NeI-like resonance lines and NaI-like satellites in argon and chlorine

H. G. Berry,* J. Desesquelles,[†] K. T. Cheng, and R. M. Schectman[‡] Argonne National Laboratory, Argonne, Illinois 60439 (Received 23 March 1978)

Using the beam-foil technique, we have measured the decay times of the resonance lines $2p^{6}$ ¹S- $2p^{5}3s^{1.3}P$ of Ne₁-like Clvm and Arix. We compare our results with theoretical values of the absorption oscillator strengths of these transitions and those of lighter ions of the isoelectronic sequence. We have partially resolved the Na₁-like satellite spectra and suggest some identifications based on relativistic Hartree-Fock calculations. Some new observations of transitions between n = 3 and n = 4 levels of the Ne₁-like ions are reported.

I. INTRODUCTION

In an extension of our previous work on the beamfoil spectra of argon and chlorine in the extreme vacuum ultraviolet,¹ we have studied the resonance lines of the Ne I-like ions which occur near 48 and 58 Å, respectively. These resonance lines are prominent transitions in both laser-induced plasmas² and other high-temperature plasmas.³ Thus, they may become useful for diagnostic purposes, for which knowledge of their oscillator strengths is needed. In addition, some of the low levels of the Ne I-like ions (such as ClVIII and ArIX) may become feasible for use in x-ray lasers.

Other lifetime measurements in this system have been restricted to work on Ne I (Ref.4) except for some recent work⁵ on chlorine and sulfur. However, a number of recent calculations of the oscillator strengths can be compared with our experimental values and we also include a new relativistic multiconfiguration Hartree-Fock (MCHF) calculation.

Some strong satellite lines are observed at wavelengths about 10 Å above the resonance lines which we attribute to L x-ray transitions (mainly 2p-3s) in the NaI-like ions of argon and chlorine. We present the partially resolved spectra with tentative classifications of the individual fine-structure transitions. These identifications contradict the suggestion of Zherikhin *et al.*⁶ that they observed such transitions in a laser-induced plasma. The transitions observed by Zherikhin *et al.*⁶ have been identified as transitions from sodium impurities.⁷

Through comparison with the calculations of Crance⁸ we have been able to tentatively identify some in-shell n=3 transitions and some transitions between n=3 and 4 levels in the Ne I-like ions of ArIX and Cl VIII.

II. EXPERIMENT

The experimental arrangement has been described previously.¹ Good spatial resolution of about 60 μ m along the beam axis is achieved by positioning an auxiliary entrance slit (width 50 μ m) of a McPherson 2.2-m grazing incidence monochromator within a few mm of the beam. In this experiment we attempted to improve the light yield and spatial resolution near the foil by tilting the foil axis approximately 1° to the beam axis to take account of the tilt of the viewing axis (which is 1° away from the perpendicular). Some improvement in light yield was achieved since we can then observe closer to the foil surface, but the spatial resolution was unchanged, remaining approximately 60 μ m. This corresponds to a time of about 20 ps at our beam energies.

III. RESULTS

A Mean lives

The resonance lines $2p^{6}$ ¹S- $2p^{5}3s$ ^{1,3}P were well resolved in both ClVIII and Ar IX and the meanlife measurements are given in Table I where they are compared with theory, and another measurement in the case of chlorine. The numbers quoted are obtained from nonlinear least-squares fits of the data to two exponentials and a constant background with the error limits representing the scatter of the data. Fewer measurements were made in chlorine and consequently the error limits are somewhat larger.

In the experiment of Curnutte *et al.*,⁵ the decays from ¹*P* and ³*P* were unresolved. Hence the longerlived decay from ³*P* (for which they quote large error bars) might be mixed with cascading into the ¹*P* level. However, their results agree well with ours.

The results are also compared with the calculations of Kastner *et al.*⁹ who used a single-configuration Hartree-Fock technique and with Crance's⁸ parametric potential method. In Fig. 1 we show that the experimental absorption oscillator strengths are more in agreement with the work of Kastner *et al.* than with the results of Crance.

18

546

$2p^{61}S-2p^{5}3s^{1}P$	$\tau_{\rm b}~({\rm ps})$	$A_{ki}(10^8 \mathrm{s^{-1}})$ Cl VIII (58.67 Å)	fin	$\tau_{\rm b}$ (ps)	$A_{ki}(10^8 \mathrm{s}^{-1})$ Ar ix (48.73 Å)	fin
	R		5 IR	R (P=)		J 1R
Crance ^a (parametric potential)	12.7	789	0.122	9.7	1030	0.111
Kastner <i>et al.</i> ^b (nonrelativistic HF)	10.3	970	0.15	7.7	1300	0.14
Stewart ^c (nonrelativistic HF)	6.7	1510	0.236	•••	• • •	• • •
Relativistic RPA (Shorer) ^d	8.4	1200	0.187	•••	•••	•••
Relativistic MCHF (no 3d)-this paper	10.8	922	0.144	8.3	1207	0.130
Relativistic MCHF (+3d)—this paper	8.5	1200	0.185	6.4	1570	0.169
Expt. (this paper)	8 ± 2	1275	0.20	6.5 ± 2	1550	0.17
Expt. (Curnutte <i>et al.</i>) ^e	9.9 ± 1.9	1010	0.16	•••	• • •	•••
$2p^{6} {}^{1}S - 2p^{5}3s {}^{3}P$		59 . 19 Å			49.18 Å	
Crance ^a	41.3	242	0.038	24.1	415	0.045
Kastner <i>et al.</i> ^b	35.7	280	0.044	20.8	480	0.052
Shorer ^d	29.1	344	0.0554	• • •	•••	•••
Relativistic MCHF (no 3d)-this paper	33.4	296	0.0467	18.8	514	0.0554
Relativistic MCHF (+3d)-this paper	25.2	393	0.619	14.0	706	0.0760
Expt. (this paper)	30 ± 5	330	0.052	19 ± 4	520	0.056
Expt. (Curnutte <i>et al.</i>) ^e	34 ±12	290	0.046	• • •	•••	• • •

TABLE I. Net-like resonance transitions.

^a Reference 8.

^b Reference 9.

^c R. F. Stewart, Mol. Phys. <u>29</u>, 1576 (1975).

However, the difficulties involved in measuring such short decay times result in error bars almost large enough to incorporate both theories.

We have carried out a relativistic MCHF calcu-

FIG. 1. Absorption oscillator strengths for the ${}^{1}S{}^{-1}P$ (upper) and ${}^{1}S{}^{-3}P$ (lower) Net-like resonance transitions as functions of inverse nuclear charge 1/Z.

^d Reference 11.

^e Private communication.

lation using the program of Desclaux¹⁰ to obtain the f values which are shown in Fig. 1 as crosses. The lower f values for each transition are obtained without including mixing in the upper levels with the $3p^5 3d$ configuration. When this mixing is included, the f values show better agreement with those of Shorer¹¹ who used a relativistic randomphase approximation (RPA) to calculate the f values in ClVIII. It should be noted that the nonrelativistic HF calculations of Kastner et al.9 agree well with the relativistic MCHF without 3d mixing, showing that relativistic effects are small. The relativistic RPA is expected to give reliable fvalues and it is encouraging that these results are in close agreement with the relativistic MCHF calculations. This would suggest that the experimental results for SiVII, ClVIII, and ArIX are approximately 5% too low, which is within the experimental error bars.

B New transitions observed in Ne I -like ions

Crance⁸ has used the parametric potential method to calculate the unknown energies of the $2p^5ns$, np, and nd (n=3 and 4) levels in the Ne I-like sequence incorporating already known values for the $^1p_1^o$ levels. By comparison with his results we are able to tentatively identify several sets of transitions between the n=3 and 4 levels in ClVIII and ArIX. In Tables II and III we list the transitions with the observed and calculated wavelengths for ArIX and ClVIII, respectively. Most of the observed transitions are of the type 3s-3p. The 3s-4p

<u>18</u>

		λ (obs) ^a	λ (theory) ^b
Transition		(A)	(Å)
$2p^{5}3s^{3}P_{1}-2p^{5}3p$	${}^{1}S_{0}$	400.2 ^c	384,57(401.1) ^d
$^{1}P_{1}$	${}^{1}S_{0}$	436.5 ^c	414.49(436.5) ^d
${}^{3}P_{1}$	${}^{3}P_{0}$	Blend VII	633.51
${}^{3}P_{0}$	${}^{3}P_{1}^{\circ}$	661.93	662.60
${}^{3}P_{1}$	${}^{3}P_{2}$	679.60	680.13
${}^{3}P_{2}$	${}^{3}D_{2}^{-}$		694.93
${}^{3}P_{1}$	${}^{3}P_{1}$	695.1	695.52
${}^{3}P_{0}$	${}^{1}P_{1}$		695.70
${}^{1}P_{1}$	$^{1}D_{2}$	697.65	697.59
${}^{3}P_{2}$	${}^{3}D_{3}^{-}$	Blend VIII	699.20
${}^{3}P_{1}$	${}^{3}D_{1}$	707.2	706.91
${}^{3}P_{2}$	${}^{3}D_{1}^{-}$	730.4	731.74
${}^{3}P_{1}$	${}^{3}D_{2}^{-}$	739.1	737.95
${}^{3}P_{2}$	${}^{3}S_{1}$	788.3	789.60
$2p^{5}3d {}^{3}P_{2}-2p^{5}4p$	${}^{3}P_{2}$	248.21	247.79
${}^{3}P_{1}$	${}^{3}D_{2}^{-}$		248.63
${}^{3}D_{2}^{-}$	${}^{3}P_{1}$	256.87	256.38
$2p^{5}3p^{3}D_{3}-2p^{5}3d$	${}^{1}D_{1}$	463.3	463.3
$^{2}D_{2}$	$^{1}D_{2}$	465.0	465.2
${}^{3}D_{2}$	${}^{3}D_{1}^{-}$	468.5	468.5
${}^{3}D_{1}$	${}^{3}D_{2}^{-}$	470.7	470.1
${}^{3}D_{1}$	${}^{1}D_{2}$	478.5	478.5
${}^{3}D_{1}$	${}^{3}D_{1}^{-}$	480.6	482.0
${}^{3}P_{2}$	${}^{3}D_{2}$	483.6	482.7
$^{3}S_{1}$	${}^{3}P_{2}$	488.2	488.1
${}^{3}D_{3}$	${}^{3}\!F_{2}$	492.2 ^e	492.0
${}^{3}D_{2}$	${}^{3}F_{2}$	494.6	494.2
${}^{3}S_{1}$	${}^{3}P_{0}$	499.0	499.4
${}^{1}D_{2}$	${}^{3}D_{2}^{'}$	520.1	520.6
${}^{3}D_{3}$	${}^{3}F_{4}$	521.2	521.0
${}^{3}D_{3}$	${}^{3}P_{2}$	529.5	530.5
2p ⁵ 3p ³ S ₁ -2p ⁵ 4s	${}^{3}P_{0}^{-}$	175.5	175.5

TABLE II. New wavelengths of Ar IX.

 a Wavelength accuracy ±0.2 Å for $\lambda < 500$ Å, ±0.5 Å, $\lambda > 500$ Å.

^b Crance, Ref. 8.

^c These identifications are based on calculations of P. Ceyzeriat (private communication).

^d P. Ceyzeriat (private communication). Other transition wavelengths agree closely with Crance.

^e Blended with Arvu $3p^{2}{}^{3}P-3p3d{}^{3}D^{o}$.

and 3d-4p transitions were very weak in intensity and the 3p-4d transitions at 152-154 Å in Ar IX and 184-186 Å in ClVIII are blended by the third order of the NaI-like *L* x-ray transitions discussed in Sec. II C.

Transitions from the $2p^5nd$ (n=3, 4, 5) levels to the ground state have been observed previously in both ions. Our observations thus determine the positions of the $2p^5np$ (n=3, 4) levels, and also the *nd* levels which do not emit to the ${}^{1}S_{0}$ ground state. We show in Fig. 2 the term diagram for Cl VIII indicating the terms and wavelengths observed in our spectra. The same terms are found also in Ar IX.

Transition		λ (obs) ^a (Å)	λ (theory) ^b (Å)
$2b^{5}3s {}^{3}P_{1} - 2b^{5}3b$	${}^{1}S_{0}$	435.10	434.93
$^{1}P_{1}$	${}^{1}S_{0}$	464.5	465.09
${}^{3}P_{1}^{1}$	${}^{3}P_{0}$	Blend VI	725.95
$^{1}P_{1}$	$^{3}P_{1}$	Blend VI	729.58
${}^{3}P_{0}$	${}^{3}P_{1}$	746.0	744.21
${}^{3}P_{1}$	${}^{3}P_{2}$	772.3	773.45
${}^{3}P_{0}$	$^{1}P_{1}^{'}$	• • •	778.21
${}^{3}P_{2}$	${}^{3}D_{2}$	780.1	780.64
${}^{3}P_{2}$	${}^{3}D_{2}$	788.12	788.02
${}^{1}P_{1}$	${}^{1}D_{2}$	796.5	797.26
${}^{3}P_{1}$	${}^{3}D_{1}^{2}$		804.63
$2p^{5}3s^{3}P_{2}-2p^{5}4p$	$^{3}D_{2}^{1}$	165.64	165.41
${}^{3}P_{1}$	${}^{3}P_{2}$	166.65	166.92
$2p^{5}3d^{3}P_{2}-2p^{5}4p$	${}^{3}P_{2}$	321.11	319.55
${}^{3}P_{1}$	${}^{3}D_{2}^{"}$		319.51
${}^{3}P_{2}$	${}^{3}S_{1}$	327.9	327.90
$^{1}P_{1}$	${}^{1}S_{0}$	329.7	329.12
${}^{3}\!F_{3}$	${}^{3}D_{3}$		329.42
${}^{3}D_{2}$	${}^{3}P_{1}$	•	331.70
$^{1}D_{2}^{-}$	${}^{3}D_{1}^{-}$	331.1	331.02
${}^{1}\!F_{3}$	${}^{1}D_{2}$		331.33
$^{3}D_{2}$	${}^{3}D_{1}$	333.8	333.67
${}^{3}D_{1}$	${}^{3}P_{0}$		333.93
${}^{3}\!F_{2}$	${}^{3}D_{2}$	335.0	335.32
2p ⁵ 3p ³ D ₃ -2p ⁵ 3d	$^{1}D_{2}$	526.4	525.9
${}^{3}D_{2}$	${}^{1}D_{2}$	528.4	529.3
$^{3}D_{3}$	${}^{3}D_{3}$	554.3	553.9
${}^{3}D_{3}$	${}^{3}F_{2}$		557.3
${}^{3}S_{1}$	${}^{3}P_{1}$	556.8	557.6
${}^{3}D_{2}$	${}^{3}D_{3}$		557.7
${}^{3}P_{2}$	${}^{3}D_{1}$	560.4	560.8
${}^{3}P_{2}$	${}^{3}D_{3}$	590.8	590.0
${}^{3}D_{3}$	${}^{3}P_{2}$	594.6'	595.6
1 _D	1 _D .	(wide)	595.0
$2p^{5}3p^{3}D_{2}-2p^{5}4$	${}^{3}P_{2}$	233 5	233.0
$\frac{2}{7} \frac{3}{5} \frac{3}{5} \frac{2}{5} \frac{1}{5} \frac{1}{5} \frac{3}{5} \frac{3}{5} \frac{1}{5} \frac{1}$	${}^{3}P_{0}$	200.0	233.6
$^{3}P_{0}$	${}^{3}\mathbf{p}_{0}^{2}$	239.9	239 1
1 _D	${}^{3}P_{0}$	245.3	245.6
-2	- 2		210.0

^a Wavelength accuracy ± 0.2 Å for $\lambda < 500$ Å, ± 0.5 Å, $\lambda > 500$ Å.

^b Crance, Ref. 8.

C. Na I-like L x-ray transitions

At 2-3 Å in wavelength higher than the NeI-like resonance lines of ArIX and ClVIII, a set of partially resolved satellite lines appeared. The beam energy dependence of their intensities relative to the NeI-like transitions suggests that they belong in the NaI-like spectra with one extra electron. The transitions are thus the inner shell n=2 to n=3 transitions, that is, L x-rays with 6 or 5 Mshell vacancies in the Ar and Cl spectra respectively. Fortner *et al.*,¹² and our own calculations indicate that L x-rays with less M-shell vacancies

FIG. 2. Term scheme of Cl $v_{\rm HI}$. The transition wavelengths are indicated in angstroms.

FIG. 3. Net-like resonance lines and satellite structure in chlorine. The upper curve is an example of the experimental data with the averaged wavelengths of reproducible features noted in angstroms. The center shows the calculated structures of the $2p^{6}3s-2p^{5}3s^2$ (dotted lines) and $2p^{5}3p-2p^{5}3s^{3}p$ (solid lines) transitions with the wavelength scale adjusted to line up approximately with the observed structure. The lowest curve shows the 20 strongest transitions of the 36 $2p^{6}3d-2p^{5}3s^{3}d$ transitions.

(the MgI-like, AlI-like spectra, etc.) are at successively higher wavelengths. Some of these transitions appear, but less strongly excited and unresolved, in spectra taken at lower beam energies.

Such Na I-like satellites in chlorine spectra have recently been proposed as being observed in laser-induced plasmas.⁶ However, the observed lines have been shown to be due to sodium impurities,⁷ and our present measurements confirm this view. Our spectra do not have the lines observed in Ref. 6.

The L x-rays consist of a 2p-3s single-electron transition with a single outer-shell spectator electron for the NaI-like sequence. The lowest states for this spectator electron are 3s, 3p, or 3d with higher states from the n=4 shell, etc. We shall here limit our analysis to those states with n=3. It is clear that transitions with higher-n spectator electrons $(n \ge 4)$ will lie closer in wavelengths to the NeI-like resonance transitions $(n=\infty)$ and there is little or no evidence for them in our spectra. The satellites have been observed previously in low resolution by Fortner *et al.*¹²

In Figs. 3 and 4 we compare our observed spectra with the line positions we have calculated with a relativistic MCHF program.¹⁰ As a first approximation, we have used the transition rates as a guide for the relative line intensities. The latter depend strongly on the relative populations produced in the foil excitation and the observing position which was generally very close to the foil.

FIG. 4. Ne I-like resonance lines and satellite structure in argon. The curves are arranged as in Fig. 3.

$2p^53s^2 \rightarrow 2p^63s$		Cl VII	A	r VIII
j j'	λ(Å)	Rate (s^{-1})	λ(Å)	Rate (s ⁻¹)
$\frac{1}{2}$ $\frac{1}{2}$	60.45	5.6(10)	50.06	8.0(10)
$\frac{3}{2}$ $\frac{1}{2}$	60.94	5.7(10)	50.51	8.1(10)
$2p^53s3p \rightarrow 2p^63p$				
$\frac{1}{2}$ (1) $\frac{1}{2}$	62.18	6.6(9)	51.44	1.3(10)
$\frac{1}{2}$ (2) $\frac{1}{2}$	61.82	3,9(9)	51.15	5.3(9)
$\frac{1}{2}$ (3) $\frac{1}{2}$	61.60	3.4(10)	50,98	4.5(10)
$\frac{1}{2}$ (4) $\frac{1}{2}$	60.89	4.6(10)	50.46	6.7(10)
$\frac{1}{2}$ (5) $\frac{1}{2}$	59.08	1.6(10)	49.07	2.0(10)
$\frac{1}{2}$ (6) $\frac{1}{2}$	58.36	2.9(7)	48.50	6.4(7)
$\frac{3}{2}$ (1) $\frac{1}{2}$	63.01	1.1(8)	52.10	1.9(8)
$\frac{3}{2}$ (2) $\frac{1}{2}$	62.30	9.9(9)	51.55	1.8(10)
$\frac{3}{2}$ (3) $\frac{1}{2}$	61.93	1.6(10)	51.27	2.4(10)
$\frac{3}{2}$ (4) $\frac{1}{2}$	61.68	3.5(10)	51.02	4.6(10)
$\frac{3}{2}$ (5) $\frac{1}{2}$	61.46	1.7(10)	50.86	2.3(10)
$\frac{3}{2}$ (6) $\frac{1}{2}$	59.45	2.8(10)	49.39	3.7(10)
$\frac{3}{2}$ (7) $\frac{1}{2}$	59.10	3.8(9)	49.07	6.7(9)
$\frac{1}{2}(1)\frac{3}{2}$	62.25	2.0(9)	51.51	3.7(9)
$\frac{1}{2}$ (2) $\frac{3}{2}$	61.90	1.6(9)	51.22	4.6(9)
$\frac{1}{2}$ (3) $\frac{3}{2}$	61.67	3.1(10)	51.05	4.5(10)
$\frac{1}{2}$ (4) $\frac{3}{2}$	60.96	5.9(10)	50.53	7.8(10)
$\frac{1}{2}$ (5) $\frac{3}{2}$	59.15	1.9(10)	49.13	2.9(10)
$\frac{1}{2}$ (6) $\frac{3}{2}$	58.43	1.5(9)	48.56	1.5(10)
$\frac{3}{2}$ (1) $\frac{3}{2}$	63.09	4.5(8)	52.17	7.8(8)
$\frac{3}{2}$ (2) $\frac{3}{2}$	62.37	1.1(8)	51.62	2.0(8)
$\frac{3}{2}$ (3) $\frac{3}{2}$	62.00	2.5(10)	51.34	4.0(10)
$\frac{3}{2}$ (4) $\frac{3}{2}$	61.75	3.9(10)	51.09	3.4(9)
$\frac{3}{2}$ (5) $\frac{3}{2}$	61.53	4.5(10)	50.93	6.1(10)
$\frac{3}{2}$ (6) $\frac{3}{2}$	59.52	7.1(9)	49.45	1.3(10)
$\frac{3}{2}$ (7) $\frac{3}{2}$	59.17	3.0(10)	49.13	4.1(10)
$\frac{5}{2}$ (1) $\frac{3}{2}$	62.47	4.3(9)	51.70	7.0(9)
$\frac{5}{2}$ (2) $\frac{3}{2}$	62.09	1.3(10)	51.40	2.2(10)
$\frac{5}{2}$ (3) $\frac{3}{2}$	61.59	5.9(10)	50.95	8.0(10)
$\frac{5}{2}$ (4) $\frac{3}{2}$	59.72	3.3(10)	49.62	4.6(10)

TABLE IV. Calculated wavelengths and transition rates for Cl vII and Ar VIII.

The theoretical structure obtained from the transitions $2p^{6}3s-2p^{5}3s^2$ (two lines) and $2p^{6}3p-2p^{5}3s^3p$ (30 lines) agrees quite well with the observed structure for both chlorine and argon after a small shift in overall wavelength. This shift is about

FIG. 5. Calculated structure of the $2p^{5}3s^{3}p$ terms in **Ar** VIII, indicating possible *LS* coupling identifications.

0.45 Å for chlorine and 0.25 Å for argon. The theoretical structure for the 36 transitions $2p^{6}3d$ - $2p^{5}3s^{3}d$ is more compact but shifted toward the Ne I-like resonance lines. Weak transitions are observed in this region of the spectrum (see Fig. 4) which may be attributable to these multiplets. In Table IV we list the calculated wavelengths and transition rates for the $2p^{6}3s$ - $2p^{5}3s^{2}$ and $2p^{6}3p$ - $2p^{5}3s^{3}p$ transitions. In ClVII and ArVIII the upper levels $2p^{5}3s^{3}p$ can still be distinguished as L-S coupled states both from their energies and their transition rates. This is especially true for terms derived from the $2p^{5}3s(^{1}P)$ parent term as can be seen in Fig. 5 for ArVIII. For higher-Z ions the L-S nature disappears.

Our observations suggest that the accuracy of the relativistic MCHF calculations is about ± 0.5 Å or 2.5 eV for these ions. The $2p^{6}3s^{2}S-2p^{5}3s^{2}2p$ transitions have been measured accurately in the higher-Z ions TiXII to CuXIX by Feldman and Cohen.¹³ Our observations of these transitions are in good agreement with their values in isoelectronic comparisons of the transition energies. They also list several unclassified lines in Ti and V which correspond to the other n=3 spectator, Na I-like L x-rays.

IV. CONCLUSIONS

We have measured the decay times for the NeIlike resonance transitions $2p^{6} {}^{1}S-2p^{5}3s {}^{1*3}p$ in Cl VIII and ArIX. The derived oscillator strengths

550

show reasonable agreement with relativistic MCHF and relativistic RPA calculations. The parametric potential calculations of Crance appear to yield too low f values. Our measurements also agree with new measurements in SVII and Cl VIII. The only other measurements of f values for these transitions in this sequence are in Ne I, but f values for intermediate-Z ions can now be obtained by interpolation with a reasonable confidence.

Some new transitions between the n=3 and n=4levels of the NeI-like spectra of Cl VIII and Ar IX have been given tentative identifications based on parametric potential calculations of Crance. However, it should be noted that his predictions in the isoelectronic spectrum of SiV for these same transitions do not agree well with the analysis of Brillet.¹⁴ Her identifications are based on Hart-

- *Also at Department of Physics, University of Chicago, Chicago, Ill. 60637.
- †Present address: Universite de Lyon, Villeurbanne, France 69.
- [‡]Present address: Department of Physics and Astronomy, University of Toledo, Toledo, Ohio 43606.
- ¹H. G. Berry, J. Desesquelles, P. Tryon, P. Schnur, and G. Gabrielse, Phys. Rev. A <u>14</u>, 1457 (1976).
- ²P. G. Burkhalter, D. J. Nagel, and R. D. Cowan, Phys. Rev. A 11, 782 (1975).
- ³E. Hinnov and F. W. Hofmann, J. Opt. Soc. Am. <u>53</u>, 1259 (1962).
- ⁴J. A. Kernahan, A. Denis, and R. Drouin, Phys. Scr. <u>4</u>, 49 (1971), and references therein.
- ⁵B. Curnutte and C. L. Cocke (private communication).
- ⁶A. N. Zherikhin, K. N. Koshelev, P. G. Kryukov, B. C.
- Letokhov, and C. B. Chekalin, JETP Lett. 25, 300

ree-Fock calculations.¹⁵

L x-ray satellite structure has been partially resolved in both chlorine and argon. We have shown that the structure can be attributed to the Na I-like transitions $2p^63s-2p^53s^2$ and $2p^63p-2p^53s$ 3p. A relativistic Hartree-Fock calculation gives good agreement for the structure after an overall wavelength shift of 0.2-0.5 Å is taken into account.

ACKNOWLEDGMENTS

We are grateful to R. C. Elton, Basil Curnutte, Lew Cocke, and Philip Shorer for communicating their results in advance of publication, and to Gene Livingston for helpful discussions. This work was performed under the auspices of the Division of Basic Energy Sciences of the U. S. Department of Energy.

(1977).

- ⁷R. C. Elton (private communication). We thank him for bringing the work of Ref. 6 to our attention. R. C. Elton and R. H. Dixon, Opt. Lett. <u>2</u>, 100 (1978).
- ⁸M. Crance, At. Data <u>5</u>, 186 (1973).
- ⁹S. O. Kastner, K. Omidvar, and J. H. Underwood, Astrophys. J. <u>148</u>, 269 (1967).
- ¹⁰J. P. Desclaux, Comput. Phys. Commun. 9, 31 (1975).
- ¹¹P. Shorer (private communication).
- ¹²R. J. Fortner, D. L. Matthews, and J. H. Scofield, Phys. Lett. <u>53A</u>, 336 (1975); and R. J. Fortner, Phys. Rev. A <u>10</u>, 2218 (1974).
- ¹³U. Feldman and L. Cohen, J. Opt. Soc. Am. <u>57</u>, 1128 (1967).
- ¹⁴W. L. Brillet, Phys. Scr. <u>13</u>, 289 (1976).
- ¹⁵C. Froese-Fisher, Comput. Phys. Commun. <u>1</u>, 151 (1969).