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Separable-expansion method for potential scattering and the off-shell T mtrix
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The closed-form, separable-expansion expression of Belyaev, Wrzecionko, and Irgaziev for the two-body
T matrix is studied numerically for the case of a Yukawa potential. The method shows good convergence for
the elastic scattering amplitude at intermediate energies, yielding results almost identical to Glaubers
eikonal method.

I. INTRODUCTION

Traditionally, when solving the problem of non-
relativistic scattering of a particle by a fixed po-
tential, physicists and chemists alike resort to
the technique of expansion in partial waves. "' In
spite of the numerical difficulties attendant upon
this method, the phase-shift analysis is not too
involved at low particle energies. ' ' At higher
energies, this method, although still the most
reliable, becomes an increasingly cumbersome
tool because numerous partial waves are required.
Consequently, in and beyond the intermediate en-
ergy range, it has become popular to avoid par-
tial-wave expansion in calculating the scattering
amplitude by using the second Born approximation4
and other unexpanded or closed-form approxima-
tions such as the eikonal method of Glauber, ' the
impact-parameter method of Blankenbecler and
Goldberger'. and the Born-series method of Ra-
bitz. ' These methods have proved remarkably
successful in the analysis of intermediate-energy
atomic and hadronic collisions esyecially the ei-
konal method. "'

Very recently, Belyaev, Wrzecionko, and
Irgaziev" have proposed a new closed-form
method which reli, es on a separable expansi'on
for the interaction potential. The applicability of
this approach was examined by Belyaevet al. only
for the case of elastic scattering from a Gaussian
potential. Because of its simple. features, this

separable-expansion (SE) method conceivably may
have applications in atomic, nuclear, and high-
energy collisions. At the same time, the method
is also valid in the determination of the off-shell
t matrix, the quantity of paramount importance in
the Faddeev-equation treatment of three-particle
scattering. " In view of these potential applica-
tions, it seems highly desirable to conduct other
detailed tests on the SE method to ascertain its .

range of validity.
The present work is precisely an attempt to ex-

plore the method, to illustrate its simplicity, to
write down the complete analytic expressions for
the various integrals arising from its use on
Gaussian, Yukawa, and exponential well shapes
and finally to investigate its quantitative pred-
ictions for the case of elastic scattering from the
Yukawa potential of Fanchiotti and Qsborn, "where
exact numerical results are available for com-
parison.

II. SEPARABLE-EXPANSION METHOD

If we use Dirac notation for the momentum-
space matrix elements and take the states 1k )
to be eigenstates of the unperturbed kinetic-en-
ergy operator, then the I.ippmann-Schwinger equa-
tion for the nonrelativistic scattering of a spinless
particle of mass m by a potential V can be written
as

(k' i(K'+ee) ~k)= (k' V k) +f (k' V)k") (K' —k' '+ie)'(k e(K' i~ ) k) et"e'

Here, we denote by k and k' the initial and final
wave vectors, units have been determined by
choosing 2m/S' = 1 and E =K' is the energy of the
particle.

In the SE method, Belyaev et al. ,introduce the
plane waves

(r) ( 2)).) 3/2 el)kf v'
so that

(k(V~k) =(ke)'fe "'V(e)e' ""ee =e, (k)
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and construct the approximate two-body potential

vlk& = g &k' vlx»&[d']»/&x/ I
vlk&

N

= Q»l;(k')[d '], q (k),

where

d;»= &x» I
v lx/& .

This SE form of the potential coincides wit, h the
exact one if at least one of the two vectors k or
k' matches one of the vectors k; and represents
the three-dimensional generalization of the Bate-
man expansion. " It is well known that a separable
potential leads to a separable g matrix. '4 Here,
it is a simple matter to show that the SE method
produces the approximate t matrix

N

&k' t (K'+ ic) Ik) = p»l»(k')[»kk '(K'+ze)]»/z/(k),

(6)

where the tilde over t indicates that the operator
t is not the exact one but that yielded by the ap-
proximate potential and

d( ii+ i )ddk=if k, (k
' )(K' k'"—+ id)' j,(k ) dk "

(7)

From Adhikari and Sloan's work, "we find the
separable expansion in Eq. (6) to be formally
equivalent to calculations based on the Schwinger
variational principle which connection would seem
to assure good convergence for the SE method.
For any rank N, t automatically satisfies exact
unitarity and time-reversal symmetry since it
is obtained from a Hermitian symmetric poten-
tial. "

The expressions for»l»(k) and b,»/(K +ie) are
those required and determined in second Born
approximation""" and explicitly analytic forms
can be found for familiar potential shapes such
as the Gaussian, the Yukawa, and exponential
wells. For completeness, we list these here (a)
Gaussian potential, V(»') = V,e ~':

(10)

(11)

where

1(m, k k;, k, d, k~) =, )im f (k +(k, -k" ('') (IP- @+i )k'( d+ (k, -k" (') "dk"

»)C(k) 1 V (»» p) 3/2 e )»( %») /d)k (6)

+0 (K2+'j»k) 1 V {pi») 3/2 8 Ik» )d/I /4)i+ -(1 V )2 2~ lP 23 k "k lel)k»-)k/I /3)k
V, 8 0 8 0

x(W[(2p) '/'K+2 (2p) '/' k;+k/ ]-W[(2i») '/'K--, ' (2 p) '/'lk»+k/ ]]., (9)

where W(x) =e erfc(-ix) and the limit c-0 is taken after the required integral has been performed. (b)
Yukawa potential, V(r) = V, (e ~/r):

»)»r(k) = (V,/2»»') (p'+ lk- k» I2)-',

/3»r/PP+ic) = (V3/2»»2) (p,2+ k» —k/ I
2) 'y (Vo/2»»2)2I(1, p, , k», 1, i», k/),

and

( )md)) Sm1 ek)1
-I(l X k 1 o( k

(»»2 1) f (»» l )) e(X2)m-1 Q(O(2)3 1

1/2
Z(1, x, k», 1, o», k/) = »»2(P2 —py) -'/' ln

(12)

p = -iK[(x+ o() + lk» k/ I'] +»)((x' K-'+/3») +x(a"-K'+/3/2), -
py =[(x+»)()'+ Ik, -k, I'][(x -»K)'+~';][(o. —»K)2+&2].

In particular, when X=@=v and (k,-( = (k&( =E'

2K/1 sin2 ()() ~ + 2 + —2K'»n3
A2 = »d'+ 4»d2K2+ 4K' sin' 2Q,

and Q is the angle between k, and k/. (c) Exponential potential, V(r) = V,e "":

(14)

(15)

(16)
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This potential has two bound states in the s-wave
channel and a. P-wave resonance at 0.5 fm '. We
chose k, to be iri the scattering plane so that k&
= (p, 8&) (see Fig. l). A comparative examination
of the SE, exact, Glauber, and Born-approximation
results for elastic scattering at one fixed medium
energy, X=4.0 fm"', are illustrated in Figs. 2
and 3. 'The SE results, at virtually every momen-
tum transfer, lie almost on top of the Qlauber re-
sults and are clearly superior to Born approxi-
mation although achieved with comparable ma-
chinery. Our results, obtained with p =Z and N
=12, are'a good facsimile of the exact results
calculated by Fanchiotti and Osborn. From Fig.
4, we see that the SE method yields particularly
accurate results above E=3.0 fm '. We note here
a point of technical significance. To prevent the
matrix 4 ' from becoming too singular, we had to
choose k, such that thy 8& are unevenly spaced
over 0'-180'. Problems with inversion occur

whenever the matrix elements of 4 are almost
equal in value, i.e., for evenly spaced 8,. Pro-
vided this precaution is observed, we derive re-
sults which are relatively insensitive to the rank
N and values of ~&, equally accurate magnitudes
frere achieved with K =6. Although we also varied
P, the best results were realized at P =K.

The example we have probed in detail in this
work certainly does not copstitute a complete
analysis or test of the SE method. Nevertheless,
this study does indicate evidence that Belyaev
et el. have indeed devised a convenient and ac-
curate approximation for the two-body t matrix
on and perhaps off the energy shell. We cannot
ignore an important drawback; some definitive
criteria must be developed for the choice of the
parameters k, . Studies should also be performed
for cases where the interaction potential possesses
a repulsive core. Vfe intend to continue our in-
vestigations in those directions.
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