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We study the off-shell Jost function f(k, q), introduced by Fuda, for the Coulomb, the Hulthen, and two
modified Eckart potentials. A simple closed expression for the I = 0 Coulomb off-shell Jost function has
been obtained. This function is discontinuous at q = k. Its on-shell limiting behavior is given by the
singular factor (q —k) '~, where y is the Sommerfeld parameter. We also discuss the off-shell Jost solution

f(k, q, r), which is an off-shell generalization of the Jost solution- f(k, r). We consider the Hulthen
potential as a screened Coulomb potential, let the screening parameter a go to infinity, and derive the
limiting behavior of the Jost solution, the Jost function, the off-shell Jost function, and the half-shell T
matrix for the Hulthen potential as a ~ 00. We obtain discontinuities given by the singular factor a'". For
comparison, we introduce two modifications of an Eckart potential which can be considered to be a screened
r potential and derive a number of limiting relations in analogy to those for the Hulthen-Coulomb pair of
potentials.

I. INTRODUCTION

The concepts of Jost' function and Jost solution
are very well known in the theory of nonrelativistic
two-body scattering by a spherically symmetric
potential. ' ' Their usefulness in the study of the
Schrodinger equation may be recognized from some
of their properties: The phase of the Jost function
is the negative of the phase shift for the physical
wave function. For a local potential, the Jost
function is identical to the Fredholm determinant
and its zeros determine the bound-state energies
of the two-body system.

For many-particle systems one needs off-shell
quantities, in particular the off-shell T matrix.
The on-shell restriction of the T matrix is pro-
portional to the two-particle scattering amplitude.
Fuda and Whiting' have introduced and studied a
generalization of the Jost function which they call
the off-shell Jost function f,(k, q). It is a function
of the wave number k and an off-shell momentum
q. These authors have discussed its usefulness in
off-shell scattering. In particular, they have
proved a simple relation corinecting the half-shell
T matrix T,(k, q; k') and the off-shell Jost func-
tion, see Eq. (16). Further, they have discussed
an off-shell extension of the Jost solution. This is
a solution f,(k, q, x) with prescribed asymptotic
behavior e"", x-, of an inhomogeneous "Schro-
dinger equation. " We shall call this function

f,(k, q, r) the off-shell Jost solution.
Recently Fuda' has developed a momentum-space

formulation of the off-shell Jost function and de-
rived two integral representations for it. Finally
we note that very recently Pasquier and Pas-
quier'&' have studied an off-shell generalization of

/

the Jost formalism in a more general context.
For some particular potentials the Jost function

and the Jost solution are known in closed form,
see Newton, ' Chap. 14. In the case of s waves (I
= 0) the off-shell T matrix T(P, q; k') has been ob-
tained for a small number of potentials only. Most
of these explicit expressions are in terms of gen-
eralized hypergeometric functions' " E„.

Fuda" has derived T, , for the exponential po-
tential in terms of,&, and, E„while Bahethi and
Fuda" have given an expression for the case of
the Hulthen potential in terms of,E, and 4E,. Fin-
ally Fuda and Whiting' have simplified these ex-
pressions. For the Coulomb potential, van
Haeringen and van Wageningen' have derived the
l= Q T matrix in terms of,E,.

In the case l & Q, no closed expression for T, is
known for the exponential and Hulthen potentials.
Van Haeringen' has obtained the /= 1 Coulomb T
matrix, also in terms of the Gaussian hypergeo-
metric function, E,. This expression is much
more complicated than the Coulomb T, , expres-
sion.

The s-wave off-shell Jost function and solution
for the exponential potential and for the Hulthen
potential have been given by Fuda and Whiting. '
Fuda and Girard ' have derived integral represen-
tations for the s wave, off-shell Jost function, and
half-off-shell T matrix for a superposition of
Yukawa potentials. Some work has also been done
on other potentials, cf. the references quoted by
Fuda and Girard i5

In this paper w'e extend these investigations on
off-shell Jost functions and solutions, in particular
to the Coulomb case. Here we meet special diffi-
culties, which are due to the long range of the
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Coulomb potential.
In Sec. II we study the off-shell Jost solution and

function for the Coulomb potential for arbitrary
values of l. For l= 0 we obtain a very simple
closed expression for.the Coulomb off-shell Jost
function fc(k, q), see Eq. (24). In connection with
the derivation of the l = 0 off-shell Jost function
for the Hulthen potential, we pay attention to a
statement concerning the hypergeometric function
3E2 which is of gene ral inte rest. It is formulated
as follows: any Saalschutzian, E2 of argument 1,
with one of its three first parameters equal to 1,
can be summed in terms of 1 functions.

The Hulthen potential goes over into the Coulomb
potential when the so-called screening parameter
a goes to infinity. We investigate whether or not
the limits for a of the Hulthen Jost functions
and solutions are equal to the Coulomb Jost func-
tion and solution, respectively. We establish the
type of singularity for those cases for which this
limit is nonexistent. It is given by a'", where y
is the Sommerfeld parameter. "

Further, we investigate the continuity of the off-
shell Jost solutions and functions with respect to.
the off-shell variable q at q= k. According to
Fuda and Whiting, ' the off-shell Jost function and
solution are continuous at q= k with limit equal to
the ordinary Jost function and solution, if the po-
tential has a short range. . We prove that the Cou-
lomb off-shell Jost function is not continuous but
singular atq =k, and we also show that the source
of the singularity lies in the factor (q -k) '".

Finally, we take a third and a fourth limit into
consideration. Besides a- and q k we also
consider r- and x-0. A survey of our main
results for these limiting relations may be found
in Eqs. (40)-(41), and in Fig. 1.

In the final part of Sec. III we prove an interest-
ing 1-imiting relation for the half-shell Hulthen T
matrix, see Eq. (48). In Sec. IV we consider a po-
tential from the Eckart" class and two modifica-
tions, and we derive some limiting relations. In
Sec. V we give a summary and a short discussion.

We shall mainly use the notation of Newton' and
of Fuda and Whiting. '

II. COULOMB AND HULTHEN FUNCTIONS

The Jost' solution f,(k, r) is that solution of the
radial Schrodinger equation,

x U(l+ 1+iy, 2I+ 2, -2ikr) (4)

= e~""&'~ )F,(I+ I+iy, iy I;(2ikr)-')

(5)
Here U is an-irregular solution of the. confluent
hypergeometric differential equation, "and 2E, is
a generalized hypergeometric function. Note that
Eq. (3) is easily read off from Eq. (5) since

lim, E,(a, b;z) = l.
«-+ 0

The Jost function is defined by" [Newton, ' Eqs.
(12.140) and (12.142) ]

f, (k) =—lim f,(k, r)(-2ikr)'I! /(2I)! .
g~0

(6)

This definition is al;so valid in the Coulomb case.
By using (Ref. 18, p. 288)

lime' 'U(a, c,e) = I'(c —1)/I'(a), Rec&1,
«-+0

one obtains from Eq. (4) the well-known expression

f (ck) = e'"t 'I'(I + 1)/I (I + 1+iy)

for the Coulomb Jost function.
Now we turn to the off shell Jost solu-tion and

the off shell Jost functi-on, introduced by Fuda
and Whiting. ' The off-shell Jost solution f, (k, q, r)
is that solution of the so-called inhomogeneous
Schrodinger equation

(
—)(r)) f, (k, t), r)

d' I(I + 1)
dy'

V(r) is not singular and satisfies

V(r) =O(r "), c(&1, r- ~.

In the Coulomb case (@=1), a different asymptotic
behavior has to be prescribed, because there is
no solution of Eq. (1) satisfying Eq. (2) in this
case. Then one may define fc, such that

limf (k r)e '""+'"""""'=1 (8)

where y is Sommerfeld's parameter. The factor
(2k)'" in Eq. (3) is usualiy included for conven-
ience. The Coulomb potential is given by

V, (r) = 2try/r

The Coulomb Jost solution can be given in sev-
eral equivalent closed forms, e.g. ,

f, ,(k, r) = e""""t'(- 2ikr)'"

- V(r)) f,()r) 0, , =cP I(l+ 1)
dr2 t2

which satisfies the asymptotic condition

(2)

This function f,(k, r) is well defined if the potential

= (k' —q') i' qrh, '"(qr),

which satlsf les the asymptotic condltlon

limf, (k, q, r)e '4"= 1.

Here A, ,
' is the spherical Hankel function, "for

which the following useful equality holds:

(8)
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f,(k, q) —= lim f, (k, q, r)(-2iqr)'I! /(2l)! . (12)

Note that this definition is completely analogous
to the definition of f, (k) in E(l. (6). It also holds
for the Coulomb case, just as Eq. (6) did.

Fuda and Whiting have studied the off-shell Jost
solution, the off-shell Jost function, and some re-
lated functions for general short-range potentials.
Some of their results, relevant for this paper, are

j'gkI''(z) = e' 2FO(I+1, -I; (2iz) ). (10)

We have found that one can also define for the Cou-
lomb potential an off-shell Jost solution which
satisfies Eqs. (8} and (9). We shall denote this
solution by fc,(k, q, r) I.t is remarkable that its
asymptotic behavior is the same as for a short-
range potential. Recall from Eq. (3) that the ordi-
nary Coulomb Jost solution fc,(k, r) has a more
complicated asymptotic behavior. In particular,
one may expect that

lim fc,(k, q, r) 22fc,(k, ~),
q~A

in contrast to the short-range case, where the
e(luality holds, see Eq. (13) below.

The off-shell Jost function is defi~ed by Fuda
and Whiting"" with

e "~' 2ky
lim Vo „,-—, = = Vc(~) .
a o] e ria y, C

vp~ 0
aV0~2kg

(17)

The Jost solution and the Jost function for V~ are
known in closed form (for l = 0 only), see Newton'
Chap. 14.4,

f„(k,r) = e'~",F,(A, B;C; e "f'),

f„(k)=,F,(A, B;C; 1)

= r(C)/[r(1+A) 1"(1+B)],

(18)

(19)

f&(k, q) in closed form for the s(luare-well poten-
tial and, for l=0 only, for the eKponential poten-
tial and the Hulthen potential.

We shall discuss now some functions for the
Hulthen potential V~ and compare these with the
corresponding functions for the Coulomb potential
Vc. We use the subscripts H and C, respectively,
and we restrict ourselves to the l= 0 case and omit
E.

The Hulthen potential is given by

Vs(r) = V,e "~'/(1 —e "f')

V~ can be considered as a screened Coulomb po-
tential with screening parameter a. For a- ,
V~ goes over into Vc. More precisely,

and

lim f,(k, q, r}=fg(k, r),

limf, (k, q) =f,(k),

f,(k, -q)=f,*(k, q) (k and q real),

(13)

(15)

with

A= -iak+ia(k'+ Vo)'~',

B= iak --ia(k'+ V,)'~',

C= 1 -2iak=1+A+B.

k ' f, (k, q) —f,(k, -q)
T, k, q;k' = — ' ', f (k)'

These authors have also derived f, (k, q, r} and

(16) The expressions of Fuda and Whiting for the off-
shell Jost solution and the off-shell Jost function
are as follows:

Aa~-«af„(2e,e)=e""(1+, ,F(1,1+Ace, (e+Fe;2+e, le(;ee;e'1')), (20)

I'(1+ o)1 (C+ o)
I'(1+A+ o)I'(1+B+c)

(21)

with

cr = iak —iaq.
The derivation of Eq. (21) from'E(l. (20) has been-
given by Bahethi and Fuda. " We now give a slight-
ly different but essentially equivalent derivation
because it is of general interest.

The,F, of Eg. (20) is of the Saalschiitzian
type. "" Every Saalschutzian, F, of argument 1
with one of its three first parameters equal to 1
can be summed in terms of I' functions. In order

to find these 1" functions explicitly one can pro-
ceed as follows: According to a well-known theo-
rem by Dixon, ' any well-poised, E, of unit argu-
ment can be summed in terms of I' functions. A
generalization of Dixon's theorem is (Slater, ' p. 52)

x,F,(e a,f —a, s; 5 + s,—c+ s; 1),
Res& 0, Rea& 0 (22)
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with

Q ~ ~ ~

z
b E„(l,n+1, P+1, . ..;y+I, 8+1, . ..;z)

= -1+„E„(1,a, P, . . .; y, b, ... ;g) . (23)

By applying Eqs. (22) and (23) to the, F, of Eq. (20)
(with c= 1), Eq. (21) is readily obtained.

In the first place, we are interested in the be-
havior of fs(k), fs(k, r), fs(k, q), and fs(k, q, r)
as the screening parameter a goes to infinity. Do
these four functions approach their Coulomb ana-
logs, as one might hope in view of Eq. (17)'P The
Coulomb analogs of the'first two functions, fc(k)
and fc(k, r), are given by Eqs. (4) and (7). We
have been able to derive a closed expression for
fc(k, q) which is extremely simple,

fc(&, q) =( q) (24)

Here k is real positive and q is complex with Imq
& 0. One obtains fc(k, q) for real positive k and q
by taking the limit Imq-0+ which yields

'

tq+k '"
fc(k, q)=e~

k
if 0&q&k,

q+k
if 0&k&q.

q —k

In contrast to fc(k, q), fc(k, q, r) is quite compli-
cated. The function fc(k, q, r) can be expressed
by an indefinite integral involving the Whittaker
function 8". We omit this expression since it does
not seem to be very useful.

III. LIMITING RELATIONS

. In this section, we shall consider the limits of
various functions which have been discussed in
Sec. II, for a-, for q-k, for r-~, and for r-0, respectively.

In the first place, we consider the limit of the
functions fs for the Hulthen potential, for a -~
and V, 0 in such a way that their product re-
mains constant, a F,'-2ky [cf. Eq. (17)]. In this
connection we rewrite the Hulthen potential as

2ky e "t' 2ky/ay (r)=
a j. e "/a =ex/a j (25)

The four parameters A, B, C, and 0 are functions
of a. We have, for a

s= e-+f -a —b —c.
For a Saalschutzian, E, we have s= 1. a= s= 1 if
and only if both, E,'s of Eq. (22) are Saalschutzian.
In this case, they can be summed in terms of X'

functions, which is easily seen if one uses the gen-
eral formula

1+A+a - i-a(q -k)+1+iy,
1+B+o - —ia(q+ k) + 1 i-y,

1+C+o = -ia(q+k)+2,
2+o = -ia(q —k)+2.

We use the following property of the I" function:

=s' s[1 0(s ')]

lim(2ak) '"f„(k)=i '"/I"(1+iy) =fc(k),a~ oo

and from Eq. (21),

(2V)

lim f„(k,q) =fc (k, q) . (28)

From Eq. (2V), we see that the usual (on-shell)
Hulthen Jost function has no limit for a-, since
it is proportional to a'" far a- . Remarkably
enough, Eq. (28) shows that the off-skell Hulthen
Jost function does have as its limit the off-shell
Coulomb Jost function.

Further, we consider fs(k, r) for a ~ [see Eq.
(18)]. It is known that"

1im z ',E,(X, b; c; 1 —c/z) = U(X, X —b + 1,e) . (29)

By applying the Euler transformation

,'E, (X, b; c; 0}

=(1 g)-",E,[X,c —b;c;K/(0 —1)], (3o)

we get

lime ~2E,(X, b+c;c;1—z/c)=U(X, X+b+l, z). (31)

From this equality, we derive

lim(-2iak) '",E,(iy, C —1 -iy; C; e "t')

= U(iy, 0, -2ikr) .
Finally, it is known that

U(X, c,z)=z' 'U(X+1 —c, 2-c,s),
and so we obtain from Eq. (31)

(32)

lim(2ak) '"e'"",F,(iy, -iy —2iak 1 —2iak e "~')
a~ 00

= -2ikri '"e'~"U(1+iy, 2, -2ikr), (33)

which is equivalent to

lim(2ak) '"f (k,s)=frc(k, r),
according to Eqs. (4) and (18). So we have proved
that the Hulthen Jost solution, just as the Hulthen
Jost function, has no limit for a-~.

We have seen in Eq. (2V) that the limit for a-~
of the off-skell Hulthen Jost function is equal to

(34)

z -~, arg(z) & v . (26)

Then we obtain from Eq. (19)
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fc(k, q). Therefore, we conjecture that the ana-
logous relation for the off-shell Jost solutions,
namely,

limfH(k, q, r) =fc(k, q, r), q&k,

lim vfc(k, q, r)=fc(k, r).

(40k)

(40l)

limfe(k, q, r) =fc(k, q, r), q&k,

w'ill turn out to be true.
Let us now consider the limit for q- k 'of the off-

shell Jost solutions and functions. In the short-
range case, in particular for the Hulthen potential,
it is known that

limf(k, q) =f(k),

lim f(k, q, r) =f(k, r) .

We found it convenient to arrange these twelve
limiting relations of Eq. (40) schematically, see
Fig. I [note that f„(k), a-~ occurs twice].

So we see that difficulties occur in the two lim-
its a- and q-k. The third limit r 0 is, in
general, well defined. We note in particular that
it may be interchanged with lima- ~ and with
limq k, e.g. ,

1im lim fH(k, q, r) = lim lim fH(k, q, r) =fc(k, q),

In the Coulomb case we have proved that fc(k, q)
is not continuous at q= k. We have from Eq. (24),

and

lim lim f„(k,q, r) = lim limf„(k, q, r) =fs(k) .
e ewy/2

im

Therefore, we conjecture that the following equal-
ity will. turn out to hold for the off-shell Coulomb
Jost solution. ,

q —k" e'"'
lim —

I . fc(k, q, r)= fc(k, r). (37)
e a q+k I' I+fy

We summarize the results obtained so far. For
completeness we also give weB-known relations
and our conjectures. We use the abbreviations,

We can take a fourth limit into our considera-
tions, namely, lime . Of course, the asymp-
totic behavior of the Jost solutions is well known,
because it is part of their definition. We shall-
give one interesting example, which involves the
interchange of limr-~ and lima-~. From Eq.
(40j), we have

n -=(2ak) '"

q
q —k '" e'"~' fc(k)
q+k I'(I+iy) fc(k, q)

'

It is known that

lim f„(k,r) =f„(k),
r 0

lime(k, q, -. ) =f„(k,q),

l i.m fc (k, r) =fc(k),

1imfe(k, q) =f„(k),

lim f„(k,q, r) =f„(k,r) .
@~k

We have proved

limfc(k, q~r}=fc(k~ q} ~

(40a)

(40c)

(40d)

(40e)

(40f)

&„( k)

q —+k

&„( k,q)
Ak

f, ( k, q, r)

II
f„( k, r)

Q

Q ~ao

Q ao

Q =ao

~f (k)

l

1q~k (&

r —+0

( k, q, r)
I

I

Iq~k]e
I

I

lim cgfc(k, q}=fc(k},
@~Q

lim nf z(k) =fc(k),

lim fs(k, q) =fc(k, q), :q W k,

(40g)

(40h.)

(40i)
f„(k)

Q =ao

Iim nf„(k, r) =fc(k, r) .

Our conjectures are

(40j)
FIG. I. Limiting relations fear various functions. A

full arrow indicates that the corresponding limit exists.
For a dashed arrow, the limit does not exist, but a fac-
tor e or cu, respectively, is involved, see text.
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lim(2ak)'"f»(k, r) =fc(k, r),

and from Eq. (3),
lim(2kr)'"e '""fc(k,r) = 1.

lim lim(r/a)'"e '~f „(k,r) = 1. (41)

These two limits cannot be interchanged because

lim lim(r/a)'"e ""f„(k,r)

It follows from these two equations and Eq. (2) that

(q Vc k+)c=. lim . —c.c.q+iq+k '"

iraq c k n o+ q+ir) -k
k&0,

fc(k, q+ iri) fc*-(k, q+i q)
n-o. iraq fc(k)

(4V)
From Eqs. (44)-(47), we derive the following in-
teresting equality:

fc(k) (q Vc k+ )c = lim f„(k)(q V»
~
k + )»

is not defined. Instead we have = limf„(k)(q T»~k). (48)

f (k, q) =f(k, -q) . (43)

For a short-range potential, the half-off-shell
T matrix can be expressed in terms of the off-
shell Jost function, as Fuda and Whiting &ve
shown, see our Eq. (16). .We rewrite this equation
as follows,

Arqf (k) (q ~
T

~
k) =f(k, q) —f (k, q), (44)

where the T operator has energy variable k2.

In virtue of Eq. (40.9) we have for q 4k

lim lime '~"f»(k, r) = 1.
g~ 00 g~ 00

The.off-shell Jost function has an analytic con-
tinuation into the complex q plane. From our
closed form, Eq. (24), we have for the Coulomb
off-shell Jost function, for real positive jh and

complex q,

fg(k, q~) =fc(k, -q) .
This is a generalization of Fuda's relation for
real q, see Eq. (15).

One should compare Eq. (42) with similar equa-
tions for the ordinary Jost function, see Eqs.
(12.30) and (12.32a) of Newton. ' It appears natural
to define a "minus" Jost function f by

e r/a
V»(r) 2 (1 /o)2 (49)

This is a member of the Eckart" class. Obviously
we have

limV»(r) = 2/r'
g~ OO

(50)

The l = 0 Jost solution for V»(r) is well known, '

2

(1 —2iakHe'/' —1) ) ' (51)

IV. MOMFIED ECKART POTENTIALS
AND LIMITING RELATIONS

It is very likely that all troubles with nonexistent
limits we have encounter'ed in Sec. III merely arise
from the Coulomb tail. In order to investigate
this point, one may study a screened r type po-
tential with e&1. %'e feel that all limits of our
scheme will be valid if Vc is replaced by a (non-
singular) potential of the form

VN(r)=O(r ~), n&1, r-
and V~ by an exponentially screened V potential.
A convenient candidate for such a potential is

so

lim f„(k,q) =fc(k, q), However, we have an annoying complication which
should be avoided in this investigation. Since
V»(r) is singular at the origin,

lim fz~(k, q) =fg (k, q) . (45)

Therefore, the limit for a- ~ of f»(k)(q
~
T»

~
k)

exists for q +k. This implies that (q ~ T»~k) has no
limit for u . Now, . i.t is well known that the fol-
low ing equality holds,

&qlT»»=&q[V»lk+&»/ (46)

where jk+)„ is the. (outgoing) Hulthen l=0 scatter-
ing state. The Coulomb analog of Eq. (46) is not
valid, since the Coulomb half-shell T matrix is
not defined. However, (q t Vc k+)c is a well-de-
fined quantity, for which we have been p,ble to find
the followi. ng closed form

V»(r) = 2/r', r- 0,
the usual definition of the Jost function is mean-
ingless. This problem may be disposed of in
either of two ways,

'

by not considering Vz but one
of the potentials V~~ ', V~ ' defined below.

In the first approach we define

V» ~(r) = V»(r) —2/r'. (52)

Then the (l=0) Jost solution f»(k, r) is just the l=1
Jost solution for Vz"'. f»(k, r) =fz"~,(k, r), since the
term 2/r equals the centrifugal-barrier term for
$= 1. So we can find the /= 1 Jost function simply
by applying Eq. (6),
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fs'', (k) =lim i—krfs(k, r) = (53)

Remarkably enough, for this nonsingular potential
V~, we did not succeed in finding the L= 0 Jost
solution, but the l=1 Jost solution (and l= 1 Jost
function).

In the second approach, we define

V,"'(r) -=V,(r+ d) =—. .. (54)
2 exp [-(x+d)/a]

1 —exp[-(r+d) a] ' '

with d& 0. Obviously, fs(k, r+ d) is a solution of the
l= 0 radial Schrodinger equation. Therefore, the
Jost solution for V~ ' is

. fs''(k, x) = e"'~fs(k, x+d)

2(1-2iak) '
exp[(r+d)/a] —1) '

~

~

The l'= 0 Jost function for V~" is then given by

(55)

fs '(k) =fs '(k, 0) = 1+
exp(d/a) —1

'

Now we consider the limits of the above quanti-
ties for a-. We have

(56)

limV"&=0,
g~ OO

»mV,"&= 2(r+ d)
g~ 00

lim fs"',(k, r) = ikrk,"(kr) = e'~[1 —(ikr) '],
g~ 40

1imfs" ', (k) = 1,
g~ OO

lim fs"'(k, r) = e'~"(1 —[ik(r + d) ] '],

lim fs' '(k) = 1 —(ikd) ' .

(57)

(58)

(59)

It follows from these expressions that the limits
of f"' and f"' do indeed correspond to the limits
of V~

' and V~ ', respectively.
Fuda has obtained an expressiori for the off-shell

Jost function for a short-range potential [Ref. 6,
Eq. (25)]. In the notation of Ref. 20, it reads

f,(k, q) = 1+avq(q/k)', (qli
~
V,

~
kl+)f,(k), (60)

where

,(q/ t ~)-=(2/v)' 'i 'k"(qr)

We find from Eq. (60) that the off-shell J'ost func-
tions f~ ' and fs' ' are continuous at q = k. More-
over, the limits a- and q k may be inter-
changed. We conjecture that the same holds for
the off-shell Jost solutions. If this is true, a
diagram can be given similar to Fig. 1 w'here now,
however, all of the limits are valid.

So we have indeed succeeded in proving (except
for the off-shell Jost solutions) that, for the above

screened r '-type potentials, the screening can be
turned off without any discontinuity problem, in
contrast to the situation for the (Hulthen) screened
r ' potential.

V. SUMMARY AND DISCUSSION

We have studied in Sec. II the off-shell Jost solu-
tion and function for the Coulomb potential for
arbitrary values of L. For /= 0, we have obtained
a very simple closed expression for' the off-shell
Coulomb Jost function fc(k, q), see Eq. (24).

The Hulthen potential goes over into the Coulomb
potential when the screening parameter a goes to
infinity. In Sec. III we have investigated whether
or not the limits for a- of the Hulthen Jost
functions and solutions are equal to the Coulomb
Jost functions and solutions, respectively. The
limits of the ordinary (on-shell) Jost function and
solution do not exist. We have proved that in both
cases the singularity is due to the factor a'".
Further, we have proved that for the Coulomb case
the off-shell Jost function is not continuous atq = k.
Here, the singularity is given by the factor
(q —k) '". We also have derived some relations
for the limits r- and r-0. The main results
have been summarized in Eqs. (40)-(41) and in
Fig; 1. In the final part of Sec. III we have given
an interesting limiting relation, for a-~, of the
half-shell Hulthen T matrix, see Eq. (48).

The different kinds of singularities which we
have found in Sec. III should be attributed to the
long range of the Coulomb potential. In earlier
studies of the Coulomb T matrix we have seen
singularities of a similar type. '"" It is very like-
ly that, with a screened r"o potential with a&1,
no singularity will turn out to exist. With the aim
of giving gn illustrative and interesting example,
we have studied in Sec. IV a potential of the
Eckart" class, which may be considered as a
screened r ' potential. Its Jost solution is well
known and has a simple form. However, this
Eckart potential is singular at the origin, V(r)
= 2r ', r- 0, which makes the usual def inition of
the Jost function meaningless.

One way of avoiding this complication consists
in subtra, ction of the singular term, w'hich can in
this particular case be interpreted as a centrif-
ugal-barrier term for /= 1.

A second method is generally useful for an ar-
bitrary potential. The central idea here is that
the Jost solution for a shifted potential function
follows in an easy way from the ordinary Jost
solution. To be specific, let f(k, r) be the l=0
Jost solution for any potential V(r). Then
e '~f(k, x+ d) is the Jost solution for the shifted
potential V(r+ d) (where d is some real param-
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eter). This follows easily from the defining dif-
ferential equation. By the same reasoning,
e "ef(k, q, r+d) is the off-shell Jost solution for
the shifted potential V(r+ d). Obviously, the above
statements hold only for the I= 0 case.

By applying this method to any potential V(r)
which is (too) singular at r= 0, we obtain a poten-
tial which is regular at x= 0, if we choose d to be
positive. Therefore, it has a Jost solution which
is sufficiently regular at r = 0 that the correspond-
ing Zost function is well defined [namely, by the
limit of f(k, r) for r 0].

For the two modified Eckart potentials, obtained
in the above-described way, we have made an in-

vestigation similar to the one of Sec; .III. We have
shown that the limits for c of the Jost functions
corresponding to the screened potentials exist and
do indeed correspond to the Dost functions of the
unscreened potentials.
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