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The presence of coherent electromagnetic radiation has a profound effect on the Compton scattering of x
rays from electronic systems. Here, two electronic systems are considered—bound electrons in atoms and an
electron gas. The scattering cross section is expressed in terms of a power series in even derivatives of the
double integral of the electronic-momentum distribution function over P,, the planar momentum vector
perpendicular to k, the momentum transfer to the electron. It is shown that the effect offers an important
experimental technique for measurements of details of electronic-momentum distribution in the scattering

system.

I. INTRODUCTION

Compton scattering of x rays from atoms, mol-
ecules, and condensed matter is a very useful pro-
cess for obtaining experimental information on the
electronic-momentum distribution in the system.!
Here an x ray scatters at a large-angle off the
sample and knocks out an electron in such a man-
ner that the electronic recoil is much larger than
the binding energy. Under these conditions, the
spectrum of the scattered x-ray photons is related
to g(§ -k), where g is the double integral of the
electronic-momentum distribution function #, over
p., the planar momentum vector perpendicular to
k. Here k represents the momentum transfer to
the scattered electron. - ‘

If the system be placed in the cavity of a laser,
we find a remarkable modulation in the differential
scattering cross section by the electric field of

“the laser due to absorptions and emissions through
multiphoton processes. In this paper, we demon-
strate this effect by considering two electronic
systems, bound atomic electrons and a free elec-
tron gas. In Sec. II, the case of Compton scatter-
ing from bound electrons in hydrogenlike atoms in
the presence of laser radiation is discussed. Here
we assume that the laser field is small enough so

that the bound-electron wave function is unaffected

by the laser. The calculations are made for large
momentum transfer to the atom, i.e., the impulse
approximation is used. The two important small
parameters for the scattering process are a=E,/
E, the ratio of the binding energy of the electron
to the recoil energy; and €®=¢*E2/2mw2E, which
essentially represents the ratio of the classical
kinetic energy of the electron in the presence of
the field to the recoil energy. The cross section
for scattering is calculated under the limitations
that these two parameters be small, and terms
proportional to ae and of higher order are neglec-
ted. The results are expressed in power series
in the field as an infinite sum containing even de-
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rivatives of the function g. It is shown that the
modulation of the cross section by the laser field
offers an important experimental technique for
measurement of details of the electronic-momen-
tum distribution in the atom.

In Sec. III, the scattering system is taken to be
an electron gas. The formulation of Compton scat-
tering from the electron gas in the presence of the
laser field is presented and the inherent difficulties
present in solving the problem in the presence of
the electron-electron interaction are discussed.
For illustrative purposes, the electrons are taken
to be free and the scattering cross section is ob-
tained as a power series in the field. The results
for the cross section are shown to have importance
for the measurements of the momentum distribu-
tion near the Fermi surface.

Finally, Sec. IV contains a brief discussion of
the results obtained in this paper.

II. SCATTERING FROM BOUND ELECTRONS

Let the incoming x-ray beam be characterized
by the frequency w,; and wave vector E while the
scattermg X ray has corresponding quantities w,
and k2 We assume the atomic system to be almost
transparent to the x ray, and thus the scattering
cross section is completely characterized by the
energy transfer w=w, ~ w, and the momentum
transfer k= k k2 When the momentum transfer
k is much larger than the typical electronic mo-
mentum the ejected electrons will suffer large re-
coil. It is then that Compton scattering measures
the momentum distribution of the electrons.

Before considering the effect of the laser rad-
iation, we would summarize the basic idea behind
the impulse approximation (IA) usually used?® in
calculating the Compton scattering from bound
electrons. Consider for simplicity a one-electron
atom. The scattering cross section is then porpor-
tional to
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do < Ef:l<f|e‘i'*! 2)|26(E; - E,— w)

1 = -ike2 - i
- E_;T_J’ dte'ot(g|ettte i Rig tteihE )

(1)
where |g) is the ground state of the electron and
| #) the final state, with E, the binding energy and
E, the final-state energy. H, the Hamiltonian op-
erator for the electron, is given by
pz

H= o0

+V(r)=Hy,+V(r), (2)
where p is the electronic momentum and V(7) is
the Coulomb potential in which it moves. The
Hamiltonian operator e'#* is expanded as

olHt = plHoty iVt "LHGVIE 2 | 3)

The higher-order terms involve multiple com-
mutators and are higher order in powers of the
time £. An examination of Eq. (1) shows that those
times that are of importance in the integration are
of order w™ ~%/E, where E, is the recoil energy.
When E is much larger than other characteristic
energies associated with the ground state of the
electron, i.e., typically, @ =E,/E, <1, one can
set exp(-3[H,, VI*)=1, etc. This results in V(»)
canceling out in Eq. (1) and we obtain,

do % f dteivt (g|ettotemiBF pth ot oik2 lg) -
(1)
The integral is now simple to evaluate and the
cross section can be expressed

d2o_ e2 2
dwd (mcz) @ &)

xZP: [9,126(E,, ,— E,~ w). )

Here €, and €, are the incoming and outgoing x-ray
polarizations, E,=p?/2m, and , is the Fourier
transform of |g). From comparing Egs. (1) and
(4), it is clear that the IA is the semiclassical ap-
proximation for the scattering process. Here, we
consider the scattering time 7/E  to be so short
in comparison with the electron period that the x
ray is scattered from a freelike electron moving
with a definite momentum P with probability |y, |
which recoils to a state p+k. The character of
the bound electron manifests itself through |y,|?
which is the probability for the electron to find it-
self in a state P. v
We shall now apply the above theory to the sit-

uation in which the Compton scattering takes place
in the presence of a circularly polarized laser
field characterized by a vector potential A(f) taken

’

to be space independent in the dipole approxi-
mation. In principle, the ground state |g) of the
electron would be modulated by the laser. How-
ever if the laser strength is such that its electric
field is small compared to the atomic field experi-
enced by the electron, one can effectively neglect
the modulation of the electronic-bound state by the
laser and simply take the state to be |g). There
would be, however, a small constant shift AE, in
the ground-state energy E, of the bound electron.
This second-order energy shift of the ground state
is obtained as®*

AE,=e?A3/2mc? (5)

where A, is the laser vector-potential amplitude.
Thus the energy of the ground state becomes E,

+ AE, while the time-independent wave function for
the ground state, taken to be the 1S state for a one-
electron atom, is taken to be unperturbed by the
laser. )

On the other hand, the laser field will greatly
influence the recoiling electron. It is difficult to
obtain in closed form the influence of the laser
field on the fast-moving electron to all orders in
the field. In what follows, we shall consider the
laser field to be small and obtain the results for

" the scattering cross section as a power series in

the field. The appropriate small parameter, intro-
duced before, is the dimensionless field intensity

€ =e’E%/2mwiE . (6)

This parameter is the relevant small-field para-
meter in other studies involving interaction of la-
ser radiation with electrons, i.e., heating of a gas-
eous plasma by multiphoton inverse bremsstrah-
lung® and x-ray absorption in atoms in the presence
of an intense laser field.** (In Ref. 3, the effect

of the laser on the absorption cross section is, to
the lowest order, proportional to §2/T which,

after removing atomic parameters, reduces to

€? used above.)

In what follows, we shall calculate the scattering
cross section under the limitation that the two
small parameters « and € be small, and neglect
terms proportional to @€ and other higher-order
terms.

In the presence of the laser, the final-state wave

~functions for the electron in the continuum would
be solutions of the time-dependent Schrédinger eq-
uation,

[% (a_-i-;‘:(t))z+ V(r)]¢=iéa—f. (7)

Making a transformation to an oscillating coor-
dinate system,® we let
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=pex ie——’/“"-ll‘i('r)dr _Tiez f‘Asz
¢—ep—mc0q ~ 2mc? ),

(8)
and find

q* o= e ('x ]_.6¢
[m+V(r+ r_n?j(; Adb) zp—zg. (9)

One notices that, in Eq. (9), the laser field dis-
appears from the electronic coordinates. The ap-

J

pearance of the field in the potential term shows
"that, in the coordinate system of the electron, the
ion appears to be oscillating with the frequency of
the field. An exact solution of this equation seems
difficult to obtain. However, we limit ourselves
to energy eigenvalues much larger than the Coul-
omb potential, i.e., @ «< 1. Hence, the corrections
to the Coulomb potential because of the laser field
are of order ae and are neglected. Thus we sim-
ply take ¢ functions to be the continuum wave func-
tions in the Coulomb field and obtain

27

~ ie (s Kare € (‘ararsig.¥ zEt)(——-) 1/2(1 e/ F(i/qa,1,i(gr - - 7))
¢-eXP(—mcf _Wfo L q-r-iE, 7a - qa,l,ilqgr - q

0

- e (‘s x40 1 f‘Asz iE 1) |3) (10)
_exP(—mcfo ~ 2mc? Y RS

where F is the confluent hypergeometric function and E_ is the final-state energy. In writing Eq. (10), we
have made approximations to the extent that the gradient operator operates only on e'¥¥, Vv operating on
F gives terms proportional to ae which are dropped relative to order €. In the same spirit, we shall take
the Hamiltonian H to commute with V- A. Thus, the matrix element of transition is written

2m

' . - . ' ie = = - CANT
M= fdt (1S |expli(E,+ AE)¢t]exp(ik - T+ iwt) exp(- — fV-AdT—-l Facz) e e |&

mce

o~ J dt e1“t(1S | e tHtetE-Fp-i it exp(_ e I V.Ad

Using the impulse approximation discussed before,
we write

e“‘“:e”’o‘e”" (12)

for large recoil energy (a < 1) and get .

M= f dt e'“t(18 |etHote T FomiHot

xexp(-%f?-xd-:)lé).
(13)

Using a complete set of momentum eigenfunctions
for the state |1S), we take

|1s>=§) Be®F=" 3,15,
i

and obtain
2 = %2
— iwt . p . (P+k) )
M;; = Jdte Ep exp(z o t)exp(-z o 14
x exp(— & J ‘(E+’)-Kd'r
o(- 22 [ 'G5

xd)p(ﬁ"'-l; ]t7>-

q. (11)

For large recoil, p can be neglected in compar-
ison with k in the modulation term. Performing
the time integration, with w, as the laser fre-
quency, we get

. . .
= 1ot s . (p+k)?
M;, Jdte " zp:exp(z ) t) exp(_z T t

ie
X exp (

k- &, coswyt
me W,

x4, (B+k1) .
Using the identity

N n=+%
ei coso _ E ’L"J"()\)eim’

n=<cw

2
- iwt .y
M, Idte E, exp(z T t) ex

5
e
S
§"+
=
n
S——”"

in eE'KO inwgt
XZZJ"(mcwoh' e

n

X, (p+k|3). (14)

The transition probability per unit time is there-
fore obtained,
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and the differential cross section now reads

d3o
dw dS2

=ﬁ)( gl'gz)
2
<3 Izppl"dﬁé@-f—m——

xJ"’(—e—E.—.A:-“—) ,

"\mcwyi

k-p

)

(15)

where 7,=¢%/mc? and &, and &, are the incoming
and the outgoing x-ray polarizations, respectively.
From Eq. (15), it is clear that only the compon-
ent of Ko parallel to Kk is effective in modulating
the outgoing electron. If k be taken to be along the
z direction, the & function becomes independent of
angular variations, and the equation simplifies to

d2
%—gﬁ =758+ &)*
2 g5 ofe K5 _ kbe )
XZ J 9,1 dpﬁ(w— B~ 4
XJ 7\, (16)

where \=eEk/mwii, with E, representing the
component of the laser field along z direction. To
present the results in terms of dimensionless
parameters, we normalize the momenta in terms
of the momentum transfer 2 and the energies in
terms of the recoil energy E z=k?/2m. Letting n
=p,/k, the double integral of |¢,|* over the planar
momentum-in the x-y plane is defined as the di-
mensionless quantity
1
gm=4z [ pidp, 1y, 1% 1

Using the 6 function in Eq. (16) to carry out the
p, integration, the cross section becomes

d%c

Jodo = 2mri(e, - &,)°mk

(18)

S ICH VD)

] n=Qw/Egp-1)/2+nhwy/2E g

The infinite sum over # is difficult to perform
analytically. However, for large recoil energy,
7iw,/E <1 and one can expand g(n) in a Taylor
series around 7,=3 (hiw/E,~1). For J2 functions,
we use a power-series expansion and the cross
section can be written in a formal double sum-
mation ) :
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A0 ami(e, - &, mk
dodn = 2me(é &)m
S~ €211 & [ hw,\ ¥ 1
X - 9
,}:—; 222 jz(;(ZER) @j+20)!
d**2lg(n)
R o

"o

where €€ =e®E%/2mwiE,, is the small parameter
representing dimensionless intensity. For 7w,
K Ep, it suffices to keep only the lowest order
terms in 7Zw, Therefore the j summation drops
out to give

d*'g(n)

d20‘ 2/a 5 3 €2l
o5 =2 &) mkg;—n—z—z g |

=1

(19)

Thus the differential cross section is expressed
as an infinite sum containing even derivatives of
the function g(n). In the absence of the laser field,
only the =0 term contributes and the expression
reduces to the usual Compton-scattering formula.

In order to demonstrate the usefulness of the re-
sult given in Eq. (19), we assume that an experi-
mental method of differentiating with respect to
the intensity of the laser beam I~ EZ is available
and we can measure

d ( d%o )
dl \dwd®
An examination of Eq. (19) shows that the modu-
lation of the differential cross section by the laser
field (to the lowest order in €®) is proportional to
the second derivative of g(n), which is a more sen-
sitive function, in general, to changes in the fre-
quency shift of the outgoing x-ray photon than the
function g(n,) itself. Thus, many small variations
in g(n,) which might not be obvious in the g(n,) vs

Mo plot, which'is conventionally used, would be ob-
served much more prominently by studying

d (dzo)
al \dwdQ
\\
as a function of n,. ;
For the 1S hydrogenic state presently being con-

sidered,

10

I-o0

1

14 = e

: 1
T [L+a¥(p+ Rd /M2
Using Eq. (17), one obtains

1
(1+7F?‘ai? ’

(20a)

g)= = (200)
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where a=E,/E .= 7#?/a’k*. A substitution in Eq.
(19) results in

d3o om(e ¥ 1 ( 1)
~oae =2m5@ ¢, -——yk + —

<1+3 : T(hw/Eg -1)2—01) @1)
[a+} (7w/E o 1)°T
Thus, one gets
i (d20'> dzg(n), - T/ -1 . (22)
dl \dwd$, ,_,ON.dnz "o 1 +nZ/ap

Fig. 1 shows a plot of d2g(n)/dn?|, as a function
of 7,/@*/2. For comparison, g(no)/oz is also shown
on the same graph. Since both of these functions
are symmetric about 7,=0, only positive values of
1, are shown. It is clear that small variations in
g(n,) from the form given in Eq. (20b) would be
amplified many times in d2g(n)/dn’ |,,0, and thus
can be observed much more accurately.

III. SCATTERING FROM AN ELECTRON GAS

We now consider the effect of laser modulation
on x-ray Compton scattering from an electron gas.
If the frequency of the incoming x-ray beam is
much higher than the plasma frequency, i.e.,

w, »w, and E , <fiw, <mc?, where E ; is the Fermi
energy, then the differential scattering cross sec-
tion per unit volume of the plasma is written as™®

d%o 7
dwas S

where a, and gl are, respectively, the annihilation
and the creation operators for an electron in a mo-
mentum state p. The symbol () represents, for
zero temperature, the ground-state expectation
value and, for finite temperature, the usual sta-
tistical average. For zero temperature, the ground
state of the electron gas is completely described
by the momentum distribution z,=(a}a,).

If the gas is assumed noninteracting, », is of
course unity for p <p,, the Fermi momentum, and
equals zero for p>p .. In an interacting electron
system, collisions will produce a smearing of the
distribution.

For large momentum transfer &, |p+k|, [p/+k]|
> pip. This implies that n,, ,=#n,.,=0. Thus, toa
very good approximation, the fast particle behaves
like a free particle and, in the presence of the
laser field, it will be modulated like a plane wave.
Therefore, we can write

-iw (¢=t’)

1.0

08 —~
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FIG. 1. d’g(n)/dn*|,y and g(n,)/a plotted as a function
of n o/oz‘/2 for positive values of 7, for scattering from
bound electrons.

(a,(t)a,.,(t)a, wa(t)a,. ), (23)

a,,(t) =a,,, exp(—ie,, )

XZ (mch’ K, (p+k)) inwgt | (24)

where ¢,,,= (p+k)*/2m.
Using Eq. (24), one gets

@h(t)a,, (a}., (t)a,. (')

=~ (@), (t')a,, ab., e rsrt

Xe'eP' w1t ZJ (eA (p+k)) einwu‘t

mehiw,

p +k -imw t’
;J ( mchw, ) o

The operator a;, .» Operating on the ground state
of the system creates with probability 1 an elec-
tron of momentum p’+k (since the state p’+k is
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unoccupied). The operator q,,, must annihilate
with unit probability this fast particle so that the
matrix element vanishes unless p=p’. Therefore,
we obtain,

<a;<t)ap+ k(t)“;u k(tl)ap' (tl)>
= {a}(t)a,(t’)) expl-ic,, (¢ - ¢')]

ek, p+K feA,-p+k
X"_Z",J" ( mehw, ) I (mch’w0
X explinwyt — imwgt’). (25)

THe quantity {a}(¢)a,(t’)) is difficult to calculate
in the presence of both the electron-electron inter-
actions and the laser field. Even in the absence of
the laser, evaluation of (a;(t)a,(t')) requires the so-
lution of an integral equation. In the presence of
laser radiation, the problem becomes significantly
more complicated. Since the laser field is periodic
in time, one ends up with infinitely coupled integral
equations because any time-dependent function hav-
ing a Fourier component § in the absence of laser
field will now be coupled to all frequency compon-
ents Q+nw, That treatment is beyond the scope
of the present discussion and will be dealt with in
a subsequent publication. Here, for illustrative
purposes, we calculate the effect of laser modu-
lation on Compton scattering from the electron
gas, taking the electrons to be free. This is cer-
tainly correct for systems having weak electron-
electron interaction and when the effect of the la-
ser field is much larger than the electron-electron
correlation energy.

Thus, as in Eq. (24), we write

a,(t)=ae ')  J,. (er p) imtot”
m'

mchw
and obtain
@ay(t')) = @yay)e’s ™"
' <2 0 (i) o (o)

—in'wyt) .

X exp(im’wyt’

Substituting in Eq. (25), one gets

d3%c

Toda =27 3(€, * €, ) mk[

28E,

(a;(t)am. k(t)a;'q (t')dp,(t')>
=n,expli(e, - €,, )t - 1')]

eX, -k eA, kK
T (i) 7s)
g; ! mch‘wo> Js mchiw,

X exp(ilwyt — iswyt’), (26)

where we have made use of the identity

Tx=9)= 3 T @0).

==

Substitution of Eq. (26) in Eq. (23) followed by
time integrations results in

d*o _ k2 p-k
Joda rie, - eg)fdpz <w+nw° 5 _————m>

X J? eKO-E)

% n mch—wo (27)

A comparison of Eq. (27) with Eq. (15) obtained
for the case of scattering from bound electrons
shows that the scattering cross section for free
electrons is obtained from Eq. (15) simply by re-
placing 19,12 by n,, the momentum distribution for .
the free electron gas. Thus, following the same
procedure, one would obtain for the cross section
the form given in Eq. (19) with g(n) now written

1
s =z [ pudpin, . (282)

Using the Fermi-Dirac distribution function at
finite temperature,

1

"= explB(p*/2m —E)]+1 (28b)

where B=1/kyT. E,, the Fermi energy now takes
the place of E, for the bound electrons so that
a=E./E,. Using Eq. (28b) in Eq. (28a), one gets

g(n)=2§‘TF In{1+exp[BE-(1 - /)]y . (29)

A substitution of the above expressioni for g(n)
in Eq. (19) yields

In{1+ exp[BE (1 - nz/a)]}

€ 1
T <_ 1+exp[-BER(1-n2/a)] *

207/@)BE  exp[ -BEs(1 - /)] _ ., ]
{l+exp[-BE,(1 -nz/a)]}* ]

(30)
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Thus, !
-1

2(n5/ @) BEy exp[-BEF(1 -5 [a)] (1)

d (d% ) ~ %)
I \dw a%

o A7

Fig. 2 shows a plot of dzg(n)/dn2|,,0 as a function
of n,/a*/2, as given by Eq. (31). For comparison,
g(n,)/a given by Eq. (29) is also shown on the same
graph. Again, only positive values of 71, are shown
since the curves are symmetrical about 7,=0. The
calculations were made for a temperature T
=300 K and E,=2.12 €V (corresponding to Fermi
energy for potassium). One notices that owing
to finite temperature, the jump in g(n,) at the
Fermi surface has almost smoothed out. How-
ever, this jump manifests itself as a 6-function-
type discontinuity in d2g(%)/dn? I,,o curve and would
be noticeable experimentally, even at high tem-
peratures. Thus the effect discussed here sug-
gests an invaluable technique for accurate mea-
surements of the Fermi surface.

It should be noted that the laser light might not
penetrate as deep as x rays in metals because of
the conduction electrons. The mean free path of
optical photons in metals is typically of the order
of 500 A while the effective travel length in and
out for 8-keV x rays in solids having atoms with

8.0 T T T T T

a0.4f
70k .

60 -
50 : -1

40

490 ’
q@

30+ .

10 .
30 [« L
0.0

—20 1 I I I I
00 o0z 0.4 0.6 ) 10 12

M. Jae ——
' FIG. 2. dzg(n)/éinlzl,,o and g(n)/a plotted as a function
of ny/al/%or positive values of 7, for scattering from a
free-electron gas at T=300°K and Ez=2.12 eV (corres-
ponding to potassium).

S 1 exp[-BE (1 - 2/a)] *

{1+ exp[-BEL(1 - ng/a)]f

Z~20 is estimated to be around 10000 A. Thus,
for collinear geometry, the range of interaction
of x rays and laser radiation for multiphoton pro-
cess is reduced by an order of magnitude.

IV. DISCUSSION

In the previous sections, we obtained expres-
sions for differential cross sections for Compton
scattering of x rays from bound- and free-elec-
tron systems. The results were obtained ‘as in fin-
ite series in powers of the laser electric field.
The relevant small field paranieter is given by
€=¢e"E2/2mwiE .

In order to neglect the modulation of the ground-
state wave function by the laser field, for the
bound-electron case considered in Sec. I, one
requires that the laser field be much smaller
than the atomic field E,,,.,.. A characteristic
field E§= (2mw? Ex/e?)*/? is the field value for
which €=1. It is easy to see that the condition
E{< E,1omic Would be valid for a wide variety of
situations. For example, consider a Nd laser
(wo=1.8x10% sec™). Taking a value E,=1 keV,
one obtains E~10° V/cm, which can be much
ismaller than typical atomic fields. In reality,
imuch smaller laser fields than E§ would be suf-
ficient to observe the effect suggested here.

The other small parameter in the problem is a
which equals E,/E for the bound-electron case
and E./E for the free electrons. Since for x-ray
Compton scattering E is typically of the order
of 1 keV, it is clear that &<« 1 for the situations
usually encountered.

The results plotted in Figs. 1 and 2 are com-
pletely general with regard to the laser and the
x-ray parameters. For both of the scattering
systems discussed here, the graphs clearly dem-
onstrate that many small variations in the elec-
tronic momentum distribution that barely affect
g(n,) would be amplified many times in d2g(n)/
ar],.

In conclusion, we have shown in this paper that
the presence of coherent electromagnetic radiation
has a profound effect on the Compton scattering
of x rays from bound electrons anda free-electron
gas. The effect offers an important experimental
technique for measuring details of the electronic
momentum distribution and the Fermi surface.

ACKNOWLEDGMENT

This work was supported by the City University
of New York Faculty Award Program.



18 COMPTON SCATTERING IN THE PRESENCE OF COHERENT... 545

1See Compton Scattering, edited by B. Williams (Mc-
Graw Hill, New York, 1977) for review articles and
references to previous work.

2P, Eisenberger and P. M. Platzman, Phys. Rev. A2,
415 (1970). :

3M. Jain and N. Tzoar, Phys. Rev. A 15, 147 (1977).

N. Tzoar and M. Jain, Optics Commun. 19, 417 (1976).

%J. F. Seely and E. G. Harris, Phys. Rev. A7, 1064

(1973); Y. Shima and H. Yaton, Phys. Rev. A 12, 2106
(1975).

SW. C. Hennenberger, Phys. Rev. Lett. 21, 838 (1968).

™. N. Rosenbluth and N. Rostoker, Phys. Fluids 5, 776
(1962); D. F. Du Bois and V. Gilinsky, Phys. Rev.
133 A1308 (1964).

8p. M. Platzman and N. Tzoar, Phys. Rev. 139, A401
(1965).



