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Calculations of cross sections for (vibrationally and electronically) elastic collisions of electrons with several
alkali-metal halides were performed for energies in the range of 0.13 to 20.0 eV. The applicability of the
adiabatic (fixed-nuclei) approximation for strongly polar systems is investigated by model calculations on
CsF, KI, and LiF. We demonstrate that integrated, momentum transfer, and differential cross sections for
polar systems can be reliably generated entirely within the body-frame, adiabatic approximation. We also
suggest resolutions of several discrepancies between the results of earlier calculations and between these
results and measurements. Close-coupling calculations, based on the adiabatic approximation and an
alternative form of the frame transformation, were performed for electron-LiF collisions using the full static’
and static model-exchange surface. Reasonable agreement was found with measured differential cross
sections at 5.44 and 20.0 eV. Shape resonances in the = and Il body-frame symmetries, centered near 1.8
and 1.5 eV, respectively, were observed. Similar features appeared in static-exchange calculation for NaF
and NaCl. We also compare the results of the static and static-exchange calculations with the results of
calculations using simpler model potentials and other approaches to the collision problem.

1. INTRODUCTION

The scattering of electrons by molecules with
permanent dipole moments has been intrinsically
interesting ever since Massey observed! in 1932
that “. .. the collision of electrons with a top
possessing such a dipole moment may be treated
by Born’s method (italics ours) whatever the
velocity of the electrons may be.” The assumption
that the interaction is dominated, if not completely
determined, by the long-range dipole potential,
leads to extremely simple cross-section formulas
that depend only on the electron kinetic energy;
and the molecular dipole moment and moment of
inertia (i.e., rotational spacing). These formulas
provide not only useful estimates of cross sections
in some cases but also a framework for more-
elaborate calculations and a benchmark against
which the results of such calculations and of mea-
surements can be compared.

We will find it useful in what follows to present
and briefly discuss these formulas at the outset.
For a molecule initially in rotor state j with dipole
moment D in a.u. (=2.5418 D), and an incident
electron with kinetic energy k2 in ], (=13.606 eV),
the differential,® momentum transfer,? and in-
tegrated® cross sections in the first Born ap-
proximation (FBA) can be written (for a rotating
dipole)
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where j’ =j £1, k'? is the kinetic energy of the
outgoing electron, and j, is the larger of j and

j'. All cross sections.are in units of a2 (=0.28 003
x1072° m?), Atomic units are used throughout this
paper, unless otherwise noted.

We note immediately that the FBA predicts
exceedingly large cross sections for molecules
with large moments of inertia and/or large dipole
moments. In the limit of the moment of inertia
I tending to infinity, %’ goes to %, and hence (1.1)
diverges in the forward direction and (1.3) is
infinite. The total (summed over j’) differential
and momentum-transfer cross sections reduce.
in this limit to
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which are independent of j. These results were
first obtained in the adiabatic approximation,*
i.e., by assuming that the duration of the collision
is short compared with the rotational period and
considering elastic scattering by a fixed dipole.
Given the magnitude of the cross sections pre-
dicted by the FBA, and the fact that polar mo-
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lecules (e.g., H,0, CO, CN, and KOH) are known
to exist in a wide variety of laboratory, atmo-
spheric, and astrophysical plasmas, interest in
electron scattering by this class of molecules
obviously goes beyond being purely academic. -
Successful modeling of the processes occurring
in these plasmas requires elucidation of the con-
ditions for which the simple formulas (1.1)-(1.3),
or (1.4) and (1.5), are quantitatively, as well as
qualitatively, correct, or data of considerably
greater accuracy.

An extensive literature® has accumulated since
Massey’s original work, in the effort to test,
and improve upon, the FBA and to obtain accurate
data for a wide variety of polar molecules. Most
of this work involved molecules with relatively
small dipole moments (D <1.5 a.u.), and for quite
low-energy electrons (<< 1 eV). The only experi-
mental data available until quite recently were
obtained from thermal-energy-swarm experi-
ments, which measure electron diffusion and
drift velocities in gases of polar molecules (cf.
Ref. 2). ~

The state of knowledge as of about 1972 with
regard to the general aspects of this problem
has been succinctly summarized by Garrett®:

“It has been well established that thermal-energy
momentum transfer and elastic cross sections
for electrons on polar molecules cannot be de-
termined to any reasonable degree of approxi-
mation by considering only the dipole contribution
to the electron-molecule interaction potential.
However (integrated) rotational-excitation cross
sections show a very strong correlation with the
square of the dipole moment of the target system
and are reasonably well represented by the result
obtained from the Born approximation.” While
Garrett’s systematic model studies” demonstrated
the importance of short-range interactions and
induced polarization, at least for thermal-energy
electrons and molecules with D <1.5 a.u., the
absence of either high-precision single-collision
measurements or detailed calculations for any
molecule with a significant dipole moment made
it impossible to quantify the exact “degree of
approximation” involved in simple theoretical
models.

Much more work was clearly required, and it
has received great stimulus recently from the
molecular-beam-recoil measurements of Stern
and co-workers.®"'! These were® “the first ab-
solute, single-collision measurements on a mo-
lecule of significant polarity, and therefore a
first test for features of the theory.” These mea-
surements were made for electron energies
Z 0.5 and <15 eV, and for molecules (CsF, CsCl,
and KI) with dipole moments ranging from 3.10

to 4.26 a.u.

The results were surprising, particularly for
low-energy electrons (~1 eV). The differential
cross sections were much more strongly peaked
at very small angles, and very much smaller
elsewhere, than the FBA prediction; and the total
integrated (momentum-transfer) cross section
ranged from a factor of 2—-3 (10-20) times smaller
than the FBA prediction at the lowest energies.
Pronounced minima in the differential cross sections
were found at 60°-~90° and at 180°. More recent
relative crossed-beam measurements'? for KI
yielded results for the shape of the differential
cross section which did not show the pronounced
minima previously observed, except at the much

. higher energy of 60 eV. Results qualitatively

similar to the latter have been obtained very
recently for LiF.'?
There have been a great number and variety

" of calculations made in recent years in the effort

to understand the results of these measurements.
Inorder toputour own work in sharper perspective
we will discuss the results of these calculations
in Sec. II. It suffices here to say that all of these
calculations, no matter how sophistieated the
treatment of the scattering equations, have em-
ployed quite simple models of the interaction
potential. While there can be no doubt that these
calculations have provided an extremely useful
qualitative understanding of the scattering process,
particularly the limited validity of the FBA, they
also confirm the observation of Garrett quoted
above, as we shall see.

We have, therefore, undertaken a detailed study
of electron scattering by the typical highly polar
molecule LiF using the close-coupling formalism
and a much more accurate representation of the
interaction potential (including static, exchange,
and polarization effects) than in any previous
calculations for a highly polar molecule.'* This
molecule was chosen, rather than one of those
for which measurements had already been made,
because a Hartree- Fock wave function is available,
and because it is the simplest alkali-metal halide
to treat computationally. We also report the re-
sults of preliminary calculations in the same
approximation for LiCl, NaF, and NaCl.

In order to investigate several qualitative aspects
of the scattering process, and the utility of much
simpler representations of the interaction po- ~
tential and treatments of the scattering formalism,
we have performed close-coupling calculations
for LiF, CsF, and KI using model potentials
similar to those used in other work. For LiF,
we have also employed restricted approximations
to the complete static (no exchange) interaction
potential. Finally, we have investigated two
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unitarized Born approximations,® which are
simple variations on the FBA.

The rest of this paper is organized as follows.
In Sec. II we briefly discuss the application and
validity of a commonly used approximation in
electron-molecule scattering, the adiabatic ap-
proximation, and summarize some of the issues
raised by recent theoretical and experimental
results. We present in Sec. III the basic scat-
tering formalism used in the present work. This
includes discussion of both the space-fixed (lab-
oratory) and body-fixed (adiabatic) reference
frames, the collisional approximations, and the
interaction potentials employed. In Sec. IV we
describe in detail the techniques used to solve
the scattering equations in the close-coupling
approximation, the generation of cross sections,
and the convergence (accuracy) criteria imposed.
The results are presented and discussed in Sec.
V, and our conclusions summarized in Sec. VI.

II. BACKGROUND

It would be inappropriate to attempt here a
detailed review of all the models proposed, and
calculations made, for electron scattering by
highly polar molecules in recent years. It will
be useful, however, to comment briefly on the
conclusions which have been drawn from this
work, and to summarize the major insights that
have been gained. This discussion will also high-
light some of the ambiguities which may attend
an intercomparison of earlier results and provide
the motivation for some of the specific compari-
sons of the results of other work, both theoretical
and experimental, with our own in Sec. V.

One of the major difficulties attending any at-
tempt to compare the results of calculations
with the measurements cited above is the fact
that the latter were carried out with molecular
beams at temperatures on the order of 1000 °K.
One then has a distribution of molecular rotational
states populated statistically about some most
probable value which is quite high, typicallyj
=40-80 for the molecules studied by Stern and
co-workers.® !

Faced with this fact the theorist has three op-
tions: (i) calculations for molecules with initial
values of j typical of the experimental conditions,
which become exceedingly difficult the more
sophisticated the scattering formalism and in-
teraction potential adopted; (ii) use of the adia-
batic approximation (mentioned in Sec. I in the
context of the FBA and discussed in more detail
below), in which case the cross sections obtained,
when summed over all final rotational states
assumed degenerate in energy, are independent

of j; or (iii) calculations for a molecule with j
small or zero, in which case direct comparison
with experimental measurements cannot be made
without the invocation of the same assumptions
that underlie the adiabatic approximation. Because
of the critical importance of this approximation

to many of the calculations made to date, and to
our own work, we will first discuss it in some
detail.

A. Adiabatic approximation

This approximation has been used with con-
siderable success in calculations of electron
scattering by homonuclear (nondipolar) molecules.
It is not obvious, however, that the approximation
can be applied in calculations of electron scat-
tering by polar molecules, in view of the long-
range nature of the dipole potential. In fact, as
is well known, forward-scattering and integrated
cross sections diverge if this approximation is
consistently adopted. This divergence has already
been noted in Sec. I for the special case of the
FBA, and may be partially responsible for skep-
ticism about the validity of this approximation
for differential cross sections for scattering out
of the forward direction and for momentum-
transfer cross sections as well, in spite of evi-
dence to the contrary for the special case of
the FBA. Much of the recent theoretical evidence
seems to support this skepticism.

We believe, however, that this evidence is
misleading and that the adiabatic approximation
can, when carefully applied, be extremely useful
at little or no sacrifice in accuracy in calculations
for polar molecules. Essentially classical argu-
ments in support of this hypothesis are reviewed
below. The implications for quantum-mechanical
calculations will be discussed in Sec. IIIC.

In order to distinguish the results of calculations
which involve this approximation in one way or
another, we first define the “complete” rep-
resentation as that in which the rotational Ham-
iltonian of the target molecule is explicitly in-
cluded in the wave equation for the scattering
system.

The fundamental criterion'® for the validity of
the adiabatic approximation is that

|k ~#'|R,«<1, ' (2.1)

where R, is some effective radius for the inter-
action region. Classically stated, this condition
requires that for a projectile with velocity v the
duration of the collision R a,/v be short compared
with the period w™' of target motion. For electron-
molecule scattering this condition is often used

to justify neglect of the rotational Hamiltonian
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of the target (we will ignore here vibrational and
electronic degrees of freedom), from which it
follows that the wave function for the scattered
electron may be obtained with the positions of
the molecular nuclei held momentarily fixed in
space. This can be viewed as a sudden approxi-
mation in the motion of the electron.

With this approximation scattering amplitudes
for rotationally elastic and inelastic transitions
can be obtained by a simple rotational transfor-
mation to the coordinate frame in which the mo-
lecule rotates. We will refer to this henceforth
as the adiabatically rotating molecule (ARM)
representation.

Cross sections for elastic scattering by an
ensemble of molecules assumed to be motionless
and randomly oriented in space may also be ob-
tained by averaging the scattering amplitude for
the fixed molecule over all orientations relative
to the incident electron direction. This will be
referred to henceforth as the fixed-nuclei (FN)
representation. (The phrase “fixed nuclei” is
also occasionally used to designate what we refer

to as the ARM representation.) It has been shown'”

that the total (summed over all final rotor states)
differential cross section in the ARM representa-
tion is independent of the initial rotor state and
identical to the elastic differential cross section
in the FN representation. This result similarly
applies to the total integrated and momentum-
transfer cross sections as well.

Limitations on the validity of the adiabatic
approximation will clearly apply equally to cal-
culations carried out in the ARM and FN rep-
resentations. This is conventionally* assessed
by evaluating R, from the classical distance of
closest approach,

k®=D/R2. (2.2)
With (2.2) the conditioﬁ (2.1) for the validity of
the adiabatic approximation becomes
5 D2\ k| D1/2|k2_k/2|
- k B 2k

<1, (2.3)

which is well satisfied for most electron-molecule
collision systems of interest.

The divergence of the forward-scattering and
integrated cross sections in the FN representation
is, on the other hand, an essential property of the
dipole potential. It is not just a special conse-
quence of the FBA for the point-dipole potential,
nor could it be avoided by any more sophisticated
treatment of the scattering problem for a polar
molecule in the FN representation.’® This fol-
lows from the facts that divergence in the FBA
cross sections is owing to a logarithmic diver-
gence in the partial-wave series for large I (the

angular momentum of the scattered electron),
and that the interaction is, in the limit of large

1, accurately treated using the FBA for the point-
dipole potential.

The resolution of the apparent contradiction
between the conclusion based on (2.3) and the
complete breakdown of the adiabatic approxi-
mation for forward scattering follows from the
observation that (2.2) is inappropriate for small-
angle (large-impact-parameter) scattering. For
impact parameters R, = 4D/k, or equivalently
for scattering angles

0<1/8D=6,, (2.4)

itis necessary to adopt instead a quantum mechanical
description.'® The FBA formulas (1.1)=(1.3) for the
point-dipole potential in the complete representation
areadequate for this limited purpose. Thusnoreal
contradiction exists. The adiabatic approximation
may be invalid for transitions with lAj | =1 at
small scattering angles, but (2.3) remains a valid
criterion for assessing its validity for 62 6,.

Let us consider, then, the angular region § <0,
in a situation in which 6 < 1. In this limit we can
approximate (1.1)-(1.3) by

%’?T(j”j'le)” 5371)2 2;11 1—co;9+2A’
2.5)
oy(i—=3") =~ ;,:—21)2 2;11 (1+A1Ina), (2.8)
and
o (i)~ o D2 2 jpant, @.1)
3k 27 +1
where
A=%(62/D). (2.8)

We see that for 6 <6, the adiabatic approximation
is valid for transitions with |Aj|=1 only for

0> 6/D2=9,. 2.9)

Finally, we also note that it is possible to estimate
the angular range for which the FBA is valid as'®

9<3/4D=90,. (2.10)

For 6«1, we have 0« 0,« 6,<#0,, suggesting
that there is no gap between the angular regions
for which (1.1) is appropriate, and that for which
more elaborate calculations in the FN or ARM
representation may be adequate. This approxi-
mation would also appear to be appropriate in
calculations of the momentum-transfer cross
section, since the second term in (2.6) is a mea-
sure of the error introduced. Finally perhaps
the most important result—the FN or ARM rep-
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resentation may even be useful in calculations

of the integrated cross section, in the form of

a correction to (1.3) for scattering out of the
forward direction. This might be written schemat-
ically ‘

T T
01:05‘8.«_( ( do.FBA_f dcc),
e 0

where 0 is chosen such that 6,«< 6 < 6,, with the
first term given by (1.3), the second using (1.1)
or (1.4), and the third using the result of some
calculation in the FN or ARM representation.
The term in large parentheses in (2.11) will be
referred to henceforth as Acy.

These arguments have several interesting con-
sequences which can be easily tested by cal-
culations. For example, the difference between .
total (summed over all final rotor states) inte-
grated cross sections calculated in the complete
representation and the result given by (1.3) should
be insensitive to the initial rotor state chosen,
and should agree with results for this difference
obtained in the FN representation. The same
should also apply to total differential cross sec-
tions for scattering out of the forward direction
and total momentum-transfer cross sections.
Partial cross sections calculated in the com-
plete and ARM representations should also agree.

It should be clearly understood that these are
not statements about the accuracy of results which
might be obtained from any particular calcu-
lation, since this may depend critically on the
sophistication of the scattering formalism adopted,
on the accuracy with which the interaction po-
tential is represented, and, of course, on the
degree to which the conditions for the validity
of the adiabatic approximation are satisfied.

In Sec. IB we will summarize the results of
recent theoretical and experimental results for
the alkali-metal halides, with particular attention
to this issue. We conclude here by noting that
for the extreme case of LiF, we obtain (see Sec."
[ID5) from (2.3) ' '

6 (LiF)~1.34x 10" T2 /E

(2.11)

(2.12)

where T (°K) is the rotational temperature of the
molecules and E (eV) is the energy of the incident
electron. Thus for typical crossed-beam mea-
surements (T ~1000 °K) we have 6 <4 x 102 and
6,<0.2° for E>1 eV. Since from (2.10) we also
have 6,=~17° the alkali-metal halides would
appear to be particularly suited to application

of the adiabatic approximation.

B. Discussion of recent calculations

We first summarize the calculations which have
been made according to the categories outlined

~above.

The most elaborate calculations in the com-
plete representation were made by Allison® for
CsF with j =41, using a cut-off dipole potential
and the close-coupling (CC) formalism. Similar
calculations were made by Itikawa, who employed
cut-off dipole and quadrupole potentials in a de-
tailed study?! of CsF withj =0 and 1, and who
also made a general study of the dependence of
momentum-transfer cross sections on dipole
moment.?? " Smith and co-workers®* 2! used semi-
classical perturbation theory (SPT) for the dipole
interaction to approximate the quantum-mechanical
S matrix, and obtained results for a wide range
of values of the dipole moment, initial rotational
state, and ratio of electron energy to rotational
spacing. A modified form of the FBA (MFBA)
in which a hard sphere was substituted for the
singular 1/72 dipole potential at small radii was
used by Rudge?® in a general study for several
alkali-metal halides with values of j typical of
the experimental measurements. Calculations
have also been made for KI (with j =75) in the
distorted-wave (DW) approximation using a dipole
potential modified semiempirically at small radii.'2
First-order time-dependent perturbation theory
(TDPT) was applied by Dickinson and Richards®®
to obtain simple formulas for integrated rotational
excitation and deexcitation cross sections as a
function of dipole moment, initial rotational state,
rotational spacing, and approximate molecular
size.

The ARM representation was employed by
Takayanagi,?” and by Ashihara ef al.,?® in cal-
culations using the Glauber formalism. In his
work, Takayanagi considered only j =0, and the
point-dipole potential. Ashihara et al. also in-
vestigated the effects of the quadrupole potential,
induced polarization, short-range interactions
(through the device of the charge distribution of
the molecule in the united-atom limit), and the
dependence on j. Onda?® explicitly solved the
equations for elastic scattering by a fixed dipole
cut off at small radii in a study of CsCl with j =0.
We will for convenience refer to this model hence-
forth as exact adiabatic (EA).

Calculations in the FN representation were
carried out by Fabrikant,*® using essentially the
same formalism as Onda, and by Dickinson®!
using classical perturbation theory (CPT). In
both cases total integrated cross sections were
also obtained as discussed in Sec. I A, in terms
of Ac;,.

The most striking result of all these calculations
is that none yielded values for the total integrated
cross section which differed from that given by
(1.3) by more than about 20%, in sharp contrast
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to the large differences obtained by Stern and
co-workers. The results of these calculations
are, in addition, in excellent mutual agreement
for a given value of j, confirm the expected strong
dependence onj (cf. the work of Rudge®®), and
also suggest that the .correction Ao, to the FBA
result is quite insensitive to j, in agreement with
the arguments above. This latter point was first
noted by Dickinson,3! and is supported by the
results of other model studies.?®212%2 Further
evidence in support of this point will be presented
in Sec. V. We also consider the model dependence
(both collisional and potential approximations)

of partial integrated cross sections with |Aj|#1,
and find that the results support Garrett’s con-
clusion that they are much more model dependent
than is the total integrated cross section or that
for {Aj | =1. Finally, we pursue in detail a sug-
gested® resolution for the discrepancy between
the calculated and measured total integrated
cross sections, which raises a serious question
about the credibility of the latter.

With regard to momentum-transfer cross sec-
tions, the results of the various calculations
qualitatively confirm, with one exception, the
experimental observation that large reductions
from the FBA are obtained. One very valuable
insight gained from these calculations is that
this large reduction occurs in spite of significant
contributions, typically two-thirds of the total,
from transitions with |Aj|#1. The most detailed
evidence for this is given in the work of Itikawa?'» 22
and Hickman and Smith,?* but was suggested by
the magnitude of the contribution to angular dis-
tributions obtained earlier.?”"?° Since only the
dipole potential was included in most of these cal-
culations, they also show that the effect is owing
largely to second-order coupling of rotational
states with |Aj|#1 by the dipole potential.

The results of these various calculations are,
however, extraordinarily diverse quantitatively.
The major cause of this diversity is differences
in the scattering formalism adopted and the treat-
ment of the interaction potential. The semiclas-
sical,®® modified FBA,? classical,® and Glau-
ber?” 2 calculations are not expected to be very
accurate for scattering at angles =60°, which
makes a significant contribution to the momentum-
transfer cross section. The differences between
the two adiabatic calculations?% can probably
be attributed to the different approaches to the
solution of otherwise identical equations. The
differences between the CC calculations,?®?! and
between these and the adiabatic calculations,?
are harder to rationalize, and one is tempted
to conclude?®! that this is evidence of the breakdown
of the adiabatic approximation. The semiclas-

sical?* calculations also suggest that there is a
significant dependence of the total momentum-
transfer cross section onj for smallj and 9,

and hence that the adiabatic approximation is
invalid. We will present evidence to the contrary
in Sec. V.

Turning finally to differential cross sections,
the results of the various calculations, again
with one exception, agree qualitatively with the
experimental observation that the FBA prediction
is much too large except in the forward direction.
They also show,2*2™2° 35 gtated above, that there
is a very significant contribution to the total
differential cross section at large scattering
angles from transitions with |Aj |4= 1; and that
large-angle scattering is very sensitive to the
collision approximation and to the form of the
interaction potential adopted.?»2*3! Finally, it
has been well established?!272%31 that the pro-
nounced minima in the experimental results®!!
at 60°~80° cannot be reproduced in the total dif-
ferential cross section, even though they ap-
pear®®2h 25272 jp the partial differential cross
section for transitions with |Aj|=1. All of these
results are confirmed by our own work, as will
be seen.

We also provide evidence tending to confirm
the suggestion® that “the (observed) cross sections
zeros at ~80° and 180° may be artifactual; a result
of the finite flexibility of the models” used to
analyze the experimental data. This evidence
also suggests that the experimental data, if not
the cross sections extracted therefrom, may not,
in fact, be inconsistent with theoretical results.

The one exception mentioned above is the re-
sults of measurements and distorted-wave cal-
culations for KI,'? which differed from the FBA
predictions for both the differential and momen—
tum-transfer cross sections by very much less
than the results of any other measurement or
calculation. It has been suggested®! that the cal-
culations perhaps suffered from violation of
unitarity, but if so it should also have been ap-

. parent in the earlier calculations?® which em- -

ployed a similar perturbative approximation.
Nevertheless, we will show in Sec. V that the
use of the identical model potential in the close-
coupling formalism leads to results for the dif-
ferential and momentum-transfer cross sections
which are drastically different, and in much

 better qualitative agreement with expectation.

We will also consider the normalization of the
measurements.

In general, while the results of model studies
such as those cited in this section, and reported
in Sec. V, can contribute to the resolution of
important issues, such as the validity of the FBA



and the adiabatic approximation, which do not
depend critically on the short-range interaction,
the quantitative accuracy of the results can be
questioned. The present detailed calculations for
LiF also discussed in Sec. V are aimed at begin-
ning to fill this void, and show that careful at-
tention to the scattering formalism and accurate
representation of the fotal interaction potential
is of much greater importance than any issue
associated with the adiabatic approximation if
accurate results are wanted for anything other
than the total integrated cross section or the dif-
ferential cross section for scattering at small
angles.

III. COLLISION FORMULATION

In all of our calculations we make the following
simplifying assumptions: (i) the Born-Oppen-
heimer approximation in which the target mo-
lecular wave function separates into electronic,
vibrational, and rotational components; (ii) the
molecule confined to its ground electronic and
vibrational state; (iii) the rigid-rotor approxi-
mation in which the nuclei of the molecule are
fixed at the equilibrium separation. With these
assumptions the equation for the scattered electron
for an arbitrary coordinate system can be written

[T(R) +Ho (M) + V(R,7) -3 ¥(R,7)=0,  (3.1)

where R is the position of the electron from the
center of mass (c.m.) of the molecule, %? is its
energy, H_.(7) is the rotational Hamiltonian of
the molecule with 7 describing the orientation
of the molecule, and V(R,?) is the potential
operator.

If we further neglect exchange between the scat-
tered and molecular electrons, we can write
V(R,7)¥(R,?) as

V(R (R, 7)=(D0, | Vint |00, ) (R,7), (3.2)

where ¢, , represents the electronic and vibra-
tional components of the molecular wave function
and V,, is the electronic potential between the
scattered electron and molecular electrons and
nuclei. We will return to the question of exchange
in Sec. MID2, and incorporate exchange effects
by adding a local, energy- dependent effective
potential to the static potential VS(R, 7).

A. Reference frames

We will next discuss the two coordinate frames
used in obtaining solutions to (3.1), the so-called
space-fixed (SF) and body-fixed (BF) frames.
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1. Space-fixed frame

In this frame the electron position (R) and mo-
lecular orientation (#) are referred to a set of
axes fixed in space at the c.m. of the molecule.
We can expand ¥(R,7) in terms of the vector-
coupled product functions

YR, = 3 Clilmm, | IM) Y, )Y 1, R,

m,m,
(3.3)

where C(jlm;m,|JM) is the Clebsch-Gordan
coefficient,?? and Y,m !('r) and Y, (R) are the eigen-
functions of H,ot('r) and the angular momentum
operator i2 for the incident electron, respectively.
With this expansion in (3.2), (3.1) reduces to the
infinite set of coupled equations®?

d? e +1
(- 22 )

=20 TV R LER) (3.4)

. .," 'I'
for the radial function ’f¥!,, (R), where
K=k 4[5 +1)=5'(5' +1)]B (3.5)

is the channel energy, B is the molecular rota-
tional constant, and

TV R) =Y 5 | Vs |YiMy . (3:6)

The set of Eqs. (3.4) is block diagonal in J, and
we will henceforth drop the superscriptJ on f
and V. For a given value of J each value of j has
associated with it all values of 7 which satisfy
the relation |J —j|<I< |J+j|. The boundary
conditions which must be satisfied by f,, +(R)
are

fit.(0)=0 (3.7
and
i (R)Rf:’o 83400330 exp[—ilkyy R — 31m)]

_ (%) Y2 0g11, explite,pR — 30m)].

The S-matrlx elements obtained from (3.7) define
cross sections in the complete representation.

2. Body-fixed frame

In this frame the 2z axis of the coordinate sys-
tem is oriented along the internuclear axis and
therefore rotates with the molecule. The states
are labeled by the quantum numbers J, I and the
projection m,; of 1 (now referenced to the BF
axis) on the internuclear axis. The various !
values are coupled by Vs (R, #) and the various m,
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values are coupled by H_,(#). Sincethe BFand SF
frames are related by a simple rotation, the
collision formalism is, at this point, identical
in the two frames.®** If we make the adiabatic
approximation, and neglect H_.(#) in (3.1),

\II(R ’V) can | be expanded in terms of elgenfunc-
tions Y,m,(R) of 1. This leads to the infinite set
of coupled equationg3 3¢ :

dz 'l +1
(- ZH ) st

=2) MV, R)"gl (3.8)
'll

for the radial function ™ g },(R), where
MV R) =Y |V | Vi) - (3.9)

Since Hmt(7f) has been neglected, the set of
Egs. (3. 8) is block diagonal in m2; and is indepen-
dent of 7 and we will henceforth drop the super-
script m; on g and V. The convention is to let
m, designate the symmetry of the total system,
e.g., m,; =0 is said to be T symmetry, m;=1,
IT symmetry. A given value of m, has associated
with it all values of [ > |m,|.

The boundary conditions which must be satisfied
by g}, (R) are

gh(0)=0 (3.10)
and

gL(R) ~ 0y exp[—i(kR — 31m)]
R=

-ms}l, exp[i(kR -3 1'm)].

Henceforth all references to the BF frame in
this paper should be taken to imply the additional
adiabatic approximation. The S-matrix elements
obtained from (3.10) can-then be used to cal-
culate cross sections in either the ARM or FN
representation.

B. Collisional approximations

Two methods are used to obtain solutions to
(3.4) and (3.8): the close-coupling approximation
and the Born approximation.

1. Close-coupling approximation

This is a well-known technique for.obtaining
accurate, but approximate, solutions to the infinite
sets of coupled equations (3.4) and (3.8) by trun-
cating the expansions of \I/(‘ﬁ,’;) after a finite
number of terms. The approximation is valid
provided that the effect of neglected channels
on the cross section of interest is small. This
has been shown®’ to hold rigorously “for low-
energy molecular scattering below the thresholds

for vibrational and electronic excitation chan-
nels even in the presence of long-range dipolar
fields.” .

In the SF frame* we include all rotational
states j =0 to j =j,,, and hence the number of
channels for a given value of J consists of all
sets of (jI) such thatj <j,,, and |J —j|<l<|J
+j|. Inthe BF frame® we include, for a given
value of m,, all values of I such that |m,| <I<l,,
The choices of j,,. and I, may be a function of
J and m,;, respectively, and are determined by
the accuracy demanded of the results. If applied
carefully, with large enough values of j,, and
l..axs Cross sections of very high accuracy can be
obtained.

2. Born approximation

As discussed in Sec. II, the Born approximation
not only yields qualitatively, and sometimes
quantitatively, accurate results for various cross
sections, but also is essential in representing the
effects of high partial waves in more elaborate
calculations. We employ three forms of the Born
approximation—the FBA and two unitarized ver-
sions.

The transition matrix in the FBA, which we
will designate BI, can be written T =-2iB,
where the elements of B are in the SF frame®®

TBil= -gi(k,jk,j.)llzj:) dR R%j,(k,,R)

XV (R)ju (R R)

(3.11)
and in the BF frame®®

m Bl =-2ikf dR R%j,(kR) V% (R)j,. (kR),
0 .
(3.12)

where j,(x) is the spherical Bessel function of
order I. We expect the T-matrix elements from
the BI approximation to be more accurate for
higher partial waves (large I) since the centrifugal
barrier will be large enough to prevent them from
penetrating the region of strong potential.*’ We
will denote by I® that value of I such that for I

or I’ >1® the formulas (3.11) or (3.12) yield T-
matrix elements in good agreement with the re-
sults of close-coupling calculations for the full
potentials. The choice of IZ determines some
corresponding value of J2 (for j =0, J2 ~j, +18,
where j, is the largest value of j* required in the
calculations), and of |m?| =12,

For strongly polar molecules the BI T-matrix
elements for low values of I may not satisfy the
unitarity constraint. We consider the results of
two modifications of the FBA which remedy this



defect. The T matrices in these two approxi-
mations, designated BII and BIII, are defined
in terms of the BI matrices B by'

T =-2iB(1-iB)" (3.13)
and
Torr=1-exp(2iB). (3.14)

The BII approximation can be derived alternatively
from a variational prescription,*? or from con-
sideration of only the “on-the-energy-shell” tran-
sitions in a general transition-operator formu-
lation.*® The BIII approximation can, on the other
hand, be identified with the near-classical limit
of the collision process.*

These approximations not only satisfy the re-
quirement of unitarity, but also allow some ac-
count to be taken of second-order interactions
(|aj|, |At]|#1) not allowed for in the BI approxi-
mation. Itikawa has shown,* for example, that
the BII approximation yielded quite good results
for the high partial-wave contributions to elastic
scattering in CN, for which violation of unitarity
was not an issue.

C. Frame transformation

We argued in Sec. II that the adiabatic approxi-
mation may be perfectly adequate for cross sec-
tions for momentum transfer and for scattering
out of the forward direction. We also know that
forward scattering and integrated cross sections
would diverge if calculated entirely from solutions
of (3.8). In order to obtain results for these cross
sections we must take into account the rotational
Hamiltonian. We note, however, that the BF
frame equations (3.8) involve many fewer scat-
tering channels than the corresponding SF frame
equations (3.4), and are thus computationally
much easier to handle. We would, therefore,
like to take advantage of this computational ef-
ficiency, when it can be done with no significant
sacvifice in accuracy. The frame transformation
allows us to do this.

As noted earlier, the SF and BF frames are
related by a simple rotational transformation.
For the scattering matrix elements this can be
written®

TSP = (=1 YOIV —mym, | §70)
my

x ™1, C(J1 —mym,|50).
(3.15)

The S-matrix elements ’S !, obtained from (3.15)
with ""S}, defined by (3.10) are, as a consequence
of the adiabatic approximation, not strictly equiv-
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alent to those defined by (3.7). Cross sections
obtained from these S-matrix elements are in the
ARM [representation.

The conventional application® of the frame-
transformation theory has been to divide the cal-
culation into two regions of space at R;, which is
characteristic of the molecular size. For R <R,
where the strong short-range interaction po-
tential dominates, the calculations are performed
in the BF frame. The wave functions so obtained
are then transformed at R, to the SF frame. The
calculations are then continued:for R =R, in the
SF frame using (3.4). This approach yields re-
sults which are not, strictly speaking, in either
the complete or ARM representation, but a mix-
ture of both.

In the most detailed calculations on LiF re-
ported here we employ an alternative approach
which is computationally more efficient. It con-
sists, quite simply, of using the BF frame equa-
tions (3.8) for partial waves with small Z, and
the SF frame equations (3.4) for partial waves
with large I. The specific meaning of “small”
and “large” in this context will become clearer
in what follows, and will be specified explicitly
in Sec. IVC.

The justification for this procedure is provided
by a simple extension of the arguments presented
in Sec. II' with regard to the validity of the adia-
batic approximation. The essential requirement
is that all interactions—kinetic, rotational, po-
tential—that make a significant contribution to
the fotal distortion of the wave function of the
scattered particle must be included in the scat-
tering equations. This is a much less restrictive
condition than that implicit in the usual application
of the frame transformation, viz., that all inter-
actions must be included which are comparable,
in any given region of space, to the dominant
interaction.

We can see why the latter might be unneces-
sarily restrictive by considering the relative
contributions, as well as relative strengths,
of the kinetic, potential, and rotational energy
components as a function not only of distance
from the c.m. of the molecule, but also as a
function of I. For small ! the wave function for
the scattered particle will penetrate deeply into
the molecular charge cloud, and its properties
will be determined primarily by the strong short-
range interaction potential. . The additional ac-
cumulation of phase owing to the rotational Ham-
iltonian will be small by comparison, and may
be neglected, despite the fact that at some large
radii the rotational and kinetic contributions
may be comparable.

For large I, however, the wave function for
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the scattered particle is confined to the region
outside the molecular charge cloud, and its prop-
erties are primarily determined by the long-range
component of the potential energy, which may be
comparable to the rotational contribution. The
accumulation of phase from large radii owing to
the rotational Hamiltonian may be a significant
part of the total, and cannot, therefore, be neg-
lected. Conversely, the contribution from the
strong potential at short distances is small and
may be very crudely approximated, e.g., by the
FBA for the point dipole in the limit of very large
l. The actual validity of these approximations
must, of course, be tested in particular appli-
cations, just as the value of R; must be carefully
chosen in the conventional application of the frame
transformation.

This suggests, then, that some value I¥ can be
specified such that for I and I’ <17 the elements
7§34}, can be obtained with requisite accuracy
from close-coupling calculations performed
completely in the BF frame, with particular
attention to an accurate representation of the
short-range interaction, and application of (3.15).
For I or I’>17 the elements 'S #!,, may be obtained
either from close-coupling solutions of (3.4) with
a model potential which accurately represents
only the long-range interaction, or for 7 or I’
>1B (see Sec. IIIB2) from the FBA formula (3.11).
From the form of (3.15) it follows that close-
coupling calculations in the BF frame are only
required for m, <17, For a particular choice
of initial rotor state j these calculations are
sufficient to completely specify the elements
78 i}, for alll and I’ <17, all J satisfying |j — 1|
<J < [j+l], and all j* satisfying |J 1’| <j’
< |J+1']. If, for example, we choose IT=4
and are interested in transitions involving the
ground rotor state (j =0), BF frame calculations
with m] < 4 specify all elements 7S, with 7 and
I"'<4, 0sJ <4, and 05’ <8.

In the present calculations we actually do some-
thing slightly different but practically equivalent.
Since we are interested in transitions involving the
ground rotor state, we choose some value J7 and
carry out calculations in the BF frame sufficient
to specify the elements /S i}, for allJ <J7 and
all j* <j°, where j° is the highest rotor state of
interest. We require, therefore, calculations
in the BF frame for m, <mf=J7 which have I ,,
not less than J7 1+5° (see Sec. IIIB1). Elements
for values of J>JT are obtained as outlined in
the previous paragraph, with model-potential
calculations used for J7 <J <J% and the FBA for-
mula (3.11) used for J>J5, The specific choice
of JT depends, of course, on the accuracy re-
quired, and the sensitivity of the results to the

value chosen must be carefully checked. We will
refer to cross sections obtained in this way as
being in the complete representation, although
strictly speaking, the ARM representation is
being used for J <J7,

In order to test this technique we performed
fully converged close-coupling calculations in
both the SF and BF frames at several energies
with the static surface [S(36), see Sec. IID1].
Applying the frame transformation (3.15) to the
BF frame S-matrix elements, we found that re-
sults obtained for the lowest few quantum numbers
(j,1,J <4) agreed with SF frame S-matrix ele-
ments to better than 1%. Roughly equivalent values
of I,,,, were required for convergence in the BF
and SF frames, but the latter also required j,,
~20, Large-scale calculations in the SF frame
for low values of J with the number of total scat-
tering channels implied by these values of j ..
and I, are clearly impractical at present.

D. Potential-energy surfaces

In this section we describe the procedure we
employ for calculating the matrix elements (3.6)
and (3.9). In addition, we describe a method for
incorporating exchange effects (which we neglected
earlier) into the formulation by augmenting the
static surface by a local, energy-dependent ef-
fective-exchange potential. Polarization effects
are included by a semiempirical adiabatic polar-
ization potential. Finally, we discuss several
model potentials, some of which have been used
in previous polar-molecule calculations.

1. Static surface

We represent the electronic wave function for
the N-electron, closed-shell target molecule as
a single-configuration Hartree-Fock function of
the form?3®

8,1+ N) = Carevralller 6,00,

(3.16)

where ¢,(j) represents the ith spin-orbital at
position §, €,,..., the Levi-Civita density, and
where the sum over each index a¢+° 7 runs from
1 to N. Substituting this expression into (3.1),
we find that Vg (-ﬁ, #) for an electron interacting
with an N-electron target molecule is given by

Vs®R,7)=V,®R,7)+V,(R,7), (3.17)

where

V@M =-3 =2

=, (3.18)
I3 ‘R'—Ryl ’



with the sum over all nuclei of charge Z, and
position R, relative to the c.m. of the molecule,
and

N
- o1 e
V,(®, ) =2 ’};{fcp,(s) g ts@ds,  (.19)

with § the coordinates of electrons in spin-orbital
Jj relative to the c.m. of the molecule and N
=3 N the number of occupied orbitals. We have
therefore divided the static potential into its
nuclear and electronic components, V, and V,,
respectively.

In order to simplify the angular integration
implicit in the matrix elements (3.6) and (3.9),
we expand (3.17) in a Legendre series as

Vs(R,7)= Y 0,,(R) P,(cosh)
A=0

+ Zve',‘(R)Pl(cose) s (3.20)
A=0

with 7+ z = cosf for Z the coordinate axis of the
SF or BF frame. We can now perform the angular
integrations analytically. In either frame, the

resulting expression is proportional to the product ‘

of several Clebsch-Gordan and/or Racah coef-
ficients.*

The sums in (3.20) must be truncated at some
finite values A, and A, of A, and we define A,
=max(x,,A,). It should be noted that since higher
components of v, couple higher terms in the wave-
function expansion, the number of terms in both
expansions must be increased simultaneously
until satisfactory convergence in the results is
achieved. The nuclear component vn'A(R) has
a simple analytical form in this single-center
expansion,?® while the electronic component
must be determined by numerically integrating?*®
(3.19). On the other hand, far fewer electronic
(»,) than nuclear (A,) components are needed to
accurately represent that contribution to the
total surface.*® This results from the fact that
the electronic component represents the inter-
action between an electron and the diffuse elec-
tronic !charge cloud of the molecule, while the
nuclear component in (3.20) is an attempt to re-
present a singular potential with a nonsingular
expansion. The value of A, required for con-
vergence is thus determined by the first sum
in (3.20), and we will henceforth denote the static
surface so defined as S(\,,)-

2. Exchange

We have so far neglected exchange effects in
order to simplify the scattering equations. How-
ever, it is well known that exchange plays an
important role in low-energy electron-molecule
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collisions.'*%° The proper inclusion of the exact
nonlocal energy-dependent exchange potential in
(3.1) would be extremely difficult for highly polar

- molecules. Recently, however, several local-

exchange model potentials have been shown to
give quite good results for electron-molecule
collisions at low and intermediate energies. The
advantage of a local potential is that it can be
appended directly to V in (3.17) without any change
in our previous formulation.

We employ the local, energy-dependent free-
electron-gas®! (FEG) exchange potential of the
form® '

Vesa( R, 7) = =(2/mks F(n), (3.21)
where

F(n)= —;—+ L;_ﬁ"f_ In i:?} , (3.22)

n=k/kg, (3.23)

ke =[37% p(R)]', (3.24)
and

kZ=k®42I,+k2, (3.25)

with I, the molecular ionization potential and
p(R) the molecular charge density. This formula
arises from treating the molecular-electrons as
a FEG and the incident electron in the Born ap-
proximation. The FEG charge density is replaced
by the actual molecular change density of the
target molecule determined from (3.16). In ad-
dition, the local momentum « has been improved
by including the incident momentum of the scat-
tered electron k and the ionization potential of
the molecular valence electron.

The static-exchange (SE) potential-energy sur-
face is given by

Vee (R, 7)=Vs R, 7) + Vepo®,7) - (3.26)

As with the static surface, the exchange potential
energy is expanded in a Legendre series as

VFEG(-ﬁ’ ';) = Z Uex,x(R)Px(COSG) (3.27)
A=0

which is truncated at a finite value A,, of . For
all work described here we found that the adequate
convergence could be obtained with the same num-
ber of terms (r,,) in the expansion (3.27) as in

the expansion of the electronic part of,kVS .

The success of the FEG models in accurately
representing, through a local potential, the more
important features of the nonlocal exchange terms
has been well documented.?® %552 gStudies using
several local-exchange model potentials have
been made*®* for electron collisions with H,,

N,, and CO,. The results, when compared with
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those from calculations employing more rigorous
representations of the exchange effect, and with
measurements, have been most encouraging. The
particular model described by (3.21)-(3.25),
referred to as the Hara FEG exchange potential
(HFEGE) since first used by Hara in studies of
e-H, collisions,® seems most appropriate for
low-energy electron collisions with many-electron
targets.

3. Polarization

The use of a wave function for a ground-state
isolated molecule in the derivation of the inter-
action potential does not take into account the
polarization effects that arise from the distortion
of the molecular charge cloud in response to the
incident electron. We will investigate the effect
of this omission by adding to the potential-en-
ergy surface an effective, adiabatic polarization
potential of the form

V(R 7) = [ @+ @, P,(cos8)] C(R)/2R*, (3.28)
where
CR)=1-exp[-(R/R,)].

The spherical and nonspherical components of the
dipole polarizability of the molecule are given by
a, and a,; the cut-off radius R, is chosen within
the constraint that the polarization potential has
negligible strength within the molecular charge
cloud. Thus, the static-exchange-polarization
(SEP) surface is given by

VSEP (-ﬁ’ ';) = Vs (ﬁa /;) + VFEG(_ﬁ’ ;) + Vpol(ﬁ; ';) .
(3.30)

(3.29)

Calculations for several molecules (N,, CO,, CO),
where polarizabilities are well known and for
which resonance features in a particular symmetry
had been observed experimentally were improved
by varying Rc‘., in (3.29) until the calculations
gave a resonance at the experimental posi-
tion.38 40 46:4%53 . The jntegrated and momentum-
transfer cross sections obtained, which away
from the resonance depended on many symmetries
in addition to that in which the resonance ap-
peared, were found to be in quite good agreement
with measurements over a large energy range.
The “tuning” procedure therefore appeared to give
an improved total-potential-energy surface for
the collision. For the alkali-metal halides that
we consider, the polarizabilities are not well
known and as yet there is no direct experimental
evidence for any resonance features. Therefore,
we include the polarization surface in our cal-
culations only to judge the sensitivity of the fea-

tures we observe in the SE calculations to a “rea-
sonable” choice of polarization interaction.
4. Model potentials

The SEP surface was used only for calculations
on LiF, and the S and SE surfaces for calculations

“on LiF, LiCl, NaF, and NaCl. For LiF, and for

KI and CsF, we also perform collision calcu-

lations using a number of much simpler model
potentials. The first of these potentials is the
point dipole (PD) which has the form

v,(R)=-D/R?,
v,L(R)=0, A#1.

This particular model is used only in Born-ap-
proximation calculations. The second set of
model potentials that we employ is the cut-off
dipole model [DCO(R,)] which has the form

v,(R)=—-(D/R*){1 - exp[-(R/R,)’]},
0, (R)=0, x#1.

(3.31)

(3.32)

This model has been used extensively in calcu-
lations of electron-polar molecule collisions,**
and is simply the PD model cut off within the
molecular charge cloud to avoid the unphysical
dipole singularity at the molecular c.m. We
include studies of it here in order to determine
how well it compares with more realistic sur-
faces (S, SE, SEP), and to investigate several
qualitative aspects of the collision process. Dif-
ferent forms of the cut-off function (3.32) were
also used in model studies for KI and CsF for
direct comparison with earlier work.!? 2

The third set of model potentials of the static
surface are what we shall call truncated static
models. For these models, we use the expansion
coefficients of the static surface given by (3.20)
but include a much smaller set of these terms
than is necessary to accurately represent the
full static surface. We shall present results
from two such truncated models with A, =2
and 11 [S(2), S(11)] for LiF collisions. As we
shall see later, no fewer than 37 (\_,, = 36) terms

"~ are needed to describe accurately the full S and

SE surfaces for LiF.

5. Molecular data

The molecular data used in the various cal-
culations are collected in Table I. The rotational
constrants and dipole moments used for LiF,
LiCl, NaF, and NaCl were obtained from the
equilibrium Hartree- Fock wave functions®® used
to generate the potential surfaces. The most
accurate measured values®® of B and D are also
given for comparison. The entry in the third
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TABLE I. Molecular data for the alkali-metal halides used in this work.

LiF LiCl NaF Nacl KI CsF
B (hartree)  5.96(—6) ?

[6.18(—6)] [3.24(—=6)] - [1.99(—6)] [9.98(=7)] [2.77(-7)] = [8.40(=7)]
D® (eay) 2.59 2.86 3.61

[2.49] [2.81] [3.21] [3.54] [4.26] [3.10]
5ET1/2°_ 1.34(—4) 1.03(—4) 8.06(—5) 6.40(—5) 3.72(—5) 5.53(~5)
Ip (hartree) 0.472 0.376 0.348
o (@d) 4.64
o, (a)) 1.04

2 The power of ten is given in parentheses.

b The values in [ lare from Ref. 56.
¢ For E in eV and T in °K.

row defines 0, the figure of merit for the adiabatic
approximation, as a function of molecular ro-
tational temperature T and electron kinetic en-
ergy E. The ionization potentials were estimated
from Koopman’s theorem.®*” The values of a,

and a, for LiF were determined from the value

of a, given by McLean and Yoshimine,*® and «,
estimated by scaling the value® of @, for HF

by the ratio a,(LiF)/a,(HF), as suggested by
Kolker and Karplus.5®

IV. SCATTERING CALCULATIONS

In this section we describe in detail the broce-
dures used to solve the sets of coupled equations
(3.4) and (3.8), to extract scattering cross sec-
tions, and to fix the numerical accuracy of the
results. We emphasize application to LiF, since
this system was the most extensively studied.
Calculations in the complete and mixed rep-
resentations are limited, for computational
simplicity, to elastic scattering from the ground
(j=0) rotational state, and inelastic transitions to
the lowest few excited rotational states needed to
insure convergence in total cross sectidns.

A. Solution of the coupled equations

If N channels are retained in the expansion of
the system wave function, (3.4) and (3.8) become
sets of N coupled differential equations for each
particular J or m, block, respectively. The solu-
tion vector has N components or channel wave
functions that satisfy the particular boundary
condition (3.7) or (3.10), and there are N linearly
independent solution vectors. We can therefore
represent (3.4) and (3.8) in general matrix form
as

LUR)=V (R)U(R), (4.1)

where £ represents the diagonal operator on the
left-hand side of either (3.4) or (3.8), V(R) rep-
resents the potential-coupling term on the right-
hand side of these equations, and U(R) is the ma-
trix of solution vectors. T

We convert the set of coupled differential equa-
tions (4.1) to a set of coupled integral equations of
the form®

UR)=U,R)+ [ GRRVRNUR) AR’ , (4.2)
(4]
where G(R,R’) is the Green’s function satisfying
£G(R,R)=3(R -R’), (4.3)

and U,(R) is a solution of the homogeneous equa-
tion. A trapezoidal quadrature is used to approxi-
mate the integrals.’! For such an approximation,
U(R,) depends on integrals from R, to R,_,. There-
fore, U(R) can be propagated outward, nonitera-
tively, into the asymptotic region to some R_,,
where the potential has effectively vanished.*

The wave function is then fit to its asymptotic form
(3.7) or (3.10), and the appropriate S matrix ex-
tracted.

While the various solution vectors in (4.2) are
formally linearly independent, the solutions can
become numerically dependent as they are prop-
agated outward owing principally to the drastically
different rates of growth of the various channel
wave functions and the inherent round-off errors
of the computer. We have found that by applying
a stabilization technique,® by which UU(R) is placed
in upper triangular form every few integration
steps, linear independence of solutions for systems
with as many as 45 channels can be easily main-
tained.*®

B. Evaluation of cross section

All cross sections must be evaluated, in prin-
ciple, by an infinite sum over all J or m,. For
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highly polar molecules, literally hundreds of
values of J might be required in order to accur-
ately converge the integrated cross section, and
fewer but still a large number for momentum-
transfer and differential cross sections. In fact,
as implied in Secs. IIA and IIIC, it is unnecessary
to explicitly calculate S-matrix elements for J
>Jme] or m,> mp, for quite reasonable values
of J™ or m 7@, One uses instead completion
formulas that correct the FBA expressions (1.1)-
(1.3) by a rapidly convergent sum of differences

of quantities involving calculated S-matrix ele-

- ments and the corresponding BI elements from
(3.11) or (3.12). A general completion formula

for the differential cross section in the complete
representation has been given by Crawford and
Dalgarno,®® and the analogous formula for the FN
representation is easily written.

We have obtained integrated, momentum-trans-
fer, and differential cross sections® by using these
completion formulas, and combining the results of
various close-coupling calculations. For the high-
ly converged (A, =36) S, SE, and SEP surfaces
S-matrix elements were obtained from the BF
frame calculations using the frame transformation
(3.15) for J<J7T, where JT=m] since we consider
here only transitions from the initial rotor states
with j =0. These were combined with the results
of calculations for the DCO(0.5) model surface in
the SF frame for JT<J<J%, and BI T-matrix
elements for the PD potential from (3.11) for J2
<JsJm*  These results for LiF are the primary
objective of this work.

We have also obtained integrated, momentum-
transfer, and differential cross sections in the
complete representation using S-matrix elements
from close-coupling SF-frame calculations with
the truncated static surfaces and several DCO
model surfaces for 0sJ<J2, and BI T-matrix
elements as above. Momentum-transfer cross
sections in the FN representation were obtained
using S-matrix elements from the SE(36) surface
and several model surfaces for 0 <m,<m?, and
BI T-matrix elements from (3.12) for m? <m,
<m™, The quantity Ao, was also obtained in the
FN representation by evaluating the partial-wave
analog of (2.11). Finally, we have carried out cal-
culations in both the complete and FN representa-
tions using the BII and BIII approximations.

C. Convergence studies

In carrying out these calculations we set the goal
of obtaining total integrated, momentum transfer,
and differential cross sections numerically ac-
curate to better than 1%, 5%, and 10%, respec-
tively, whatever the representation, scattering ap-

proximation, or potential surface employed. To
achieve this goal it was necessary to carefully
check many aspects of both the scattering and
cross-section calculations.

In discussing the convergence properties of the
scattering calculations we lemphasize here those for
LiF carried out in the BF frame for the SE(36) sur
face, since these were the most difficult. The ob-
servations made will apply, however, equally,
though generally not as stri’ctly, to close-coupling
calculations in both frames with other potential
surfaces. The accuracy of the scattering calcula-
tions depends ultimately on the accuracy with
which the coefficients of the Legendre expansions
(3.20) and (3.27) are evaluated, and on five param-
eters influencing the solutions of (3.4) and (3.8):

(i) size of integration mesh used to evaluate }(3.19),
and that used in (4.2); (ii) number of stabilizations;
(iii) matching radius R_,,; (iv) number of channels
N included; and (v) number of expansion terms in
the potential surface.

(i) The radial integrals involved in (3.19) were
evaluated with successively larger numbers of
radial mesh points until satisfactory convergence
was obtained in both the v,(R) and cross sections.
It proved to be particularly important to check the
latter for energies <3.0 eV. The accuracy of the
quadrature scheme to evaluate the integral in

'(4.2) was checked in the same way. We found

that a step size of 0.01q, for 0.50a, on either
side of the nuclei was required to accurately rep-
resent the effect of the strong-nuclear-potential
component of the wave function. Away from the
nuclei, the step size could be increased substan-
tially reaching 0.50q, to 1.0a, in the region where
only the dipole term is important (R 2 15.0a,).%
Since such a fine mesh is required to accurately
represent the short-range potential surface and
wave function and such large steps can be taken
outside this regime, uswually less than 25% of the
time of the calculations was expended in the region
beyond ~10.0a,.

(ii) For the number of channels of order 12 or
greater, the solutions become noticeably linearly
dependent. To perform calculations for a larger
number of channels, we must employ the stabiliza-
tion technique mentioned above. By performing
stabilizations every three integration steps within
the short-range (R < 10.0a,) region and every six
steps in the long-range (R = 10.0q,) region we
could guarantee linearly independent solution vec-
tors.

(iii) The value of R_,, must be large enough that
the potential energy is negligible and the channel
wave functions are uncoupled and behaving as com-
binations of Bessel and Neumann functions. The
procedure employed is to simply continue to step
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out in R until partial integrated cross sections cal-
culated at subsequent values of R have converged
to better than 1%. R,_,, of 200.0a, was found to be
sufficient for lincident electron energies between
1.0 and 20.0 eV. The value of R, must be in-
creased as the energy is decreased below 1.0

eV, reaching 500.0q, for 0.14 eV. The large
values of R, that must be used to guarantee this
precision in the cross section arise solely from
the asymptotic behavior of the long-range dipole-
moment term of the potential surface. Thus,
similar values for R_,, must be used to converge
the scattering calculations with the model po-
tentials.

(iv) and (v) The most time consuming convergence
test is that for the number of terms that must be
included in the expansions of the wave function and
potential-energy surfaces. Since higher moments
of the potential surface couple higher channels of
the wave function to the lowest few channels in
which we are interested, the convergence studies for
the wave-function and potential-surface expansions
must be treated together. The procedure we
employ to determine convergence of cross sections
with respect to these two quantities is as follows:
(a) for a given value of [, and A,  the coupled
equations are integrated and the cross sections

determined, (b) the calculation is repeated with
a larger value of I, and A,  until subsequent
cross sections agree to within a given tolerance.
This procedure guarantees “local” convergence.
To guarantee a “global” convergence, the calcula-
tions are performed with six to ten channels more
than the number found to give good local conver-
gence. This procedure is necessary since the
cross sections may be very slowly convergent or
not yet in a monotonically convergent regime. We
have found that by setting Amax = I max and varying
both simultaneously, we can very rapidly reach a
regime in these quantities in which the cross sec-
tions are reasonably converged. Once this regime
is reached, a finer convergence test must be
employed by varying A m.x and Imax independently.
To illustrate these points, we display in Table
II a portion of a convergence study for [, and
Amax. In Table II(a), we demonstrate the technique
of simultaneously varying 7, and A,,,. We pre-
sent the eigenphase sum and the elastic cross sec-
tion for the lowest transition (I =0~1'=0). We
note from this table a fact observed in all our
polar-molecule calculations—that for a given
basis (Amax » Imax ) the T -matrix elements for transi-
tions among the lowest few partial waves (I< 4)
are always more highly converged than the cor-

TABLE II. Convergence properties for the LiF SE(36) surface at 2.0 eV for m;=0 in the BF
frame, for simultaneous (a) and independent (b) variation of A max and I pax. The upper entry in
each row is the value of 6(0 —~0) (in aﬁ) and the lower entry is the eigenphase sum.

(a) (b)
¥ max =2 max max /A max 32 36 40
8 23.985 22 25.337
~0.3081 —0.3978
10 27.163 26 25.417 25.416 25.417
—0.0294 —0.3440 —0.3364 -0.3352
12 30.591 30 25.490 25.479
0.2513 —-0.3195 —0.3080
14 36.378 32 25.529 25.504 25.506
0.7642 —0.3132 —0.3001 —0.2940
18 28.021 34 25.527 25.525
—0.8630 —0.2945 —0.2872
22 25.695
—0.4973
26 25.514
—0.3825
30 25.517
—0.3295
32 25.529
—0.3132
34 25.541

—0.3004
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responding eigenphase sum. Since it is these
elements that are most important in the frame-
tra‘gfformation formula (3.15) for the lowest few
rotational states of interest, we conclude that’
convergence tests based on the eigenphase sum
may be overly strict for polar molecules. From
Table II(a) it would appear that the basis (Zmax
=Amax = 26) is adequate. In Table II(b) we present

a more detailed study of the convergence properties
around this choice of basis size. For considera-
tions of economy in calculations and accuracy in
the collision quantities, we selected a basis with
Imax=26 and A, = 36 (x, = 24).°® This basis yielded
the desired convergence over the range of incident
electron energies between 1.0 and 20.0 eV, For
lower energies the basis had to be increased, e.g.,
for 0.14 eV Imax =X =42 was required for com-
parable accuracy.

Before we leaye a discussion of the BF conver-
gence properties, we should mention three other
points. First, for a given basis, the higher sym-
metries were much better converged than the =
symmetry. While an [, = 26 was required to con-
verge the T cross sections at 2.0 eV, anl,,
=18 was adequate for convergence in the IT and
higher symmetries. Second, for a given basis, the
SE(36) and SEP(36) cross sections were generally
better converged than the S(36) ones. Finally for
the truncated static and DCO surfaces a basis
of I,,.x= 22 was required for the lowest energies and
the T symmetry, but /,,,=16 was adequate for
higher energies and/or symmetries.

Except for comparative purposes, all close-
coupling calculations in the SF frame were per-
formed only with the truncated static and DCO
model potentials. In order to obtain results of
the required accuracy for transitions involving the
lowest few rotational states of interest, bases of
jmax=11 and 5 were required for the S(11), and
S(2) and DCO surfaces, respectively, for the low-
est values of J (typically J<4), but slightly smaller
bases were adequate for larger values of J.

Turning to the generation of cross sections, we
must consider the choice of the various param-
eters which enter: m7 ,m? mp> JT JB J™*,
and the largest rotor state j° and angular mo-
menta /° included in the sum for total cross sec-
tions. The choice of these parameters depended
of course, on the particular cross section of in-
terest as well as the accuracy required. They .
were also found to be mildly energy dependent, but
the values chosen were adequate for the entire en-
ergy range studied. The parameters m?, my*,[°,
JB, g™ and j* were, however, quite insensitive
to the representation of the interaction potential.

For the most elaborate calculations carried out,
those involving the highly converged (X, =36) S,

SE, and SEP surfaces and the frame transforma-
tion (3.15), we found that m7T =3 was required, and
hence JT=3.

Differential cross sections were calculated only
in the complete representation, and we found that
acceptable convergence was assured with J2 = 20,
The completion formula® is expressed as a sum
over Legendre polynomials. As a general rule we
found that more than 25 moments had to be ob-
tained accurately, and we usually calculated 28,
hence J™* =J 8+ 28=48. The behavior of the total
differential cross section as a function of J2 is
illustrated in Table IIL

The completion formula for. integrated and mo-
mentum-transfer cross sections usually used here’
have J ™ =J? and mP* =m?. The results were
found to agree with those obtained by integrating
the differential cross section to within the required
accuracy. Although most of our results for mo-
mentum-transfer cross sections in the complete
representation were obtained with J2=20, yield-
ing very accurate partial momentum-transfer
cross sections, J2~8-12 was found to be adequate
if only momentum -transfer or integrated cross
sections were required, and J2 =10 was used for
the CsF calculations. For calculations of Ao,
and the total momentum-transfer cross section in
the FN representation m? =3 was found to be
adequate.

For total differential and momentum-transfer
cross sections in the complete representation it
was usually necessary to include all transitions
from j=0 to j’ <4, i.e., j°=4; but /*=3 was
adequate for total integrated cross sections. For
Ao, and the total momentum-transfer cross sec-
tion in the FN representation we included all par-
tial waves with I <12, i.e., I°=12. The depéen-
dence of the total momentum-transfer cross section

TABLE IIl. Total differential cross section (in a2/sr)
for the LiF SE(36) surface at 5.44 eV as a function of JEB,
For the purposes of this study only, 7°=3.

0/J8 10 20 24
15 324.78 306.87 312.88
30° 51.62 53.63 54.16
45 15.63 15.55 15.67
60 6.62 6.74 6.80
75 4.17 4.41 4.48
90 3.63 3.59 3.60

105 2.72 2.86 2.81
120 1.96 2.01 1.91
135 1.36 1.39 1.31
150 1.38 1.36 1.31
165 1.85 1.76 1.73
180 2.04 1.96 1.94
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TABLE IV. Total momentum-transfer cross section
and Ao, for the LiF SE(36) surface at 2.0 eV in the BF
frame as a function of m? and 75,

Ty (af) Aoy (af)
mds 4 8 12 4 8 12

1 179.2 180.0 179.4 302.8 311.1 314.4
2 201.7 204.5 204.0 307.3 320.2 325.5
3 202.2 206.3 205.9 307.8 324.2 331.3

and Ag, in the FN representation on m? and I°

is illustrated in Table IV. We see that o) and
Ag, have similar convergence properties with
respect to m®, but that the latter converges more
slowly in /°. The maximum numerical error in
Ao, , which occurs at the lowest energies, is
estimated conservatively to be 15%.

V. RESULTS AND DISCUSSION

As stated in the Introduction, this work has
several purposes. The first part of this section
is devoted to discussion of model studies for two
alkali-metal halides (KI and CsF) with emphasis
on several qualitative aspects of the scattering
process. In particular we address the question of
the validity of the adiabatic approximation, and
attempt to resolve several of the discrepancies be-
tween the results of earlier model studies, and
between these studies and measurements. The
second part is devoted to results of the detailed
study of the representative highly polar molecule
LiF, and includes preliminary results for three
other alkali-metal halides.

A. Model studies

In these studies we have performed several
close-coupling calculations for KI and Cs¥ using
DCO model potentials as defined in Sec. IIID 4,
with the cutoff given by (3.32) and using forms
employed by other workers. Specifically, for KI -
and CsF we carried out calculations using the hard-
sphere cut-off dipole potentials exactly as defined
by Rudge et al.'? and Allison,* respectively. For
CsF we also carried out calculations using the
form (3.32) with R, exactly as given by Itikawa.?
The results of these calculations, which will be
designated DCO(R), DCO(A), and DCO(I), re-
spectively, can then be compared with the results
of these workers with no ambiguity about the effect
of the potential at short range. For KI we also
carried out close-coupling calculations with the
form (3.32), and with BII approximation for
purposes of comparison. Finally, we have also
investigated the general dependence of the mo-

TABLE V. Total integrated cross section for 1.0-eV
electrons on CsF in initial rotor state j.

No. j o (ad) Method 2 Reference
1 0 12479 BI e
2 0 10406 TDPTP 26
3 0 11242 CC [DCO(M]  Present
4 0 11233 CC [DCO(A)] Present
5 41 8 304 BI oo
6 41 7032 SPT 23
7 41 6911 ‘MFBA 25
8 41 6231 TDPTP 26
9 41 7153 cc 20

10 ~41 3930 Expt. 9

2 See Secs.II B and VA for notationin Tables V—VIII,
b Includes only transitions with |Aj|=1.

mentum-transfer cross section on dipole moment
with both the BII and BIII approximations.

1. Integrated cross section

We first consider the total integrated cross sec-
tion, illustrative results for which are given in
Table V. Before discussing the calculated re-
sults in detail we first attempt to resolve the large
discrepancy between the calculations and the mea-
surement. A quite simple resolution has been
suggested,” and we pursue it quantitatively here.
Using (2.10) we would estimate that the FBA
should be reasonably accurate for 6< 15° for all of
the alkali-metal halides. All of the theoretical
studies to date, including the present results for
LiF, agree with this estimate. Using the integral
of the FBA differential cross section for 6 <15°
as a rough estimate of the lower limit for the total
integrated cross section we obtain results which
are significantly larger than the measured results
over much of the energy range. This is illustrated
in Fig. 1 for CsF.

Using the FBA even more conservatively, for
CsF, CsCl, and KI under the experimental con-
ditions approximately (40-50)% and (50—60)% of the
total integrated cross section comes from the first
1° and 2°, respectively, for electron energies in
the range 1—10 eV. The values of this ratio are
quite insensitive to the value of j, and hence to
averaging over the actual experimental distribu-
tion of rotational states. At the lowest energies
;the contribution for 6 < 2° even exceeds the mea-
sured results for all three alkali-metal halides.
The analysis of the experimental data appears to

ave used a model® of the differential cross sec-

ion which deviates significantly from the FBA

ven “at center-of-mass angles less than 2° where

xperimental data are lacking” (cf. Fig. 11 in Ref.
;). There is no justification, either experimental
or theoretical, for such a model.
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E (eV)

FIG. 1. Total integrated cross sections for 1.0-eV
electrons on CsF. The experimental (Ref. 9) results
(O) are for the most probable rotor state j =41. The
solid curve is the FBA result [Eq. (1.1)], and the
dashed curve is the contribution to the latter from
scattering with 6 <15°,

All of the calculations listed in Table V were
carried out in the complete representation. The
general properties of the total integrated cross
section discussed in Sec. IIB are evident in these
results. Once the calculation is taken beyond the
FBA, the results are remarkably insensitive to
the representation of the interaction potential or
the scattering formalism used. This point will
be reinforced by the results to be discussed in
Sec. VB. The reason for this, of course, is that

"the major contribution comes from interactions
at large distances where the dipole potential
dominates land perturbation theory is applicable.

‘The arguments presented in Sec. I A with re-
gard to the adiabatic approximation lead us to ex-
pect that the differences between the FBA result
and more exact calculations should be quite in-
sensitive to the initial rotor state. This is reflec-
ted in the results of the various perturbation-
theoretic approaches. For example, the formula
of Dickinson and Richards?®® can be cast in the form
(for D> 0.6)

. 2
Ag,(8j=x1)= 8_315 Qkf (mu +0.7535 + o.1437> ’

D3
(5.1)

and the results of Mukherjee and Smith?® can be
approximated by the expression (for D>> 1.0)

8 2
Aoy = ST % (InD +0.7673 = 1), (5.2)

where 1 accounts for transitions with |Aj | #1 and
is ~0.6 for D >2.0. These two models were
developed in the complete representation, but the
results are independent of the initial rotor state.
The agreement between (5.1) and (5.2) for the
contribution for transitions with |Aj | =1 is re-
markable. The classical model of Dickinson,%!
developed in the FN representation, yields (for
Tow energies)

_ 87 D?

} 3TT
Ao, = 3 7 (lnD +0.2224:|:32D ), (5.3)

where the sign of the last terms depends on
whether (-~) or not (+) the differential cross sec-
tion in this model is constrained to be constant
for 6=60°. We note the good agreement between
(5.2) and (5.3) for large D, and the fact that
(5.1)=(5.3) all agree in the logarithmic dependence
on D.

The insensitivity to j is confirmed by the results
of the close-coupling calculations presented in
Table V, and is illustrated even more clearly in
Table VI, where Nos. 1, 3, and 5 are taken from
Table V. The difference between Nos. 3 and 5 in
Table VI can be attributed to the slightly different
value of the rotational constant B used by Allison,
If Allison’s value for the FBA cross section
(8424a2) is used instead of No. 5 from Table V
much better agreement with No. 3 results. The
differences between Nos. 1 and 2 and between Nos.
3 and 4 can be attributed to incomplete conver-
gence in the sum over final rotor states in
the SF-frame calculations (we included Aj < 4). The
results from the other two calculations in the FN
representation (Nos. 6 and 7) are in remarkably
good agreement with the close-coupling results.

We conclude that oncé Ao, has been obtained in

TABLE. VL. Correction to the FBA for the total integ-
rated cross section for 1.0-eV electrons on CsF. Results
of calculations for which the initial rotor state j is in-
dicated were obtained in the complete representation,
others were obtained in the FN representation.

No. J Aoy (ad) Method Reference
1 0 1237 CC [DCO()] Present
2 1213 CC [DCO)] Present
3 0 1246 CC [DCO(A)] Present
4 1234 CC [DCO(A)] Present
5 41 1151 cc 20
6 1221 EA 30
7 1393 CPT 31
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TABLE VII. Partial integrated cross sections (in a%)
for 6.74-eV electrons on KI.

o (j—~J")
No. 0-0 0-1 0-2 0-3 2 Method
1 4412 4412 BI
2 107 3743 36 17 3903 BII
3 116 3734 69 21 3940 CC [DCO(R)]
4 158 3733 62 14 3967 CC [DCO(0.9)]
5 158 3729 65 15 3967 CC [DCO(1.85)]

the FN representation, or in the complete rep-
resentation for one value of j, the total integrated
cross section can be estimated quite accurately
for all values of j, as long as 6<< 1. While we
might expect a more exact treatment of the short-
range potential than employed in any of these
calculations to change the resulting corrections
somewhat, there is no reason to believe that this
essential conclusion would be affected.

We now consider the integrated cross section
at the level of partial cross sections. Typical
results are given in Table VIL All of the calcula-
tions were carried out in the complete representa-
tion. The hard-sphere cutoff of Rudge et al.®? was
chosen to yield an electron affinity corresponding
to a reasonable estimate (0.7 eV). The other
values of R, chosen yielded values of the electron
affinity bracketing the estimated value, 0.85 and
0.35 eV for R,=0.9 and 1.35q,, respectively. We
see that while the total integrated cross section
and that for Aj =1 are quite insensitive to the
model used, the partial cross sections for Aj#1
show significant variation and that “tuning” to the
electron affinity is not sufficient. to determine
unique results.

We can also use the results in Table VII and the
scaling law for total integrated cross sections
stated above to estimate the cross section for the
most probable value of 7 (~'75) for T ~1000°K in
the experimental measurements.'*? Using Nos. 1,
and 4 or 5, we obtain a correction Ac¢ ;=44543,
which combined with the result of (1.3) for j=175
yields o, =2623a3. This may be compared with
the results of the distorted-wave calculation of
Rudge et al.,? and the measurements of Slater
et al.,"! which are 288242 and 201042, respectively.
We see that the former seems to be too large by
about 10%, but more significantly to suggesta
value of Ao, lower by about a factor of 2. The
differential and momentum-transfer cross sec-
tions from this calculation also seem too large,
as we shall see. Regarding the measured cross
section, it is almost certainly too small, since
the FBA cross section (1.1) contributes about
1900 & when integrated over only 2°.

TABLE VIII. Total momentum-transfer cross section
for 1.0~-eV electrons on CsF. Results of calculations for
which the initial rotor state j is given were obtained in
the complete representation, others were obtained in the
ARM or FN representation.

No. J 0y (ad) Method Reference

1 0 1095 BI

2 0 156 SPT 24

3 0 227 CcC 21

4 0 317 CC [DCO(1)] Present

5 ) 331 CcC [DCO(A)]  Present

6 323 CC [DCO()] Present

7 335 CC [DCO(A)] Present

8 168 Glauber 21

9 593 EA 21
10 357—418 EA 30
11 486 CPT 31
12 42 222 SPT 24
13 43 +137 MFBA 25
14 41 368 CcC 20
15 ~41 90 Expt. 9

2. Momentum-transfer cross section

Ilustrative results for the total momentum-
transfer cross section are given in Table VIII,
The FBA result No. 1 is not sensitive to j [see
Eq. (2.6)]. In contrast to the total integrated
cross section, the calculated results exhibit
great sensitivity to the scattering formalism and
potential approximation. Difficulties with the
analysis of the experimental data discussed in
the preceding and following sections also cast
some doubt on the accuracy of the measured value.
Thus the most that can be said is that the calcula-
ted and measured cross sections are, given the
limitations of both, not completely inconsistent.

As stated in Sec. IIB, several of the methods
used (Nos. 2,8,11-13) are not expected to be
highly accurate for scattering at large angles,
which make a significant contribution to the cross
section. The difference between the results of
the two adiabatic calculations Nos. 9 and 10 can
probably be attributed to different approaches to
the solution of the same equations. The larger
difference between the close-coupling and adia-
batic results Nos. 3 and 9 was taken, however, as
evidence that®! “the assumption of short collision-
duration is not fully satisfied in this case”;
and this seems to be supported by the comparison ¢
of Nos. 3 and 14 and by the semiclassical results
Nos. 2 and 12, both of which exhibit considerable
dependence on j.

The results Nos. 4-7 show that this interpretation
is incorrect. The difference between Nos. 3 and
4 is primarily owing to contributions from trans-
itions with Aj=3 and 4 which contribute 29% of the
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total in No. 4 and were not included in No. 3. The
differences between Nos. 4 and 5 and between

Nos. 6 and 7 are owing solely to the choice of cut-
off for the dipole potential. A comparison of Nos. 5
and 14 is, then, a measure of the dependence on

7 in the complete representation, which we see is
quite small and perhaps attributable to less-
complete convergence in the extremely difficult
calculations undertaken by Allison. Comparisons
of Nos. 4 and 6, and Nos. 5 and 7, also support
the validity of the adiabatic approximation since
the remaining differences can most probably be
attributed to contributions from transitions with
Aj>4. The use of different model potentials may
be partially responsible for the differences be-
tween Nos. 4-T and 9, and that between Nos. 2 and
12 is probably owing to the semiclassical approxi-
mations j=73(j; +j;) and j (j+1)~(j +3)? for the
target angular momentum. The dependence of the
cross section on j in these semiclassical calcula-
tions rapidly becomes weak as j increases.

Comparison with the results of Fabrikant® is
particularly interesting. This model employed, in
addition to the adiabatic approximation, an elegant
application of R-matrix and effective-range theory.
The range of results No. 10 corresponds to the
limits obtained for any choice of the unknown
energy-independent parameter representing the
effect of all short-range (and nondipolar) forces.
The fact that the present results Nos. 4-17 fall
outside this range may only suggest that 1.0 eV
is too high an energy for an effective-range ap-
proximation to be strictly valid.

Turning to a consideration of partial cross sec-
tions, we give typical results in Table IX. As
expected, we see that partial momentum-transfer
cross sections are even more model dependent than
partial integrated cross sections. The total mo-
mentum-transfer cross section obtained in the dis-
torted-wave calculation® for j=175 is 234 a2, as
compared with No. 3 for j =0; most of this differ-
ence must be attributable to the differences in col-
lision formulation rather than to any breakdown
of the adiabatic approximation. The good agree-
ment of the distorted-wave result with No. 1 is
therefore fortuitous and misleading. The measured
value® for j=175 is 11742, again not inconsistent
with the close-coupling results.

The general behavior of the total momentum-
transfer cross section as a function of dipole mo-
ment is illustrated in Fig. 2. The BI, BII, and
BIII cross sections were obtained in the FN rep-
resentation and hence are rigorously independent
of the initial rotor state of the molecule and
proportional to E™*. The curves plotted may be
compared, therefore, with measurements or
calculations for any molecule at any electron en-

TABLE IX. Partial momentum~-transfer cross sections
(in @}) for 6.74-eV electrons on KI.

Oy (575"
No. 0-0 0-1 0-2 0-3 2 Method
1 307 307 BI
2 5 13 9 16 43 BII
3 6 10 19 16 51 CC [DCOR)]
4 23 27 13 7 70 CC [DCO(0.9)]
5 16 19 17 9 61 CC I[DCO(1.35)]

ergy or temperature. Had the FBA cross sec-
tions been obtained in the complete representation
they would differ negligibly, for small 6, from
those shown. The range of results from close-
coupling calculations for simple DCO model po-
tentials for three alkali-metal halides are also
shown. Those for LiF are for electron energies
from 0.14 to 20 eV (see Sec. VB). Those for
CsF are from Table VIII (Nos. 4-7, 14) for 1.0~
eV electrons and from Ref. 20 for 2.0-eV elec-
trons. Those for KI are from Table IX (Nos.
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FIG. 2. Total momentum-transfer cross section as
a function of dipole moment. The experimental data
for (o) are from thermal-energy swarm measure-
ments: (A) (Refs. 67 and 68) and (O) (Ref. 69). The
calculated o for LiF, CsF, and KI indicated by (I) are
discussed in the text. The curves labeled BI, ‘BII, and
BIII are from the FBA in the FN representation, and
may be referred to either ordinate. The curves labeled
CPT and SPT were obtained using Eqgs. (5.4) and (5.5),
respectively.
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3-5). We also show the result of the simple
classical formula® for low energies

_ {197\ = 37
Ou= (16) P [D' 152 ] (5.4)
and the result of the empirical fit to the semi-
clagsical results®® for j>>1 and 6<< 1

o 4 ~1.55(7D/R?) . (5.5)

The total differential cross section in the class-
ical model was constrained to go over to the
FBA formula (1.4) for very small angles and to
be constant for 6> 60°. No such constraints
were imposed in the semiclassical model and if
they are removed in the classical model the
term in [ ] in (5.4) vanishes, but more in-
terestingly the term in ( ) in (5.4) becomes ex-
actly 37. We have no reason to believe that the
good agreement between these results and the
BII curve is anything but fortuitous.

We also note that the BII and BIII results agree
qualitatively with the flattening of the results
from the swarm measurements for D =1 a.u. and
with the nearly linear dependence on D obtained
from the semiclassical®® and classical®! models,
and show that violation of unitarity is a significant
consideration for larger dipole moments. Uni-
tarization does not, however, improve the agree-
ment with measurements for smaller dipole mo-
ments, in fact it makes it worse. The results of
the model calculations fall between the BII and
BIII results and are not inconsistent with the trend
of the swarm data., In the absence of more accu-
rate results for a particular molecule, a rough
scaling based on the average of the BII and BIII
curves appears most appropriate for large dipole
moments. :

3. Differential cross section

We expect differential cross sections, except
for small angles, to be even more model depen-
dent than momentum-transfer cross sections, and
therefore do not expect more than qualitative
agreement between the results of various calcula-
tions and measurements. As mentioned in Sec.
II B there is, however, sharp qualitative disagree-
'ment between the results of calculations and mea-
surements®™? which cannot be ignored.

The comparison of the results of some model
calculations with one of the measurements,*
shown in Fig. 3, addresses this issue. The es-
sential feature of the model used to analyze the
experimental data involved representation of the
c.m. differential cross section as the FBA form
(1.1) corrected by a three-term Legendre ex-
pansion, the coefficients of which were obtained .
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FIG. 3. Total differential cross section for 6.74-eV
electrons on KI. The experimental (Ref. 11) results (O)
are for most-probable rotor state 7=75. The dotted -
curve was obtained by taking only the first three mo-
ments in the Legendre expansion of the difference
between the DCO (1.35) and BI results.

in a least-squares fit to molecular-beam recoil
data, The dotted curve in Fig. 3 is equivalent to
a best fit, in a least-squares sense, of a three-
term Legendre expansion to the same correction
obtained from the DCO(1.35) model-potential
calculation. Results obtained from calculations

-with the DCO(R) and DCO(0.9) model potentials

display the same qualitative behavior. This is

‘not surprising, if we consider the results in

Tables V and VIII and recall that the total integra-
ted and m omentum-transfer cross sections are
determined by the first one and two moments, re-
spectively, of the Legendre expansion of the total
differential cross section.

A plausible explanation for the sharp minima
obtained from the measured data is, then, a lack
of sensitivity in the analysis procedure to the
higher moments of the c.m. differential cross sec-
tion. This would also explain the much smaller
disagreement (about a factor of 2) between the
calculated and measured momentum-transfer cross
sections than might be expected from comparison
of the differential cross sections; and suggests
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that it might be possible to extract accurate in-
tegrated and momentum-transfer (if not large-
angle differential) cross sections from the mea-
sured data.

We also note the good agreement between the
calculated and measured differential cross sec-
tions for 15° < @ <45°, which is also obtained for
the other two model potentials. For smaller angles
the three model potentials yield cross sections
which differ by less than 4%, again indicating in-
sensitivity to the form of the potential at short
range. The measured cross section, however,
falls as much as 30% below the calculated value
for 1° < §<10°. These angles are still very much
larger than that (§,~0.005°) for which the cross
section should have any significant dependence
on the initial rotor state of the molecule. We con-
clude that the disagreement at small angles, which
is reflected in the total integrated cross section
as discussed above, is probably a spurious con-
sequence of the particular model used to analyze
the experimental data.

Reanalysis of the experimental data appears
warranted and may be quite fruitful. All of the
cross sections obtained here can be expressed
analytically in the form

26
o™ )~ 3" A, P, (cost), (5.6)

A=0

do
0=

where the first term is given by (1.1) and the AA,
are known, and hence are ideally suited to such an
analysis. We are led to suspect that the use of any
of the DCO model-potential cross sections obtained
here would yield a fit, in a least-squares sense,
with the measured data that is no worse, if not
significantly better, than that originally obtained,
and are eager to see this hypothesis tested.

Total differential cross sections from the pres-
ent DCO model-potential calculations are com-
pared with the results of Rudge et al.'? in Fig. 4.
There is a significant difference between the re-
sults of close-coupling and distorted-wave cal-
culations for the identical model potential, as noted
above with regard to the total integrated and mo-
mentum-transfer cross sections. The large dif-
ferences among the three close-coupling calcula-
tions at large angles emphasize the importance of
an accurate treatment of the interaction potential
at short range, which, of course, has not yet been
done for KI. “Tuning” the exponential cut-off
function (3.32) to the same electron affinity as used
to define the hard-sphere cut-off function would
presumably yield a result intermediate between
the DCO(0.9) and DCO(1.35) curves, dand hence an
order of magnitude larger at 180° than the result
obtained with the hard-sphere cut-off function.
Since there is no reason to prefer one form of cut-
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FIG. 4. Total differential cross section for 6.74-eV
electrons on KI. The experimental data (Ref. 12) as or-
iginally normalized are indicated by (®) and as renor-
malized here by (O). The curve labeled DW is the re-
sult of the distorted-wave calculation (Ref. 12).

off function to the other, tuning to the electron
affinity may be a useful test, but it is certainly
not a sufficient condition for the utility of a par-
ticular model potential, particularly for large-
angle scattering.

Finally, we note that with the original normal-
ization of the relative experimental cross section
to the results of calculations at 15° agreement with
the FBA is obtained which is unique among mea-
surements or calculations for the alkali-metal
halides. We have taken the liberty of renormal-
izing (by a factor of 0.166) the experimental data
to the results of the close-coupling calculations at
45° where the excellent agreement among them
indicates little sensitivity to the short-range in-
teraction. The most plausible explanation for the
remaining differences is greater experimental
uncertainty at small angles and the weakness of
the model potentials for large angles.

B. Results for LiF

One of the most interesting results obtained in
the present study is a pair of shape resonances
which occur for incident electron energies ~2.0
eV. These are discussed in detail in Sec. VB 1.
In Secs. VB2-V B4 we discuss the integrated,
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TABLE X. Total momentum-transfer cross section and
Ao; for the LiF DCO(0.5) potential calculated in the BF
frame, and in the SF frame for j=0.

oy (ad) Aoy (a})
E (eV) BF SF BF SF
0.544 512 508 1363 1504
2.0 121 121 376 391
3.0 84 84 252 258

momentum-transfer, and differential cross sec-
tions, paying particular attention to comparison
between results obtained using various potential
surfaces and collision approximations.

Since the adiabatic approximation was invoked
in the most elaborate of these calculations, those
with the SE and SEP surfaces, we have also done
calculations for the DCO(0.5) potential completely
in the BF (FN representation) and SF (complete
representation) frames at three energies, The
results are given in Table X, and suffice to demon-
strate the validity of the adiabatic approximation
since only the long-range dipole potential is at
issue here. No differences are observed which
cannot be attributed simply to numerical errors
associated with convergence.

1. Resonances

The possible existence of a resonance or reson-
ances in electron scattering from the alkali-metal
halides was first suggested by Jordan and Luken™
in a study of LiCl. The first evidence of such an
effect appeared in the present SE calculations'*
for the LiF momentum-transfer cross section.

In the following sections we will discuss the effect
of these resonances on scattering cross sections,
but in this section we find it more useful to discuss
their properties from the point of view of mole-
cular structure.

In view of the discussion of the adiabatic approxi-
mation in preceding sections we believe that cal-
culations in the BF frame can provide an accurate
description of the scattering process for low sym-
metries. Since the approximations involved in
these calculations are essentially those involved
in most conventional molecular-structure cal-
culations, they should be particularly appropriate
for resonances.™

One manifestation of resonances in scattering
calculations is rapid variation in the eigenvalues
of the scattering matrix, which can be convenient-
ly studied by considering the sum of the eigen-
phases. These results for the SE(36) surface
from the BF-frame calculations for the Z and II
(m;=0 and 1, respectively) symmetries are shown
in Fig. 5. Notable features are the near coin-
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FIG. 5. Eigenphase sums for the LiF SE(O, A) and
SEP@, A) surfaces from calculations in the BF frame.
The ¥ and I symmetry results are indicated by (A,A)
and (O,®), respectively.

cidence of the two resonances in energy, but the
significantly different widths. By studying the
individual eigenphases we find that the II resonance
has a mixture of p- and d-wave character, and
that the T resonance has a complicated s-p-d
character. This is illustrated in Fig. 6 for the
latter.

In an earlier paper'® we attributed the broad
resonance feature in the momentum-transfer
cross section entirely to the II resonance, which
was consistent with the prediction of Jordan and
Luken™ that a © resonance, if it existed, would
occur at a much higher energy. Stimulated by the
results of the subsequent self-consistent-field
(SCF) calculations by Stevens’® (to be discussed
below), calculations with a much finer energy
mesh than used earlier revealed the existence of
the % resonance,

We should emphasize that these must be de-
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FIG. 6. Individual eigenphases for the LiF SE sur-
face from the Z-symmetry BF-frame calculation. The
dominant angular momenta below the resonance region
are indicated.
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scribed as shape resonances since no closed chan-
nels were included in these calculations, and that
they did not appear in calculations employing the
static or any of the model-potential surfaces.
Neither did they appear when the full exchange
potential was combined with a truncated static po-
tential; so it would be incorrect to attribute the
resonances solely to exchange. The importance

of the short-range potential was dramatically il-
lustrated in test calculations in which the matching
radius R_,, was reduced from the value 200q,
usually used to ~10a,, without destroying the re-
sonant character of the eigenphase sum. Quan-
titative change was, of course, observed.

The calculations of Stevens’ employed a pro-
cedure similar to that of Krauss and Mies’® to gen-
erate potential-energy curves for the resonance
states as a function of internuclear separation.
The results show that both resonances correlate
with the system Li(22P)+ F~(1'S) in the separated-
atom limit. At the approximate minima (~3.0qa,) of
the resonance curves and that for the ground state
of LiF, the Z and 1I resonances are ~1.8 and ~1.5
eV, respectively, above the ground state. Plots
of the amplitude of the valence-electron component
of the total wave function qualitatively agree with
the angular momentum character of the resonances
described above.

In order to test the sensitivity of the resonance
positions to polarization we have also performed
calculations with the SEP(36) surface. This also
provides a more consistent comparison with the
SCF results, since polarization is taken into ac-
count in the latter. The calculations were per-
formed for a range of R, in (3.29) from 2.5a, to
3.5a,, thereby spanning a physically reasonable
range. The positions of the resonances shifted to
lower energies by ~0.5 eV at most. The choice
R_=3.0a, reduces the energy of the Z resonance
~0.3 eV and that of the I resonance ~0.4, resulting
in quite good agreement with the results of Stevens.
These results are also shown in Fig. 5.

The relatively small effect of polarization com-
pared with that obtained for other molecules™ can
be understood by comparing the relative strengths
of the dipole and spherical (o,) adiabatic polariza-
tion potentials. Expressed simply in terms of their
asymptotic forms, the two are comparable for
R ~1.0a,, but the former is an order of magnitude
larger for R ~3.0q, and two orders of magnitude
larger for R~9.0q,. For nonpolar molecules, on
the other hand, the polarization and quadrupole
potentials may be quite comparable over the an-
alogous range of R.

In order to see if these resonances are indeed
a general property of the alkali-metal halides we
have performed calculations in the BF frame using

the S and SE surfaces for LiCl, NaF, and NaCl.
The eigenphase sums for the © and II symmetries
were calculated over the range of electron ener-
gies 0.25-5.0 eV. Preliminary results indicate
resonances in both symmetries for NaF and NaCl
at about 3.2 and 0.9 eV, respectively. The reson-
ance widths are comparable to the widths for the
LiF resonances. Neither system exhibited any
resonant character with the S surface.

To our great surprise, no resonance was found
in either symmetry for LiCl at the equilibrium
distance (~3.8a,). We cannot, of course, exclude
the possibility that the resonances are very much
narrower for LiCl than for the others and went
undetected with our energy mesh (0.25 eV), or
lie outside the energy range studied to ic'late. Some
evidence for the existence of a resonance or reson-
ances for LiCl was obtained in calculations for a
larger internuclear separation (~4.5a,), which in-
dicated resonant behavior in the 7 symmetry at
~0.5 eV above the neutral potential.

While preliminary, these results strongly sug-
gest that resonances may be not at all uncommon
in electron scattering by strongly polar systems,”
and that such features may substantially influence
momentum-transfer and differential cross sec-
tions. Since the present results for the resonance
energies do not correlate in any obvious way with
simple properties of these molecules (e.g., D,

'ao, I, the electron affinity, or equilibrium mole-
cular internuclear separation), it is not possible
at this point to generalize to the other alkali-metal
halides or to other interesting related systems
such as the alkali-metal hydroxides.

2. Integrated cross section

Partial and total integrated cross sections from
calculations in the complete representation at
three representative energies below (0.544 eV),
near (2.0 eV) and above (3.0 eV) the resonance
region are given in Table XI. Trends illustrated
by these results hold over the entire energy range
(0.14-20.0 eV) studied. We see that the S(36) and
simpler models of the static surface used in the
close-coupling calculations yield total integrated
cross sections within 2% of the SE(36) result. The
unitarized Born (BII) results are accurate to bet-
ter than 4%, and even the BI results are in error
by no more than 15%. These same observations
hold for the partial cross sections for the transi-
tion Aj =1, '

The partial cross sections for other transitions
are not given nearly as well by the simpler mod-
els. These transitions are only indirectly coupled
by the dipole potential and hence are much more
sensitive to the short-range component of the po-
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TABLE XI. Partial and total integrated cross sections (in @) for LiF.

o (F—=3")
E (eV) Model 0-0 0-1 0-2 0-3 0-4 z

0.544 SE(36) 776.2 9791.2 258.4 77.3 19.7 10 942.8
S(36) 737.0 9788.3 270.4 96.4 21.4 10913.5

S(11) 725.6 9797.0 269.8 84.7 17.9 10895.0

S(2) 711.9 9769.1 304.0 92.3 19.1 10896.4

DCO(0.5) 758.1 9705.5 269.1 83.0 20.6 10836.3

BII 447.7 9988.1 183.9 65.5 10685.2

BI 12 340.2 12340.2

2.0 SE(36) 246.3 3177.7 73.4 9.9 7.1 3514.4
5(36) 181.3 3160.5 84.6 29.0 5.2 . 3460.6

S(11) 157.4 3207.7 79.9 15.2 2.2 3462.4

S(2) 211.5 3199.0 68.6 15.3 3.9 3498.3

DCO(0.5) 186.9 3160.9 84.1 25.3 5.6 3462.8

BII 121.7 3214.7 49.9 17.8 3404.1

BI 3854.1 3854.1

3.0 SE(36) 126.1 2237.7 56.8 10.6 2.7 2433.9
: S(36) 112.7 2220.7 54.6 14.5 - 3.1 2405.6
S(2) 155.5 2223.7 44.8 10.9 2434.9

DCO(0.5) 122.4 2217.5 55.9 15.5 3.4 2414.7

BII 81.3 2245.6 33.3 11.9 2372.1

BI 2672.4 2672.4

tential surface. We note in particular the results
for the S(11) and S(36) surfaces at the two lowest
energies. Preliminary results obtained for .
~11 indicated that convergence had been reached
at this level. Further study revealed that this was

a false “plateau” and that many more moments

were required in the expansion (3.20) in order to
completely account for the nuclear singularity at

the Li nucleus which is much further from the

c.m, than the F nucleus.
Results for Ag; are presented in Table XII. Dif-

ferences between these results and those of cal-

culations carried out in the SF frame for the SE(36)

surface, some of which are given in Table XI,

never exceed the expected numerical accuracy of

either. Based on the previous results and dis-

cussion we conclude that the results presented in
Table XII can be used with confidence to generate
the total integrated cross section to an accuracy of

TABLE XII. Correction to the FBA for the total inte-
grated cross section for LiF for the SE(36) surface in the

BF frame.
E (eV) EAo; (eVad) E (eV) EAo; (eVad)
0.136 769.4 2.50 700.3
0.340 745.4 3.00 710.8
0.544 712.4 4.00 710.4
1.00 717.7 5.44 699.3
1.50 649.3 7.00 685.2
1.75 616.8 10.00 664.7
2.00 662.5 20.00 596.0

better than 1% for any initial rotor state for which
5 <<1.

Since the resonances are a property of the short-
range potential, there is little or no observable
effect in the total integrated cross section which
is dominated by high, nonpenetrating, partial
waves. A resonance feature is nicely revealed,

_however, in the results in Table XII, since this

quantity is a measure of the interaction at short
range. It is also obvious that the effect of the
resonances would be more pronounced in partial
cross sections for transitions with [4j|# 1 than
for those with !Aj | =1. In spite of the extremely
small rotational spacings involved, such measure-
ments can be contemplated. Preliminary results
of experiments using magnetic selection to detect
individual rotational transitions with |Aj| =1 have
already been reported.”

We note that EAg; is slowly varying and very
nearly linear in E above the resonance region. The
insensitivity of EAo; to E was noted in, or can be
inferred from the results of, earlier model stud-
ies?®25:26,30,31 which treated only the dipole poten-
tial, and is also evident in the present BII results,
given in Table XI, which are 901 eV a2, In the
FN representation the BII and BIII results are
915 and 691 eV a2, respectively. The difference
between the two BII results is owing to conver-
gence. For comparison the semiclassical®® and
classical®* models (5.2) and (5.3) yield 852 and
894 787 eVaZ, respectively. Using (5.1) or (5.2)
for transitions with [Aj| =1 only we obtain 1305
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TABLE XIII. Partial and total momentum-transfer cross sections (in @) for LiF.

O (j—3')
E {(eV) Model 0-0 0-1 0-2 0-3 0-4 P
0.544 SE(36) 171.5 - 199.2 83.6 78.9 27.3 560.5
S(36) 123.3 178.1 96.7 107.0 30.3 535.4
S(11) 120.9 163.8 101.1 88.0 473.8
S(2) 118.3 90.0 124.5 95.6 428.4
DCO(0.5) 137.5 170.7 87.9 83.4 28.2 507.7
BII 47.7 142.5 114.9 82.0 387.1
BI 1400.6 1400.6
2.0 SE(36) 78.8 84.7 27.9 8.8 6.5 206.7
S(36) 32.3 25.1 38.7 25.7 7.4 129.2
S(11) 26.5 34.1 35.6 14.6 113.8
S(2) 63.4 58.3 22.0 13.4 157.1
DCO(0.5) 28.5 27.1 31.8 25.9 7.6 120.9
BII 13.0 39.1 31.0 22.2 105.3
BI 381.1 381.1
3.0 SE(36) 24.5 31.7 25.0 11.5 3.7 96.4
S(36) 22.9 24.1 24.7 15.9 4.3 91.9
S(2) 43.5 42.9 13.8 10.7 110.9
DCO(0.5) 23.2 19.5 20.9 15.3 4.6 83.5
BII 8.7 25.8 20.7 14.8 70.0
BI 254.1 254.1

and 1309 eV aZ, respectively, in excellent agree-
ment with the results given in Table XI.

3. Momentum-transfer cross section

Representative results for partial and total mo-
mentum-transfer cross sections are given in Table
XIII, Sensitivity to the form of the short-range
interaction is clearly much greater than for the
integrated cross sections. Compared with the re-
sults of the close-coupling calculations, the BI
results are now poor for the transition with Aj=1.
The BII results are qualitatively correct, however,
and suggest that violation of unitarity rather than
inaccurate treatment of the short-range interac-
tion is the major flaw in the simple formula (1.2).

It is interesting to note that the DCO(0.5) results
are generally in better agreement with the S(36)

results than are either the S(2) or S(11) results.
This is somewhat misleading, as can be seen from
the results shown in Fig. 7. No one of the DCO
model potentials yields uniformly better agreement
than the others over this energy range, but all
seem to lie within a general envelope with relative-
ly constant upper and lower limits. The S(2) and
S(11) results also lie within or near this envelope.
This behavior is in general qualitative accord with
that predicted by the effective-range approach of
Fabrikant,® the stated condition for the validity

of which yields E<«< 6 eV for LiF. The momentum-
transfer cross section for highly polar molecules
from this model can be expressed as®®

oy =(1/k*) @ +Bsin(y + p Ink?)], (5.7)

where @, B, and . are constants depending only
on the dipole moment D, and y depends on both D
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and all short-range (and nondipolar) interactions.

The values of @, B, and u have not been given
for LiF, but can be roughly estimated from values
given for other molecules,?>® We estimate a
~17,3, ~0.60, and the period T(=27/u) 4.3 for
LiF. In comparison the present DCO results in
Fig. 7 have a~6.1, 8~0.80, and T ~3.7. The
agreement is reasonably good, but it must be noted
that at the lowest energies the stated condition for
the validity of the effective-range approximation is
well satisfied. The differences may be attributable
to the approximations made in the derivation of
(5.7), or to our estimates of @, B, and u.

This simple picture breaks down in the reso-
nance region, where the SE results differ dramat-
ically from the others, particularly for the transi-
tions with Aj=0 and 1. The peak of the resonance
lies well outside the upper limit of the envelope of
the present DCO results, or that based on (5.7).
An effective-range approach is probably inade-
quate for this type of resonance.

Results for the total momentum-transfer cross
section are presented in Table XIV. These re-
sults, again obtained from calculations carried
out completely in the BF frame, are in excellent
agreement with the results of calculations carried
out in the SF frame for the SE(36) surface, some
of which are given in Table XIII. As for the re-
sults in Table XII, we believe that these results
are valid for any initial rotor state for which &
<1,

The effect of the resonance is more clearly seen
in Fig. 8, as an increase of almost a factor of 2
in Eo, at ~1.8 eV. Comparing the various results
away from the resonance region we note several
trends. The BII and BIII results span the results
of the more accurate calculations. The semi-
classical®*® and Glauber™ results are practically
indistinguishable and too small, a consequence of
the large underestimate of the differential cross
section at large angles. The classical® results
are, on the other hand, too large, a consequence
of the fact that the differential cross section was
taken to be constant for 6= 60°. The rapid change
in the classical result around 10.0 eV is owing to
the additional condition imposed that the differen-
tial cross section is not smaller than the corres-
ponding hard-sphere cross section %Rﬁ at the
given energy, where R, is taken to be the equili-
brium internuclear separation.

The rapid rise in the SE results above 5.0 eV is
an interesting effect, especially when it is noted
that the momentum-transfer cross sections ob-
tained from the experimental measurements of
Stern and co-workers'®!! also displayed similar
behavior. Consideration of the partial cross sec-
tions revealed a sharply increased relative con-

* TABLE XIV. Total momentum~transfer cross section
for LiF for the SE(36) surface in the BF frame.

E (eV) oy (ad) E (eV) 0y (@)
0.136 2060.6 2.50 130.9

0.340 917.4 3.00 95.43
0.544 560.2 4.00 65.60
1.00 284.8 5.44 49.98
1.50 243.1 7.00 42.41
1.75 246.6 10.00 34.61
2.00 205.9 20.00 23.68

tribution from transitions with Aj> 2 in the SF-
frame results. This behavior was also seen in
calculations with the S(36) and S(2) surfaces but
not with the DCO model potentials. It is apparently
the consequence of greater penetration of partial
waves with finite angular momenta into the short-
range region, where they can be strongly mixed

by the interaction. Simple models of the interac-
tion clearly become poor at higher energies.

We note finally that the inclusion of the estimated
adiabatic polarization potential had negligible ef-
fect on the momentum-transfer cross section, ex-
cept to the extent it shifted the resonance position.

4. Differential cross section

The total differential cross sectioné for the
SE(36), S(36), DCO(0.5) surfaces, and from the
FBA formula (1.1) at 0.544, 2.0, and 3.0 eV are

500

cPT [\

400 -~

8 m

300|- /\/ 4

SE

B8O

n
o
o

SPT
G

Eoy (ev—ug)

100+ —

° I L 1 1
0.1 0.3 1 3 10 30

E (eV)

FIG. 8. Total momentum-transfer cross section for
LiF. The curves labeled CPT and SPT were obtained
using Eqs. (5.4) and (5.5), respectively, and that labeled
G is the result of Glauber calculations (Ref. 77).
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FIG. 9. Total differential cross section for 0.544-eV
electrons on LiF.

presented in Figs. 9, 10, and 11, respectively.
These results serve to illustrate several general
features. At small angles (6= 15°) the various
models are all within 10% of the FBA result and
within 4% of each other, and there is little sensi-
tivity to the model for angles <60°. At larger
angles much greater sensitivity to the interaction
at short range is noted. While the total momen-
tum-transfer cross sections for the SE, S and
DCO surfaces differ by not more than 25% (except-
ing the resonance region), much larger differences
are observed in the total differential cross sec-
tions. As for the momentum-transfer cross sec-
tions, the DCO(0.5) results for differential cross
sections were in best overall accord with the re-
sults from the S surface. Similarly, the results
for other DCO model surfaces differ for large
angles by much more than the correspondmg total
momentum-transfer cross sections.

The 2.0-eV results illustrate behavior in the
resonance region. The differential cross section
for the SE surface is significantly different from
the other models considered, being characterized
by a deep minimum at ~100° and a pronounced
rise at large angles. The enhanced region of back-
scattering primarily affects the transitions 4j=0

103 T T T T T .
L - i
—— sE
— ——— S -
—-— DCO(0.5)
102~ \ -
T F ]
~ - -y
Noo
a’ -
2
b -
h-]
\ /
10 \ ' / -
E Wy / =5
C \ \\\\\\ / -~ B
'_ \ Nt /’—\‘
i \_—
- ~_ 4
= —
' | ! | I 1
o) 30 60 90 120 150 180
8

FIG. 10. Total differential cross section for 2.0-eV
electrons on LiF.
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FIG. 11. Total differential cross section for 3.0-eV
electrons on LiF.
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electrons on LiF. The experimental results (Ref. 13)
(®) have been normalized to the present results at 40°.

and 1 and 1s owing to the electron effectively being
trapped by the potential barrier, and therefore
having greater time to experience the short-range
part of the potential that most influences high-
angle collisions. In a plot of the differential cross
sections as a function of energy the resonance re-
gion is characterized by a pronounced minimum
at ~100° and a maximum for angles 2135°.

In Figs. 12 and 13, we compare the total differ-
ential cross section for the various models at
5.44 and 20.0 eV with the relative experimental
measurements of Vuskovi€ ef al.** In spite of the
fact that the calculations were all carried out in
the SF frame for the ground rotor state and the
measurements involved molecules with j ~16, we
believe on the basis of earlier discussion that they
can be quantitatively compared. We have normal-
ized their results to our SE cross section at 40°.
The agreement is quite encouraging, especially
when it is noted that only the SE cross section has
a shape reasonably resembling that of the experi-
‘mental results.

The discrepancy in the 5.44-eV results at large
angles may be owing to our approximate treatment
of exchange, but there are also systematic experi-
mental uncertainties, e.g., vibrational excitation
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FIG. 13. Total differential cross section for 20.0-eV
electrons on LiF. The experimental results (Ref. 13)
(®) have been normalized to the present results at 40°.

and scattering by dimers, which could affect the
results. The results at 20.0 eV show clearly that
the sharp increase in the total momentum-transfer
cross section at the higher energies is associated
with increased backward scattering. The 5.4-eV
results also illustrate the quite small effect of
polarization.

Differential cross sections obtained from the
classical model®! and from Glauber calculations™
for LiF are in quite good agreement with the pres-
ent results for small angles. Differences are
typically 20% and 10%, respectively, at 45° and
decrease at smaller angles. The classical model
predicts an angular dependence of sin"% 6, where-
as the Glauber model yields sin"% 0. The classical
model is in much better agreement with the pres-
ent results in shape for 15°s 6= 45°, but it must
be noted that the Glauber results are generally in
better agreement in magnitude.

VI 'SUMMARY AND CONCLUSIONS

The primary objective of this work has been an
extensive set of cross sections for electron scat-
tering by LiF that is considerably more accurate
than available heretofore for any highly polar
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molecule. Close-coupling calculations were per-
formed employing the full static potential plus a
local energy-dependent model-exchange potential.
The effect of polarization was also investigated.
The results have been used as a standard of com-
parison for calculations employing simpler models
of the interaction potential and/or other approxi-
mations to the solution of the scattering problem.
We have investigated some simpler models, spe-
cifically close-coupling calculations using only the
static potential (and limited approximations there-
to) and cut-off dipole model potentials, and calcu-
lations employing unitarized Born formulations.
Comparisons were also made with results of others
who used semiclassical, classical, effective-
range, and Glauber approximations in calculations
for the dominant dipole potential.

We can summarize the results of these compari-
sons as follows. Almost any approach that goes
beyond the FBA will yield quite good results for
the total or Aj==x1 integrated cross section, and
results for the total momentum-transfer cross
section that are correct to within about 50%. The
total differential cross section can be obtained
quite accurately using the FBA for angles <15°,
and using rather simple approximations for angles
<45°. But for angles 260° simple approximations
can yield results that are seriously in error. The
use of a cut-off dipole potential in close-coupling
calculations appears to yield results for the total
momentum-transfer cross section that are correct
to within ~25%, but results for the large-angle
differential cross section that are reliable only to
within a factor of 2 or 3. Finally, partial cross
sections, especially for transitions with |Aj|#1,
in each case exhibit greater sensitivity to the po-
tential surface and scattering formalism than does
the total cross section. Polarization was found to
be a relatively unimportant effect.

A pronounced resonance feature was found in
the static-model exchange results which is identi-
fied with shape resonances in both the ~ and I
body-frame symmetries. Similar features were
found in NaF and NaCl but not in LiCl. These
resonances can have a large effect on differential
and momentum-transfer cross sections and it is
not likely that they can be predicted or even re-
produced except in fairly sophisticated calcula-
tions.

The static-model exchange calculations involved
an alternative form of the frame-transformation
approach, and thus a limited appeal to the adia-
batic (fixed-nuclei) approximation. A secondary
objective of this work has been, therefore, to test
the validity of this approximation with several
model studies. We conclude that, except for scat-
tering near rotational thresholds, the total differ-

ential cross section for scattering out of the for-
ward direction and the total momentum-transfer
cross section can be reliably generated from body-
frame T-matrix elements calculated in the adia-
batic fixed-nuclei approximation. The total inte-
grated cross section and differential cross sec-
tion for forward scattering can be calculated by
correcting the SF frame FBA cross sections using
BF-frame T-matrix elements. This is of par-
ticular significance when comparing the results

of calculations and measurements, since the BF-
frame scattering quantities are independent of
initial rotor state. In addition, it should be pos-
sible to obtain accurate SF-frame cross
sections for any given rotor level by a simple
algebraic transformation of the T matrices from
a single BF-frame calculation.

Several points deserve further study. The pres-
ent calculations are based on a local model-ex-
change potential, and while there is supporting
evidence for the resonance features in LiF from
the calculations of Stevens’ and for the calculated
differential cross sections from the measurements
of Vuskovi€ et al.,'® comparison with results of
calculations involving exact treatment of exchange
would be very useful. Calculations to this end are
in progress. While the validity of the adiabatic
approximation has been demonstrated and used
here in a particularly favorable energy range, its
usefulness at lower energies and near thresholds
should be explored. Nevertheless, the present
results are sufficiently encouraging that further
calculations for several other polar molecules
(LiH, HCN, and KOH) are now in progress. The
simplifications introduced by the model exchange
potential and the BF-frame formulation of the
scattering equations also bring accurate close-
coupling calculations for more complicated non-
linear polyatomic molecules, e.g., H,O, into the
realm of feasibility, and should also greatly facil-
itate calculations of vibrational-rotational exci-
tation in polar molecules.

Note added in proof. The results of specific cal-
culations of the parameters @, 8, and T, for LiF,
discussed in Sec. VB3 using the ERT are 6.49,
0.80, and 4.20, respectively (I. I. Fabrikant,
private communication).
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