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Compton profiles of Ne, Ar, and Kr are calculated from ground-state energies and wave functions with full
correlation contributions included. The latter is carried out by regarding atoms as inhomogeneous interacting
electron-gas systems using the Kohn-Sham self-consistent scheme in the local-density approximation. The
calculated values are brought closer to the experimental values from Hartree-Fock results. There are
numerical problems for large atoms.

I. INTRODUCTION

Improved techniques in Compton scattering mea-
surements have induced numerous experimental
and theoretical investigations of electron momen-
tum distributions. ' Tables of calculated Compton
profiles of atoms based on the available Hartree-
Fock wave functions"' have been published, and de-
posited. ' ' Compton profile measurements can be
useful as a probe into many-body interactions in
an electron liquid, as well as for Fermi surfaces
in the case of metals. ' ' It is therefore of great
interest to calculate the effect of correlations on
Compton profiles. Lam and Platzman' (LP) for
mulated a general approach to determine the mo-.
mentum density and Compton profile of an inhomo-
geneous interacting electron system. Their meth-
od is based on a combination of Feynman's the-
prem i and the Hphenberg-Kphn fprmulatjonz p

inhomogeneous electron gas. In their original
paper, 'o several approximate practical calcul, a-
tion methods have been suggested. One of these,
the locally averaged method, has been applied to
rare-gas atoms" and to alkali metals. "" The other
more systematic way, also suggested by LP, in in-
corporating correlation effects in inhomogeneous gas
systems makes use of the Kohn-Sham self-consistent
scheme. " This is the method used here to study
rare- gas atoms. The local-density approximation
is made. The local-density approximation is ex-
pected to be good for slowly varying density sys-
tems like those for metals. Previous experience
indicates that, even for atoms, it has been fairly
successful. " In Sec. II we shall summarize the
LP method. The reader is referred to the original
papers' "'"for the detailed derivation and care-
ful reasoning involved.

For closed-shell atoms, correlation effects are
relatively small. Since accurate experimental re-
sults and several thepretjeal estimates

II. METHOD

In x-ray or p -ray scattering experiments from
an electron gas, when both the energy agd mo-
mentum transf ers are large, the electrons are scat-
tered into the continuum. The impulse approxima-
tion is applicable. 2' In this approximation the
differential cross section is found to be linearly
proportional to J(q), where

(2.1)

and the momentum density N" is defined by

N;= (4~at a;~4) . (2.2)

~ 4, ) is the exact ground-state wave function of
the electronic system and a; and a~ are the an-
nihilation and creation operators ot the free-elec-
tron state ~p) =e'''. To calculate the Compton
profile J (q), we must first calculate the exact
ground state ~4o) of the interacting electron sys-
tem. This is carried out by using the Kohn-Sham
self-consistent scheme based on the Hohenberg-
Kohn theorems. If we define the energy functional
E(n) as (we usp units of 5=ca=m=l)

E (rr) =f r (r) rr (r) d r

n(r) n(r'),
) )2 l(r —7) i

(2.3)

for the system of inhomogeneous nonrelativistic
interacting electrons under the influence of an ex-
ternal potential V (r) and the mutual Coulomb re-

available, rare-gas atoms are studied here for
comparison. Our results are closer to the best-
measured values, but numerical uncertainties are
present in larger atoms, the radial wave functions
of which have long tails. These will be presented
and discussed in Sec. III.

1978 The American Physical Society



CONPTO5 PROFILES OF Ne, Ar, AND Kr

pulsion, G [n] is shown by using the first Hohen-
berg-Kohn theorem to be a universal unique func-
tional of the true ground-state density. " By
writing G[nj as

(2.4)

[-, V'+ V,«(r}]4, (r) =E, 4', (r),
where

(2.5)

V„,(r) = V(r—)+ . -, dr'+ V„,(r') (2.6)
n(r)

G [n]= T,[n]+E„[nj,
where T, [n] is the kinetic energy of a noninteract-
ing electron gas of density n(r}, and E„[nj is, by
definition, the exchange and correlation energy
functional of an interacting electron gas with den-
sity n(r). Kohn and Sham" used the stationary
nature of E[n) (second Hohenberg-Kohn theorem)
to obtain a self-consistent set ojf one-electron
equations:

T»= P c»(P)a» a„, (2.1s)

where

E»(p) = f»+ X 6»» and C»= 2 J)l

Equation (2..12) then becomes

(2.14)

BT BE„,[n]

(2.15)

E„,[n] is the defined exchange and correlation en-
ergy functional of an interacting electron gas. Its
exact form is not known. Previous experiences in-
dicate that the local approximation is good in solv-
ing ground-state problems of metals and fairly
good even in atomic problems. '""'" In this ap-
proximation,

V„,(r) =- 6E„,[n]/Bn(r), (2.V)

z„.[n] = fc„.(g]r))m)r) dr, (2.16)

BE»(A.} ~~ ( )
BH(X}

( )~~
B~

= (~' ~ B~ ~'
&

(2.10)

giving [from Eq. (2.2)],

(2.11)

The modification in H(X) only affects the ground
state energy E through the explicit dependence of
G,[n] in A. [Eq. (2.S)] and the contribution from
the dependence in n(r) can be neglected because of
the stationary properties of E with respect to
n(r) (see the detailed arguments given in Lp'0).
Consequently,

BG»[n]']

(2.12)

The kinetic energy operator T~ of noninteracting
electrons can be written in terms of creation and
annihilation operators for plane waves

n(r) =g I
q' (r) t'. (2.8)

This system of equations is formally exact.
To find a connection bebveen the above and the

momentum density ¹,LP'o considered a modified
Hamiltonian of the form

H(X)=H+ Rat a;, (2.9)

where II is the true Hamiltonian of the interacting
electron system, and X, a parameter. Feynman's
theorem states

~~c = &wc = &a+ &g y

where

i»„= (snl~-)"'

~ (2.17)

(2.18)

and p,, is obtained from interpolating between the
low-density formula of Wigner and the high-density
result of Gell-Mann and Brueckner. " For explicit
values of p.„see Fig. 1 of Ref. 18.

The second term of Eq. (2.15) becomes

6E„,[n] 6&„, p}~
6~~ 5~~

N&n r -N& nr nr r, 219

whe're N» (n) is the free-electron Fermi distribu-
tion, and N»0(n} is the momentum density of an uniform
electron liquid with local density n(r). Explicit
values of N& have been calculated by Daniel and
Vosko" "(DV) and by Lundqvist. "'"At high metallic
densities the deviations between the two are small.
At lower densities the deviations become signifi-
cant, and the former method breaks down. "'"
The Lundqyist calculation emphasizes the coupling
of electrons to plasmons. We used the Lundqvist
values (Table I) in the following calculation.

Here we have a slight inconsistency in calculat-

where e „,(n) is the exchange and correlation energy
per electron of an interacting electron gas at uni-
form density n equal to the local density n(r) of the
given system at r. Then V„, of Eq. (2.7) has the ex-
plicit form
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TABLE I.
31).

k Xs

0
0.20
0.4
0.6
0.8
0.9
0.96
1-
1+
1.04
1.1
1.2
1.4
1.6
1.8
2.0
2.2
2.4

r —2 S$3 x =5

0,98
0.98
0.97
0.97
0.94
0.92
0.90
0.87
0.10
0.06
0.04
0.02
0.01
0.003
0.001
0.0006
0.0003
0,0001

0.96
0.96
0.95
0.94
0.92
0.88
0.85
0.82
0.12
0.09
0.06
0.03
0.01
0.005
0.002
0.001
0.0006
0.0003

0.94
0.94
0.94
0.92
0.88
0.85
0.82
0.78
0.14
0.11
0.07
0.04
0.02
0.007
0.003
0.002
0.0009
0.0004

0.93
0.93
0.92
0.90
0.86
0.83
0.80
0.75
0.15
0.11
0.08
0.05
0.02
0.009
0.005
0.002
0.001
0.0006

Momentum distribution by Lundqvist (Ref. ing correlation effects. I undqvist's values are
used in Eq. (2.19) to give us the correction term
[second term of Eq. (2.15)]. The Fourier trans-
forms [first term in Eq. (2.15)] of the Kohn-Sham
one-electron wave functions are obtained from us.-
ing the interpolated form p,„, in Eq. (2.17). This is
one source of error in our present calculation, as
will be seen in the results. In the low-density tail
r|:gions of large atoms, the second term in Eq.
(2.15) over corrects. It is especially noticeable
at small q.

Now we have one complete calculation scheme.
Adding (2.17) and (2.18) to Eqs. (2.5)-(2.8), we
have an explicit self-consistent set of equations
from which we obtain the one-electron wave func-
tions. The Fourier transform of these gives the
first term of Eq. (2.15). The second term is ob-
tained from evaluating Eq. (2.19). From N~, we

then can calculate J(P,) using Eq. (2.1). In prac-
tice, it is found more advantageous to evaluate
JQ, ) di'rectly without passing through the N& eval-

TABLE II. Compton profile J(q) of atomic Ne.

CI"
Present work

J (i) + J (2) J(q) JHF (1s) JE Jexpt

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.2
1
1.6
1.8
2.0
2.5
3.0
3.5
4.0
5.0
6,0
7.0
8.0
9.0

10.0
15.0
20.0
25.0
30.0

2,725 67
2.717 97
2.694 31
2.653 23
1.593 22
2.513 52
2.414 80

2.170 45

1.890 10
1.606 97
1.345 36
1.11764
0.926 91
0.7-70 92
0.501 43
0.345 82
0.252 82
0.19373
0.124 50
0.085 11
0.059 72
0.042 42
0.030 36
0.021 88
0.004 79

2.72446
2.71671
2.692 86
2.651 48
2.59104
2.51083
2.41154
2.295 46
2.166 13
2.027 87
1.885 13
1.602 00
1.34102
1.11435
0.924 87
0.770 12
0.502 93
0.348 20
0.255 11
0.19555

.0.125 40
0.085 52
0.059 92
0.042 54
0.030 45
0.021 95
0.004 81

0.000 43 0.000 43

2.789
2.782
2.755
2;709
2.641
2.550
2.438
2.309
2.168
2.020
1.869
1.577
1.316
1.092
0.906
0.755
0.498
0.346
0.257
0.195
0.126
0.086
0.060
0.042
0.030
0.022
0.005
0.001
0.000

-0.050
-0.042
-0.031
-0.022
-0.012
—0.010
-0.005
-0.004
-0.003
-0.002
-0.002

0.000
0.003
0.002
0.003
0.004
0.004
0.003
0.003
0.002
0.001
0.001
0.000
0.000
0
0
0
0
0
0

2.739
2.740
2.723
2.687
2.629
2.540
2.433
2.305
2.162
2.018
1.867
1.577
1.319
1.094
0.909
0.759
0.502
0.349
0.260
0.197
0.127
0.087
0.060
0.042
0.030
0.022
0.005
0.001
0.000
0

0.0899
0.0899
0.0898
0.0897
0.0894
0.0892
0.0888
0.0884
0.0879
0.0874
0.0868
0.0855
0.0840
0.0823
0.0804
0.0784
0.0729
0.0668
0.0605
0.0542
0.0424

2.582
2.574
2.558
2.519
2.451
2.359
2.249
2.124
1.986
1.839
1.685
1.394
1.140
0.921
0.749
0.608
0.355
0,225
0.156
0.102
0.041

2.762
2.754
2.738
2.698
2.630
2.537
2.427
2.301
2.162
2.014
1.859
1.565
1.308
1.086
0.910
0.765
0.501
0.359
0.277
0.210
0.126

~Ca1culated from Clementi functions by Smith and Brown (Ref. 23).
Second-order configuration-interaction calculation by Smith and Brown (Ref. 23).
Calculated from Clementi 1s wave functions by Weiss et al. (Ref. 4).

"Measurement by Eisenberger (Hef. 20) with the 1s core contribution subtracted out.
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uation. In the correction term it is mare accurate
to do the p integrations before the r integrations.

For closed-shell atoms, Eq. (2.15) combined
with Eq. (2.1) can be explicitly written

with

&(r)=+ (r)f [)),(r)-)r, ( ) )(k'-h')'~'

g(p ) Pl)(p )+J(2)(p )

Here

(2.20) x(f [(y y )el ~] (2.24)

K„,()t)=J P„,(r))ggr)rdr, (2.22)

where P„,(r) is the radial wave function obtained
from the self-consistent solution of Eqs. (2.5)-
(2.8): 4, -=[P„,(r)/r]Y", (8, (p). And the correction
term

J"'(P,) = fdrl(r)n(r), (2.23)

J"'(p,) =4 g (2f+1) ~Z„,(p) ~'(p' p, )
ns l 0

xd[(p'-p,')'~'], (2.21)

III.. RESULTS

Calculated Compton profiles of Ne, Ar, and Kr
are presented below. To help us to understand
and appraise the results, we should keep the lim-
itations of the method in mind,

The local-density approximation is supposedly
better in ground-state properties for larger atoms.
However, radial electron wave functions of larger
atoms have longer tai1,s. Local approximation is
poor in the tail regions. Correlation expressions
used are strictly valid only in high and medium
electron densities (r, ~ 5, where zwr,'=1ln) reg-.

ions. Extrapolations to larger r, become uncer-
tain, N~ values in Table I are given only to two

TABLE III. Compton profile of atomic Ar.

Expt. (1) Expt. (2)"
Present work

g &1) + g (2) g(q)

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0-
1.2
1.4
1.6
1.8
2.0
2.5
3.0
3.5
4.0
5.0
6.0
7.0
8.0
9.0

10.0
15.0
20.0
25.0
30.0

5.058
5.022
4.917
4.749
4.526
4.259
3,960
3.643
3.319
3.000
2.697
2.164
1.753
1.461
1.264
1.129
0.924
0.744
0.634
0.534
0.366
0.260
0.181
0.137
0.104
0.078
0.025

5.118
5.082
4.976
4.806
4.581
4.310
4.007
3.686
3.357
3.034
2.7. 26
2.184
1.765
1.467
1.266
1.128
0.899
0.737
0.626
0.525
0.357
0.252
0.174
0.131
0.099
0.074
0.023

5.052
5.028
4.950
4.812
4.608
4.369
4.028
3.690
3.328
2.982
2.658
2.108
1.701
1.417
1.221
1.084
0.873
0.736
0.621
0.520
0.351
0.249
0.177
0.130
0.098
0.075
0.025

5.378
5.299
5.044
4.727
4.405
4.090
3.787
3.499
3.226
2.970
2.729
2.295
1.920
1.601
1.336
1.122
0.812
0.685
0.591
0.512
0.379
0.274
0.192
0.131
0.089
0.064
0.026

5.167
5.133
5.026
4.851
4.637
4.359
4.030
3.673
3.312
2.962
2.639
2,101
1.707
1.426
1.229
1.091
0.878
0.736
0.621
0.518
0.358
0.249
0.178
0,131
0.098
0.076
0.025
0.010
0.004
0.002

-0.097
-0.084
-0.058
-0.039
-0.027
-0.017
-0.008
-0.005
-0.001
-0.001
-0.000

0.006
0.007
0.011
0.010
0.011
0.008
0.004
0.002
0.001
0.001
0.001
0.001
0.001
0.000
0.000
0.000
0.000
0.000
0.000

5.060 +0.020
5.049 +0.020
4.968 ~ 0.020
4.812+0,020
4.610~ 0.005
4.342+ 0.005
4.022 + 0.005
3.668+0.005
3.311+0.005
2.961+0.005
2.639k 0.005
2.107+0,005
1.714
1.437
1.239
1.102
0.886
0.740
0.623
0.519
0.359
0.250
0.179
0.132
0,098
0.076
0.025
0.010
0.004
0.002

~Reference 13.
"Reference 21. Revised values after relativistic effects have been corrected.
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significant figures. J(q), as q-0, is especially
sensitive to wave functions at large r. Tail reg-
ions having densities as low as to give r, & 10,
still contribute significantly to J(q) for smal q.
Other numerical difficulties will be dist;ussed
below as we encounter them.

A. Ne

Column 2 of Table II lists the Fourier-transf. orm
results of the Clementi Hartree-Fock wave func-.

tions as calculated by Smith and Brown. " Other
similar calculations on Hartree-Fock wave func-
tions also give the same values at least to the first
three figures. Full second- order configuration-
interaction correlated functions of Viers, Harris,
and Schaeffer" have been used by Smith and

. Brown" to calculate the third-column numbers.
They also evaluated L-shell correlation using Ahl-
rich-Hinze multiconfiguration Hartree-Fock wave
functions and obtained slightly larger Z(q) for
small q, namely, J(0) =2.73713, J'(0.5) =2.51868.
Our results are presented in the next three col-

umns, the first of which gives the first term J"'(q)
of Etl. (2.20), followed by the correction term
J '~(q). The full J(q) is the sum of P'~ and J"~.
The last column of Table II gives the experimental
values obtained by Pisenberger" with the?s core
contribution' (Hartree-Fock) added to them.

By comparing the various columns, we see that
the configuration-interaction results do not differ
f rom. the Hartree-Fock values significantly. Our
fully correlated values as a whole are slightly
closer to the experimental values. As expected,
correlation effects are not large.

It is interesting to compare our J"'(q) with the
reported values of J(q) by Sabin and Trickey" us-
ing Hedin and Lundqvist' correlation energy in-
stead of our g,. Their J(q) values [J'(0) = 2.7833,
J(.5) = 2.5467, Z(1.0) = 1.8730, J'(2.0) =0.7572] are
quite close to J"'(q) in Table IL Though it was
claimed to be a local-density functional calculation,
the second term J'"(q) which. should appear in the
theory has not been included in their work.

In Ne atom, the electron-density tail is short.

TABLE IV. Compton profile of atomic Kr.

Expt. (2)"
Present work

J(q)

0.0
0,1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.2
1.4
1.6
1.8
2.0
2.5
3.0
3.5
4.0
5.0
6.0
7.0
8.0
9.Q

10.0
15.0
20.0
25.0
30.0

7.025
7.152
7.022
6.767
6.459
6.098
5.701
5.289
4.880
4.491
4.133
3.540
3.122
2.850
2.670
2.533
2.219
1.898
1.597
1.338
0.937
0.683
0.522
0.399
0.316
0.254
0.095
0.044
0.022
0.009

7.312
7.260
7.109
6.871
6.559
6.191
5.787
5.367
4.950
'4.552
4.185
3.577
3.146
2.863
2.676
2.535
2.213
1.886
1.582
1.271
0.916
0.673
0.503
0.382
0.301
0.240
0.091

7.228
7.194
7.085
6.888
6.595
6.216
5.776
5.309
4.848
4.420
4.039
3.441
3.037
2.769
2.583
2.441
2.144
1.857
1.578
1.326
0.934
0.678
Q.512
0.400
0.319
0.259
0.104
0.049
0.026
0.015

7.244
7.182
7.013
6.735
6.360
5.968
5.590
5.230
4.891
4.574
4.277
3.747
3.299
2.927
2.629
2.399
2 024
1.764
1,551
1.343
1.008
0.741
0.534
0.384
0.294
0.243
0.111
O.047
0.023
0.014

7.25 +0.08
7.24 ~0.08
7.16 +0.08
6.97 +0.08
6.68 +0.08
6.28 +0.05
5.82 ~0.05
5.34 +0.05
4.87 +0.02
4.42 +0.02
3.96 +0.02
3.411
3.047
2.804
2.628
2.487
2.179
1.850
1.561
1.309
0.925
0.677
0.516
0.405
0.324
0.263
0.101
0.050
0.026
0.016

~Reference 13.
"Reference 21. Revised values after relativistic effects have been corrected.
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The difficulties we mentioned above do not signif-
icantly affect the values. Our estimate of various
errors, including other numerical problems is
about+0. 005 for q =0 and less for larger q. The
over correction of P'i(q) for small q can be seen
by corhparing Z(0) and J(0.1) values (column f).
The calculated Z(0) should have a value larger than
2. '739.

8. Ar

The second" and third columns" of Table III give
the experimental-values of Compton profiles. The
third column gives the revised values after rela-
tivistic effects have'been corrected. The column
labeled I AM lists the results obtained by the lo-
cally averaged method. " Our present calculation
is expected to be better than I AM.

In Ar, the tail effect starts to show. With var.-
ious values for the cutoff of the tail, this error can
be estimated. In the calculation of the Kohn-Sham
one-particle equation, [Eq. (2.5)], Herman-Skill-
man" mesh has been used. The mesh has a basic
periodicity in it. Fourier transform of the wave
functions gives fictitious oscillations at high q.
Troubles in the Fourier transforms for small and
large arguments have not been properly eliminated.
Such and other numerical difficulties which most
significantly affect J(q) for small q, do not occur
in Ne-atom analysis. They start to appear in the
Ar calculation, and become serious in Kr. When
oscillations occur at high q(&70Pz), the tail is cut
off, and Z(q) is renormalized" to the atomic num-
ber Z. For Ar, the integral of Z(q) before normal-
ization is 17.96. The error limits given i.n the
table include both the intrinsic tail problem and

various numerical difficulties. Again, the values
of Z(q) for small q should be larger than those
listed in the table because of the over correction
of J"'.

C. Kr

The Kr results are listed in Table IV. The col-
umns are similar to those in Table III. Here, our
results become less reliable. Estimated errors
are shown in the table.

IV. CONCLUSION

As expected, correlation effects in rare-gas at-
oms are small. Our results do consistently agree
with the measured values. Correlation contribu-
tions to Kohn-Sham self-consistent calculation
should be consistent to that used in the second
term of Eq. (2.20). For large atoms, Z(q) at small
q, are troubled by the presence of long low-density
tails. Such difficulties are not present in metals.

This second method proposed by I P is consis-
tently better than the local average method in in-
cluding correlation effects. It is fairly successful
when applied to rare-gas at@ms. Most of the nu-
merical difficulties associated with the low-den-.
sity-tail regions of large atoms should not appear
in metals.

ACKNOWLEDGMENTS

We wish to thank Dr. B. I. I undqvist for values
of N& in 'Table I, and Dr. M. M. Pant for checking
the Fourier-transform values using another meth-
od. This work was supported in part by the Nat-
ional Research Council of Canada

Corn/ton Scattering, edited by Brian Williams, {Mc-
Graw-Hill, New York, 1977).
E. Clementi, IBM J.Res. Dev. Suppl. 9, 1 (1965).
C. Froese Fischer, The &artree-Fock Method for Atoms,
(Wiley, New York, 1977).

R. J. Weiss, A. Harvey, and W. C. Phillips, Philos.
Mag. 17, 241 (1968).

~F. Biggs, L. B.Mendelsohn, and J. B.Mann, At. Data
Nucl. Data Tables ~16 201 (1975).

R. Benesch, "Compton Profiles From Numerical Har-
tree-Pock Wave Functions, Depository of Unpublished
Data, CISTI, Canada, K1A OS2.

~L. Lam, lecture notes {base/ on a lecture given on
January 16, 1976) (unpublished).
L. Lam, Phys. Lett. A 45, 409 {1973).

SL. B. Mendelsohn and B.J. Bloch, Phys. Rev. A 12,
551, (1975).
L. Lam and P. M. Platzman, Phys. Rev. P 9, 5122
(1974).
R. P. Feynman, Phys, Rev. ~56 340 (1939).

~ P. Hohenberg and W. Kohn, Phys. Rev. 136, B864

(1964).
3L. Lam and P. M. Platzman, Phys. Rev. 9, 5128,
{1974).

~4P. Eisenberger, L. Lam, P. M. Platzman, and
P. Schmidt, Phys. Rev. B 6, 3671, (1972).

~SL. Lam, Ph. D. thesis (Columbia University, 1973)
(unpublished).
K. C. Pandey and L. Lam, Phys. Lett. A 43, 319 (1973).

~~%. Kohn and L. J. Sham, Phys. Rev. 140, A1133 {1965).
~ B.Y. Tong and L. J. Sham, Phys. Rev. 144, 1 (1966).
~9P. Eisenberger, W. H. Henneker, and P. E. Cade, J.

Chem. Phys. ~56 1207 (1972).
P. Eisenberger, Phys. Rev. A 2 1678 (1970); 5, 628
(1972).

2~P. Eisenberger and W. A. Reed, Phys. Rev. A 5, 2085
(1972); Phys. Rev. B 9, 3237 (1974).
M. Neon and. M. Corrille, J. Phys. B 4, 1210 (1971).
V. H. Smith Jr. and B. E. Brown, Chem. Phys. Lett.
20 424 (1973).

24L. Mendelsohn and V. H. Smith, Jr. , in Ref. 1.
SP. M. Pla.tzman and N. Tzoar. , Phys. Rev. 139, 410



B. Y. TONG AND L. LAN 18

{1965)) Chap. 2 of Ref, 1.
2~B. Y. Tong, in Computational Methods in Band Theo& y,

edited by P. M. Marcus, J. F. J~n~k, and A. R. Wil-
liams P'lenum, New Yox'k, 1971).

2~B. Y. Tong, Phys. Bev. B 6, 1189 (1972).
See discussions in D. Pines, Elementary Excitations
in Solids (Benjamin, New York 1963).

9E. Daniel and S. H. Vosko, Phys. Bev. 120, 2041 {1960).
@D.J.%. Geldax't, A. Houghton, and S. H. Vosko, Can.
J. Phys. 42. 1938 {1964).
B. I. Lundqvist, phys. Kondens. Mater. 7, 117 (1968).

32L. Hedin and S. Lundqvist, Solid State Phys. 23, 1,
0.969).

33B. I. Lundqyist and E. Lynden, Phys. Bev. B 4, 3360
(1971).

34W. Viers, F. E. Harris, and J. F. Schaeffer III, Phys.
Hev. A 1, 24 (1970).

35J. R. Sabin and S. B.Trickey, J. phys. B 8, 2593
(1975.

~ L. Hedin and B, I. Lundqvist, J. phys. C 1, 3655 (1974).
3~F. Herman and S. Skillman, Atomic Structure Calcula-

tions (Prentice-Hall, Englewood Cliffs, N.J., 1963).


