to off-resonance two-photon ex-
citation

while the peak at 4, corresponds to two-step ex-
c1tatlon

For y, =0, the nonresonant excitation of level ~2)
goes as (I/4&@2+,/b,')', which is quadratic in the
intensity of the strong field. This nonlinear in-
tensity dependence has to do with the fact that the
excitation of level ~2) with nonresonant photons
comes from the mixing of levels )I) and ~2) by
the strong field, even if nonresonant. Equations
(47) and (48) correspond to the limit of such
mixing for 6', »or~, . As this limit is approached,
the two-photon nonresonant excitation

x ",' )I+ ' ~+
(u' I' y

X
(gJ gb

r +r~+» r, (48)

Il) -' -'13)

becomes increasingly stronger than the two-step
excitation. The latter can not conserve energy
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for large detunings d, . For y, 40, however,
photons with frequencies in the tail of the Lorent-
zian are in resonance with the ~1)- ~2) t'rane'i-

tion. The excitation of level ~2) by these reso-
nant photons goes as & (&ufo/h~)(y, /F, ) which, as
expected, is linear in the intensity. It is this
resonant excitation of level ~2) that enhances the
two-step excitation and for y, & E; makes it
stronger than the two-photon excitation thus
reversing the peak asymmetry. Moreover, Eqs.
(47) and (48) show that is is the bandwidth y, of
the strong laser and not that of the probe laser
(y~) that causes the reversal. These results are
of course in accordance with the more rigorous
calculations pf the previous sections.

Similar peak asymmetry effects owing to the
finite bandwidth of an intense field with a
Lorentzian spectrum have been discussed re-
cently in connection with resonance fluores-
cence.""In that case, the finite bandwidth of
the field causes the three peak resonance fluor-
escence spec'trum to become asymmetric for
off-resonance excitation. The physical inter-
pretation of this effect is similar to the interpre-
tation given above for double resonance. Photons
in the tail of the Lorentzian spectrum are in reso-
nance with the atomic transition and excite atoms
which subsequently emit within the natural line.
This contribution to resonance fluorescence makes
the side peak which is closer to the atomic -trans-
ition frequency more intense than the.other side
peak, and even the central peak in extreme cases. .
We should point out, however, that such effects in
either double resonance or resonance fluorescence
depend significantly on the line shape of the field
spectrum. A field whose line shape falls off
faster than a Lorentzian will appear monochro-
matic to the atom beyond a certain detuning. The
asymmetry is then expected to revert back to
normal as in the recent experiments of Hogan and
Smith. '-

linear nature (saturation) of the process —a result
of the strong field —the dependence of the interac- ~

tion time is not straightforward as in the case of
nonresonant multiphoton ionization. It is the same
combination of ionization and saturation that
causes the intricate behavior of the widths,
heights, and asymmetries of the peaks. This be-
havior is intricate even when the radiation is
monochromatic. The presence of nonmonochro-
matic radiation introduces another level of com-
plexity. We have dealt, in this paper, with one
particular cause of nonmonochromaticity, namely,
fluctuating phases modeled as a Wiener-Levy
stochastic process. The effect of the finite band-
width on several aspects of the system has been
found to be quite significant. It must be em-
phasized, however, that the above model does not
enable one to predict the complete behavior of the
system in the presence .of field-amplitude fluctua-
tions. The mathematical complexity is in that
case enormous and very little has been done on
the problem. However, preliminary and qualita-
tive arguments show that even more significant
effects are to be expected. Progress on this
problem will be necessary before one can inter-
pret quantitatively experiments performed with
pulsed lasers which in most cases exhibit ampli-
tude fluctuations. Nevertheless, our results show
that one can obtain a useful qualitative picture
even on the basis of phase fluctuations alone.

We chose to study ionization because of the ex-
isting experimental results. As we saw, the prob-
lem is of'interest in its own right. One must
remember, in addition, that ionization is apt to
be a significant factor whenever strong optical
radiation interacts with an atom. How significant
it is does of course depend on the particular atom
and the details of the experiment. But It.n most
experiments with, for example, atoms such as
alkali or alkali earths, ionization more often
than not has been found to play its role.

VI. CONCLUDING REMARKS

Doubly resonant three-photon ionization has been
shown to lead to several interesting effects re-
lated to the Stark splitting of an atomic transition
under a strong field. When contrasted to similar
Stark-splitting problems involving spontaneous
emission, the presence of ionization introduces
new features to the behavior of a three-level sys-
tem. As we have seen, the problem becomes in-
herently time dependent and the time of interaction
is now an important parameter. Owing to the non-
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