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Beginning with a Feshbach projection-operator analysis, formulas for the local complex potential in the
entrance-channel radial wave equation are reviewed and develpped in detail for inelastic atom-atom collisional
processes that involve an electronic transition between .Born-Oppenheimer states. Penning and associative
ionization are used as illustrative examples in the presentation. A complete derivation of T-matrix elements
involving radial wave functions is then presented in the context of transition rates and inelastic differential
cross sections (both for energy and angle). Two approximate formulas for the energy spectrum of the particle
ejected in the electronic transition are developed in which quantities obtained from exact, complex radial
wave functions are replaced by those obtained from approximate, totally real radial wave functions.
Numerical computations for the electron energy spectrum of the Perining process He(1s2s, 2'S) +
H(1s, 1 S)—+He(ls, 1'S) + H++ e are then presented to probe the gffects of the imaginary width of
the complex potential. It is found that the real component of the entrance-channel radial wave function is not
much affected by the imaginary width when the width is small compared to other energy terms. In such
cases, the imaginary component of the wave functions is then m/2 out of phase with respect to the real
component, even at fairly close separations, owing to their asymptotic boundary conditions. This result also
leads to a method of estimating the contribution of the imaginary radial wave functions to matrix elements

using information obtained only. from approximate, totally real wave functions. Finally, the eigenenergies of
all 149 rotational-vibrational states of HeH+('X+) are reported, along with the computed cross sections of
associative ionization to each state.

I. INTRODUCTION

Penning and associative ionization processes
illustrate a number of characteristic features and
theoretical techniques that are relevant to many
other inelastic collisional processes. In their
most general sense, these ionization processes
involve the collision of a metastable atom or mole-
cule (A*) with a target atom or molecule in its
ground state (8). In Penning ionization, the target
is ionized when the excited species is induced to
return to its ground state during the collisional
encounter

A. *+B-A+B'+e .

develop various formulas for the angular- and
energy-differential cross sections of the electrons
ejected in the electronic transition. These same
formulas are also applicable to numerous other
collisional processes in which the nuclei move on
well-defined Born-Oppenheimer intermolecular po-
tentials after an electronic transition that emits (or
absorbs) an electron or photon. In Sec. V of this
paper. , we will numerically examine the Penning
and associative ionization processes involving
metastable helium and atomic hydrogen:

He(ls2s, 2'S)+ H(1s, 1'S) -He(1s', 1 'S)+ H'+e,

This process is named after one of its original in-
vestigators. ' The related process of associative
ionization produces a charged molecule:

A*+B-AB'+g . (2)

These ionization processes are of practical inter-
est because of their importance in planetary at-
mospheres and lasers."

In Sec. II of this paper, we will review and devel-
op a formalism to describe the T matrix for these
processes using Feshbach projection operators.
In Sec. III, we will derive a local approximation to
the complex potential that arises in the radial wave
equation of the entrance channel owing to the in-
elastic nature of the collision. In Sec. IV, we will

He(1s2s, 2'S)+H(ls, l'S)-HeH'('Z')+e .

This particular system was chosen because of the
relative abundance of theoretical and experimental
information available on it. The main thrust of
these computations was to use the formulas devel-
oped in Secs. III and IV to analyze the effects that
the complex potential has on these processes.
Specifically, we will examine how the T-matrix
elements are modifi. ed by the presence of the im-
aginary component of the complex potential in the
equation for the radial wave function of the en-
trance channel. Formulas similar to those devel-
oped in Secs, II-IV have appeared elsewhere in
the literature, chiefly in the work of Nakamura.
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However, in his main paper on Penning ionization,
Nakamura's result implicitly assumed that the
electronic transition amplitude was spherically
symmetric, which is not correct. ' However, in a
later paper on associative ionization, he did re-
port a more general formula. ' In a second paper
on associative ionization, Koike and Nakamura
presented a formula for the T-matrix elements
relevant to these processes. ' However, their for-
mula differs from the one that will be developed
in this paper, owing mainly, apparently, to an
error in choosing the formal asymptotic condition
of the product wave functions. The problems that
do exist with the formulas found in the literature
are due to missteps in the detailed derivation of
them and/or from a lack of clarity in terms, def-
initions, or premises. Since only the bare frame-
work of derivations has appeared in the literature,
this author felt it would be worthwhile if a more
complete presentation would appear. This is the
major purpose of Secs. II-IV. In addition, when
approximations are introduced, they will be ex-
plicitly identified and their physical basis dis-
cussed. It is hoped that this more complete and
consolidated treatment will prove useful and in-
formative to both beginning and experienced in-
vestigators of this and related processes.

II. GENERAL FORMALISM

The initial development of quantum-mechanical
formalisms to deal with Penning and associative
ionization processes is chiefly found in the work
of Mori. ' ' These processes occur because the
quasimolecule formed by the colliding species may
have a bound, metastable electronic configuration
or an ionized continuum configuration. In essence,
the bound metastable state is embedded in a con-
tinuum of ionized states. Mori and Nakamura de-
rived expressions for the complex potential of the
entrance channel using Fano's treatment of the
interaction of a discrete statg with a continuum of
states in which it is embedded. '""

In this section, we will employ the Feshbach pro-
jection-operator technique to obtain the basic equa-
tions for the complex potential and T-matrix ele-
ments. "'" 'The derivation follows the treatment
of dissociative attachment presented by O' Malley,
and reviewed by Bottcher. "'" We will use the
following notation. A double bra, ((4' j, or ket,
l@)), will denote states that include a complete
nuclear and electronic configuration. A single
bra, (pl, or ket, jQ), will be used for states that
are either nuclear or electronic, but not both.

Let jQ~) =
j Q„*s) be the discrete Born-Oppen-

heimer electronic state embedded in the contin-
uum. It is constructed from asymptotically de-

(5a)

(Sb)

which project onto the metastable and continuum
states, respectively. A significant, but reason-
able, assumption that will now be made is that all
other electronic channels can be neglected during
a collision, For example, photon decay back to
the ground neutral state will not be included. The
excited state is called metastable for the very rea-
son that the transition amplitude to such states is
very small. At thermal energies, the coupling to
other excited channels is weak owing to the energy
separation between them. Stated differently, this
says that the metastable plus the continuum states
adequately approximated a complete set; i.e. ,
P+Q =1, from the manne& in which jQ„) is con-
structed. Note that this also implies that P'=P,
Q'=Q, and PQ=QP. =O.

%'e now write the time-independent Schrodinger
equation for the system:

(ff -E}jg)) =0.

By using P+Q =1, we can obtain

(ff, -E)Pj+))=-a„je))

(6)

(ffgg E)ej~&&= ffg (Vb)

where

Hpp =PHP and Hpq =PHQ. (7c)

It is now convenient to introduce states that ap-
proximate the complete metastable and continuum
states. These are the solutions of the uncoupled
homogeneous equations

(Hgg -E)Q j'Ifg)) =0 (Sa)

caying orbitals. They are combined in a way that
stabilizes (p„jH„jp~) as a local minimum in en-
ergy ". It is normalized such that (Q, j@,) =1. Gon-
tinuum states, which are characterized by @n

ejected electron with energy c and direction m,
are d~~ot~dby j@r&= i&~a+ e (s ~)& l@~a'& is
the Born-Oppenheimer electronic state of the ion-
ized molecular core, and &= c&. & is the unit
vector in the asymptotic direction of the free elec-
tron. These states have a density of p(s). The
projection operators associated with these states
are
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where

(H„-E)P Ig,»=0. (8b) Go = [Q(E+i» —H)Q] ' (14b)

By applying the state &P, I
onto Eq. (8a) from the

left-hand side, it becomes

(T~+vq-E) Ig~&=0,
(9)

where V„=&Q~IH~, IP„& and Ig~&=&/~I%'o&&. To ob-
tain this, we have made the standard Born-Oppen-
heimer approximation that the nuclear kinetic op-
erator has a negligible effect on the electronic
states; e.g. , &Q„ IT„IP,& =0. This is equivalent to
the position-space coordinate equation

P
I
eg) =G,'PHQ Ie)&. (15)

and c is a vanishing small positive number. The
physical interpretation of this is that Q I4'» is
composed of an incident wave describing the nu-
clear motion in the metastgble state, represented
by Q I+c», and a scattered wave of the ionized
state, represented by GoQHP I4'». Since the ini-
tial channel has no ionized-state component, the
coefficient of the homogeneous solution P I4'~)) is
zero in the analogous equation for P I+'»:

[T„(%)+V,(K) -E]g,(%) =0, (10)
Substituting this into Eq. (14) and rearranging, we
have

where T~(%) is the kinetic energy term, V,(R)'is
the unperturbed intermolecular potential of the
metastable state, and g~(5) is the wave function of
the nuclei. R=RR is the position vector of the in-
ternuclear separation.

The T matrix for transitions to an ionized final
state is"

Q I~'&) = (1-G;QHPG~HQ) 'Q I+;&&

Using this, the T matrix is

7'= «~, IPH I4,&&&4, I~;&&,

where

(16)

(17a)

A = II -g,'F'I-' (17b)

I
x0 =&0, I+0&,

so that the T matrix becomes

r= «g, IPHIy, &Ix,'). (13)

In this form, it is apparent that. the total state
wave function has been separated into ap. electron-
ic state IP„& and a state Ig~& of effective nuclear
motion.

To obtain an equation for
I z~$, we consider the

quantity Q I%''». Equation (7b) is the inhomogen-
eous equation for Q I4'&&. The solution of this
equation is, therefore, the sum of the homogen-
eous solution [cf. Eq. (8a)], and a particular solu-
tion that satisfies the boundary conditions. Thus .

Q Ig"&) can formally be written

I +& is the complete state of the total system,
while I@~&& represents only the ionized states. The
"+"and "-"superscripts refer, respectively, to
boundary conditions of a,symptotically outgoing and
incoming scattered waves. In the operator PHQ, Q
selects the metastable state, H operates on it, and
P selects the ionized states that result from this
operation. The object of this projection-operator
analysis is to produce an equation for

with

g, =&y, IG; Iy,&=(E+fs r„-V,) ',

F'=&Q~IHPG MPH IQ~&

(17c)

(17d)

By comparing Eq. (13) with Eq. (17), we see that

I x,'&=& I4,"&. (18)

These states should actually have energy and di-
rection labels to indicate the boundary conditions
of tot@1 energy and asymptotic direction; e.g. ,
Ig;(K)& and Ig;(E)&, where E =Efl. E is the mag-

nitude of the total energy of the chanel and is a
unit vector in the asymptotic direction of the un-
scattered component of the wave function. These
labels will be suppressed unless they arp needed
to clarify a particular point.

Using Eqs. (9) and (18), we find that
I &~) is the

solution of

(T~+ V~+F' E) I)(~) =0. - (19)

This is now in a form that can usefully be put into
coordinate-space notation by applying &%I on the
left-hand side and inserting

Q I+'&&= Qi ~;&&+G,'QHP I~')&, ( 14,3,) 1= dR' R' R';
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we obtain

[T„(R)+&,(~) —E]X,'(R)

d ' R E'R'g„'R'. 20

Using the fact that the continuum electronic states
form a complete set,

1= dK p g

we can rewrite the operator term in the I"term
as

&~ l~'I&'& = &"
I &&. I"f"«'

I &"&P&'&«i I':I &"'&

&&'. p(s)(&t&,', Ia I y„& IR' &

unit solid angle. For associative ionization (E &0),
p(E') =(4w) '5(E -E~,) where v' stands for the vibra-
tional leyei of the molecular ion AB', and J' is its ro-
tational quantum number with projection M'. The
factor of (4w)

' in p(E') for E'&0 is introduced to
nullify the effects of the integral over 0' for bound
states, since such integration has no meaning for
associative ionization. However, by employing
this "trick, ". we simplify the derivation since we
can then formally use the same formulas for both
Penning and associative ionization. This poses no
real problem because the angular density of states
can be resolved into angular and magnitude com-
ponents; i.e., p(E) = p(E)p(Q). In this specific case,
the unity operator is

«' IVE')& p(E') &~;(E') I

where

(2la)

=
& && I«. I&

I Jd~
I
&":&a.'«.-'I&

I &.& I&'&

dc&Rls &&Rig, lR&&s IR),
+g g g I4~'(E&')&&0,"'(E„")

v'

=
jl
«' l0'(E')&p(@')&0'(E') .

&c &5&=fm&R~&&'z. , ~y& &8&

g'=lim(E+ie —s —T„-V ) '.
s 0 N

(2lb)

(21c)

Substituting Eq. (23) into (0 Ig,'l%'& yields

&& lg.'I&'& =»m &R li(E+fe- s- T.- I'.) 'l I&'&

„-.&R
I C;&p(E')&C;IR'&

lcm

V, is the intermolecular-potential operator arising
from the ionized-continuum electronic state. This
explicitly assumes that the Horn-Oppenheimer
terms, (Q I T„

I
&&&», , can be neglected and set equal

to zero. As it turns out, (EIR& is the transition
amplitude for autoionization at the internuclear
separation R. The space-coordinate representa-
tion of (s IR& is

(z~ I]%) = I drN&t&f(r~l%)*H„Q~(r&«IR), (22)

where (rz) is the set of position vectors of the elec-
trons.

To proceed, we must remove the operator g,',
which contains V, . This can be accomplished by
making a spectral decomposition using a complete
set of nuclear wave-function states in the ionized
channel. These are solutionsof the equation

I dE p & E
p R & E

y
R ' p

8 —c-E'

-iw d ' ~EO R p 0 R'*p
(24)

where E,' =E —s (energy-conserving states) and &P f
denotes the principal value of the integral. %ith
this, the goal has been achieved to find the equa-
tion for the effective nuclear wave function X„'(E,R).
Substituting Eq. (24) into Eq. (21), and this into
Eq. (20), we finally have the equation for

I X,'(K,%)&:

[T„(%)+V,(R) —E ]X,'(K, R)

=+iw dcdA' 'K c ' R' g'

If'(c I 1)

(gq 'l&~(E'» =«'- T»- I'.) Iyg@')&=o (23)

Using this as a basis set, the unity operator is
I

«' ls'(E'» p«')4:(&')
I

p(E') is the density of states per unit energy per

where

ff(s, E', &,R') = p(')p(&')(s' l%*&s'IIt'&

0'( ', )0'(E', &')*.

(25a)

(23b)
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III. RADIAL EQUATIONS V, (R) = V,(%), (29b')

In scattering calculations, the standard proce-
dure is to construct the scattered wave functions
from partial waves composed of the product of
angular and radial eigenfunctions. For spherically
symmetric potentials, the problem of determining
a wave function is.reduced to solving a second-
order differential equation for the radial eigen-
function. By decomposing the complex initial-
channel wave function into partial waves, we can
bring standard numerical techniques to bear on the
solution of Eq. (25).

We begin by making the partial-wave expansion
for the initial wave function'

' where the subscripts i and f refer to initial and
final states. The final-state wave equation can then
be simplified. By inserting the final-state partial-
wave expansion [Eq. (2V)] into Eq. (23), multiply-
ing by YJ,&(A ')Yp~(R), integrating over 0' and R,
and using the orthonormality properties of the
spherical harmonics [Eq. (B5a)], the final-state
radial wave equation is

N' d K2 J'(J'+ I)
+ V (R)+-

2p. dR' ~ 2p. R' -Z' F (&',R)=0,

(30a}

g'(E, H) = Q Yq„(Q)Yq„(R)(i)
where asymptotically

F~(E,R) -A(E, p) sin. (kR —2''+7), ) . (30b)
x exp(iq, )F,. (E,R)R ' . (26)

In elastic processes, the conservation of channel
flux demands that the phase shift, q~, is real. How-

ever, in inelastic scattering, where transitions to
other channels occur, flux is lost from the initial
channel. Thus, the phase shift is, in general,
complex. " The bar over p,. is used to indicate this.
The bar over F~(E,R) signifies the radial wave
function is then also complex.

A similar expansion can also be made for the
final- state nuclear-continuum wave function re-
sulting from Penning ionization:

tt (E', &) = Q Y)~(II')Yp~(R)(f)

x epx(+iqz~)E&~(E ', R) R'. (27)

g"(E„,, R) = Y~,„,(R)F~ (E„,, R)R '. (28)

Equation (23) is the wave equation for the final
states. The potentials considered here are spher-
ically symmetric; we can explicitly denote this by
expressing these as

The expansion for g~(E, %} has been obtained from
the reciprocity relationship g~(E, Q, R)
= P'(E, -Q, R)*.2' Since there are no electronic
transitions out of the final state within the Born-
Oppenheimer approximation, the nuclear phase
shifts and radial wave functions are real. To in-
dicate E& is totally real, no bar is put above it.
In the case of associative ionization, the atoms are
bound in a molecule. For a discrete final sty. te,
the wave function is simply

p, =m, m, j(m, +m, ) is the reduced mass of the nu-
clei and A(E, p) is a normalization constant For
associative ionization, we multiply Eq. (28) by
Y~~(A) and integrate over R to obtain Eq. (30a)
again. However, instead of having Eq. (30b) as an
asymptotic condition, the bound molecular wave
function decays exponentially.

Before we can produce a radial equation for the
initial state, we have to make a spherical harmon-
ic expansion of the electronic wave functions in
the transition amplitude (& jR). To see how this is
done, we must turn to the manner in which the
electronic wave functions are constructed. Physi-
cally, the electronic transition is a molecular
autoionization from a metastable to continuum
electronic configurations. One approa, ch is to con-
struct wave functions through a, configuration-in-
teraction (CI) calculation and choose the eigenstate
and energy that approach the right limits when the
nuclei are asymptotically separated. '

Miller et a/. have used this method in their elec-
tronic calculations for the Penning process involv-
ing metastable helium and atomic hydrogen. " In
their approach, the metastable wave function

~ Q~)
was an X-electron CI wave function constructed
from Slater determinants whose elements are ob-
tained from a chosen set of molecular orbitals.
The continuum state

~
Qr) is another N-electron CI

wave function whose Slater determinants are com-
posed of N- 1 bound orbitals taken from the same
set used for the metastable state. These rep-
resent the ionic part of the configuration. The Nth
orbital, , however, is a continuum. This orbital is
constructed from a partial-wave expansion

V,.(R) = V~(R) (29a)
g'(c, r

~
R) = Q Y,*„((u)„Y,„(x)„-(i)"'

and x exp(+is') f'(s, x)x ',
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where the radial wave function behaves asymptoti-
cally as a Coulomb wave function:

f'(s, r) -a(c, m, ) sin [kr+ k ' ln(2kr)- ~ li(+ o' ),
(31b)

where k = (2m, s/K~)'~2 and a(c, m, } is the normal-
ization factor. The angular arguments of the sph-
erical harmonics, (e)k and (r)k, indicate that the
solid angles related to electronic vectors ((o and
r) are to be measured in a coordinate system whose
z axis lies along the direction of the internuclear
axis R. The continuum orbita, l is centered on the
target nuclei & because of the electron-exchange
nature of the process. ' '" There is no sum over
the magnetic quantum number m because the pro-
jection of the total electronic angular momentum
is conserved within the Born-Oppenheimer approx-
imation. Thus we have m = A+ -~„„where the 4
are the usual quantum numbers of the projection
of the total electronic angular momentum associa-
ted with the bound metastable and ionic states. "

By substituting Eq. (31) into Eq. (22), we have

(K' (R) = g 1', (&v)„-(-i)' exp(bio, )(p„(H—& )@,),
(32)

where Q„represents the position-space part of
total final-state electronic wave function containing
F, (r)zf'(e lr) The last. factor is an integral over
the position space of the ~ electrons. For con-
venience we define

(o(py), are the Euler angles associated with the
rotation R '. By looking at the diagram of the Euler
angles in Fig. 1, we find R = (A '} '= (o(py} '
=(w —y, p, ii —(M). This choice is necessary to keep
all angles between 0 and 2~. Using the definition
of the rotation matrices, we have [Eq. (B1a)]

D i (p-(}-e i(In(fl ((3)8 (mi
km km

—[ 8im(s-y& (lf(p)& iii(w-u )]0

—Di (R) 0 —
( 1}m-aD! (35}

[The (f'„(p} are discussed in Edmonds. ] Now let
o('=i( —'y, 13'=P, and y'=& —o(. The angles (o('p'y'}
refer to tl».a order of rotations about the new axes'
produced by the previous rotation; i.e. , D(oi'P'y'}
=D, (y')D„,(p')D, (n.'}, where the primed axes rep-.resent the new coordinate system following each
rotation. In this convention, vectors remain sta-
tionary in space, while the coordinate system is
rotated. However, we want the c.m. frame to re-
main fixed while vectors are moved. Corisequent-
ly, the angles ((},P} that represent the position
vector R in the c.m. frame are associated with the
last two rotations in Edmonds' convention. Thus
the Euler angles are related to the normal spher-
ical coordinates of R =(8, Q} by a'=0, P'= 8, and
y'= Q. With this understanding and use of Eq.
(Blb}, the electronic coupling element [Eq (32)]
becomes

(33}

Y,„((o)- =g 1', (~)D„'„(o(Py}, (34}

where ~k is a rotation matrix whose B,rguments,

for future use. The parametric dependence of the
electronic wave functions and coupling element on
the internuclear separation R is explicitly indica-
ted.

To evaluate the effect of the electronic coupling
element on nuclear motion and differential cross
sections, we refer all angles to the center-of-mass
(c.m. ) coordinate system of the colliding nuclei
and not their internuclear axis. To do this, we
will employ rotation operators using the conven-
tions found in Edmonds. " e is the direction of the
ejected electron and R is the direction of the inter-
nuclear axis in the c.m. coordinate system. To
go from the internuclear-axis coordinate system
of the electrons to the c.m. system of the nuclei,
we must rotate the coordinate axes by R ', the in-
verse of R. The relationship between the angular
momentum eigenfunctions in the new and old sys-
tem is [Eq. (4.14) in Edmonds]

Ek

Using Eqs. (26), (27}, and (36'}, we can simplify
the form of the complex nonlocal integral of the
initial channel [Eq. (25)] to produce a radial equa-
tion that is much simpler to so1ve numerically.
By writing the left-hand side of Eq. (25} in spheri-

FIG. 1. Euler angles associated with the rotations of
coordinate axes. [Adapted from A. R. Edmonds, Angular
Momentum in Quantum Mechanics {Priix~eton U.P.,
Princeton, N. J., 1960).]
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cal. coordinates and then -substituting in the partial-
wave expansion for the nuclear wave function [Eq.
(26)], the Schrodinger equation for the initial chan-
nel becomes

2J+ y 1/2

Q Yp„(A)Y~„(R)(i) exp(i)7(~) R '
J'hf 4~

)I' d' I' Z(J+1)x —— + )'.(R) +— -z)2p dg' ' 2p. R'

XF (E)R)~ I«y (37)

where Ic„stands for the complex nonlocal integral

on the right-hand side of Eq. {25). The imaginary
part of Ic„ is the formal means of representing
absorption of flux out of the entrance channel. The
real part represents the level shift caused by coup-
ling to the continuum channels. Together, they
produce the effective optical potential of the initial
channel. The imaginary part of 'Jc„will be con-
sidered in detail. The real, part follows from a
similar analysis.

By substituting the partial-wave expansions of
Eqs. (26), (27), and (36) into the left-hand side of
Eq. (25), the contribution of Penning ionization to
the imaginary part of Icw. becomes

Im(( „)=wfd d(c)dPSR" dR dR' Y '.(—() Yz(e)D' ())) (c'(m ~)))
lk

xg (-I)"Y„*„{~)D"„(R ) &c'um ~R') p(c)

xg Y+,„,(A))Y,„,g)(i)&' exp(ig& )F&~{EO,R)R

x g Y,.„.(A )Yg,„.(R')(-i)" exp(-iq,")F,"(E„R')(R')-'
~~N~

xQ Y*„(A)Y „(R')(i) exp(iq ) F'( E, R') p( E'). - (38)

In the contribution from associative ionization, the
sums over primed indices do not appear, nor do
the factors involving A', q&, or (i)~ and (i)c . In
the analysis that follows, we will explicitly use
the asymptotically free nuclear state of Penning
ionization [Eq. (27)] for the final-state wave func-
tion. The derivation for associative ionization can
be obtained by simply ignoring factors of this type
in what follows.

Since we must now do an integral. over angles, it'
is necessary to discuss the normalization of quantum-
mechanical states and their density. For conven-

ience, we will employ energy-normalized wave func-
tions. For asymptotically free states, (c &0 and E
&0), wehave & (t)ct(t);. ) = 6(c —c') and&&(E) ~g(E'))
= 6(E —E'). This implies that the density of such
states is unity: p(c) = p(E) = 1 (see Appendix A).
Since the angular component of the asymptotic en-
ergy parameter is independent of its magnitude,
we can divide the density of states into a product,
p(E) = p(E)p(A). Each factor can have unit density:

p(E) = p(A) = 1 for E & 0. In this case the normali-
zation constant is A(E, p, ) =[2p, /vN'g)]'~', where
Q = (2p,E/5')'~'. The bound states of associative
ionization are normalized so that

where 6~(n —m) =1 if n —m = 0, and is zero other-
wise. This demands that

f Fy~ (E„„R)F/(E~p., R) dR = 6r(L' -Z')6~(n' —g').

The density of such states is p(E) =6(E —E~, ). For
reasons already discussed in Sec. II, we can define
p(A') = (4)t) ' for E' &0. Although density factors
s.re now specified, p(c) and p(E') will continue to
appear in the remainder of this paper to make the
formulas readily useful to investigators employing
other normalizations. Since the spherical harmon-
ics are orthonormal, we can carry out the inte-
gration over co and 0' to obtain

Im(I«) =v dcdR'dR' p p g D', (R)+D',(p')Y~, „,(R)Y~~,„,(R')Y~«(5)Y«(R')K(JJ'Im ~R, R'),
ra z%' zss

(39a)
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where

(zz'1mlR, R') =(s lmlR)*p(s)(s lmlR')

x F~~'(EDy, R)Ff '(Eo, R)p(ED)

x (i)~ exp(i'~(}7 [(E,R')R

(39b)

[For E, &0 (associative ionization), the 5 function
in p(EO) will produce the indicated sum over (J', M')
when the integral over s is made. ]

To do the integral over 8', we must cast the
spherical harmonics into their D-matrix form [Eq.
(B4b)]:

F „(R')= [(2Z+ 1)/4v]'I 'D,„(c(',e', &f) ')

with n' =.0 in the present case. Thi.s reminds us
that the integral over A'(8, Q) is only over the
Euler angles P ' and y'. The lack of the integral

over e' will lead to an "unphysical" result for the
general case, but a reasonable answer for a spe-
cific-, but useful case often encountered.

The integral over the product of three D matri-
ces is~

2g g 23'

(8m') ' dn sinpdp dyD„')„,D„", ,D'„R,

(lx la ls l (li l~ l
(4o)

nl n2 n3 ml m2 ms

(The double-rowed quantities in parentheses are
Sj symbols. ) The integrals over n and y essential-
lyproduce Kronecker ~ factors in the 3j symbols to
ensure that the sum of the n and m indices a,re both
zero. (2v) ~ f dn produces a &r(n, +n2+nR) factor
and (2w) ' f dy produces 5r(m, +m, +m,). Thus if
we are only integrating over p' and y' in Eq. (39),
we have

Im(l~„)=w f dwdR' Q p QD' (R) Dw„', (R)Dm(())sK(dd'lm(R, R')(-1)s
ta gigi zg

X (gZ ll (Z
&0 0 mf &M M' k)' (41)

sin d d()g do ~ d p ~ (42)

The lack of conservation of the projection quan-
tum number is bothersome. The source of the
problem is that we have neglected, in the derj.va-
tion we have followed, the coupling of the angular
momenta of the bound electronic states with that of
the free particles. This is a general problem en-
countered in the Born-Qppenheimer approximation.
More complicated treatments can be made that
take this coupling into account. "'9 However, such
treatments are not within the scope or intent of
this paper.

These problems can be avoided by considering
only those processes in which the projection quan-
tum numbers of the total electronic orbital angular
momentum of the initial and final molecular con-
figurations are the same; i.e., A =A'. -In such

The subscript mod on the modified 3j symbol indi-
cates it does not include the usual requirement that
the lower numbers sum to zero. Explicitly, we
have

(Z Z' l ) t)'Z Z

EO 0 -m j,d(M M' kj
=-.'&, (M M'~k)

cases, we have m =A —A' = 0. If we use m =0 in the
modified 3j symbol in Eq. (41), itbecomes identical
to a regular 3j symbol. Examples of this are the Pen-
ning and associative ionization processes givenby
Eqs. (3) and (4).

From this point on, we will explicitly assume
that the systems under discussion have the same
projection quantum numbers in the initial and final
bound electronic states. By using the definition of
the D matrices for m = 0 [Eq. (B1a)], we see that

D' (R'}=(2w)'f d ' (ass',D8', y'),

and consequently

(dw) fd)( =(8w ) f ds''wind'dp'dy'.

Using this result, we can change the modified 3j
symbol in Eq. (41) into a regular Sj symbol for the
case m =0.

By expressing the product of two D matrices in
Eq. (41) with the argument A as an expansion of
single D matrices of the same argument [Eqs.
(B1b) and (B2)], we can employ the orthonormality
relationship of the Sj symbols [Eq. (BSb)], and
the sum over k and M' to achieve the simplifica-
tion
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lm(I „)=m g Y*„(Q)Y „(R)(i) exp(iq", ) g (2 J'+1)
I

(J' 4' l I'

JN (0 0 0

l dcdR'('/ R * c'l R' p c Kf E',J' R, R' J" ) E,R', 43a

where

Z,(E', d IR, R )=F,'(E,R)F,'(E,R )p(E )

and

(43b)

(s'i IR) = (s'l 0 I R) . (43c)

It can be seen that the same analysis follows
through for the real part of the Ic» except that
the principle-part integral —O' J dE' (E —c —E') '
appears instead of the factor ie.

By comparing Eq. (43) to the left-hand side of
Eq. (37), we find that the radial equation for the
initial wave function is

+ V,.(R)+— 2
—E F

g (E) R)
J 8+ 1

2p dR' ' 2p R'

= iI, —I„, (44a)

where

td d~ l I'
i, =~ g(u'+1)I

(000)

k~(R)' = [E—V, (R)]—

This should be a valid approximation at thermal
energies. This condition also implies s+ Vz(R )
= V, (R'), which is the Franck-Condon principle for
the conservation of total electronic energy during
a vertical transition. There has even been some
experimental evidence that indicate transitions in
Penning and associative ionization processes are
vertical. ""

If we consider the integral

I= ds (s'1 IR)*(s'l I
R')p(s)Fi '(E'„R)

x Fz~'(Eo', R ')Ff (E,R') p(EO), (45)

x i dEO F~ '(Eo, R)p(EO)F~ (Eo, R') F(~(E,R'),

(46)

which is a factor of l„and replace dc by -dE,',
we find that the assumption of vertical transitions
implies

I= (s„'1IR)*(&„'1IR')p(s„)

auld

dsdR'(s'1 IR)*(&' I1R')p(s)

x Kz(E~&, J' IR, R') F~~(E, R') (44b)

I„=g(u+1)
(0 0 0)

x 6' ~ «dR' dE' (s'l IR)*(&'l IR')p(&)

x '( ' ', 'F;(E,R). (44c)E —g-E'

where s„=nV(R') = V, (R') —Vz(R'). This step does
assume that the electron transition amplitude
(coupling element) is fairly independent of the en-
ergy c of the ejected electron; i.e. ,

(sl IR) =(s„l IR). (47)

Computations by Fujii et al. , and more-recent
ones by Hickman et al. , indicate this is reason-
ably valid. '~ Since the final-state nuclear wave
functions form a complete set, the previous inte-
gral reduces to

I= (s„'1 IR)*(s„'1IR')p(s„) 5(R —R')F, (E,R') .
Although the radial equation has now been deter-

mined, it has a nonlocal nature, which consider-
ably complicates a numerical solution. However,
it can be converted into a completely local poten-
tial by a reasonable approximation which forms
the basis the semiclassical analyses. We assume
that the major contributions to the integral in Kq.
(44) come from regions where the product
F& (E', R')T', (E,R') is slowly varying. This oc
curs where the local wave numbers are the same
in the initial and final states; i.e. , where kz (R )
=k~(R') with

Using this, the integral I, [Eq. (44b)] becomes

I, =m g (u'+ l)I
d J' l

(48)

x p(s„)F~(E,R) . (49)

With this, we can convert the nonlocal integral
into a local form. We can employ the orthogonal-
ity relations of the 3j symbols and Eq. (B3a) to
simplify this
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I &a„'t IR& I'p(s„)F', (E, R) .
1

By a similar treatment, we find that term I„[Eq.
(44c)] is

(50)

(51)~ I &s't
I R& I'p(s)

r
—C

Combining these together, we find that the radial
equation for the initial channel is approximately

where

(55a)

functions will have dominant contributions at in-
ternuclear separations where s= s„=nV(R).

In consolidating this discussion of approxima;-
tions relating to Eq. (44) the radial equation of the
initial channel is

where

+—6 ds E F',. (E,R)=0, (52a)
1 I'(s'

I R)
2r

and

V,'(R) = V,(R) —,
' i r(R),

r(R) = r(s„IR) =2m g I&s„'t IR&('p(s„),
l

(55b)

(55c)

r(s'IR) =2m g I &s't IR& I'p(s). (52b) F, (E,R) A (E, tL) sin(kR —,' Jv + q—f). (55d)

This is essentially the same equation obtained by
Mori whose analysis was based on Fano's treat-
ment of configuration interactions of discrete
states embedded in a continuum of states. The
only difference is that the c in Mori's result is the
solution of a transcendental equation that takes
level shifts into account. s„ inEq. (52a) isthefirst
approximation to this.

To discover the significance of the imaginary
part of the potential, we turn to time-dependent
quantum theory. The time- dependent wave function
of the nuclei in the initial channel is

)t), (R, t) = exp [—iH„(R)t/h]y'(E, R),

where H„(R) is the Hamiltonian for nuclei in Eq.
(52). Thus the modulus is

V~r(R) is the total approximate complex potential
in the initial channel. I"(R) is often called the
width of the quasimolecular initial state. It is a
measure of the energy spread of the discrete elec-
tronic orbitals that must be included in the con-
struction of the metastable sta, te." g, is the com-
plex phase shift, having both real and imaginary
parts Equ. ation (55) and its solution, F, (E, R),
will form the standard against which all approxi-
mations will be judged. We will refer to its solu-
tion as an "exact" solution. [lt is exact to the ex-
tent that the approximations of Eqs. (46) and (47)
are valid. ] Now that the radial equations for nu-
clear motions have been determined [Eqs. (30)
and (55)], we can turn to a derivation of differen-
tial cross sections in which radial wave functions
will be utilized.

Ipr)p, t) I= exp (- p )
ly'(K, R) I. (53) IV. DIFFERENTIAL CROSS SECTIONS

~&' R ~ I c„'R
8„—g C„—8

(54)

Even when this is not strictly true, the matrix
elements between initial and final nuclear wave

It is apparent that the imaginary part of the poten-
tial causes a decay in amplitude as time increases,
which means the channel is losing particles. . Thus,
it is through the complex potential that the inelas-
tic aspect of the collision modifies the initial-
channel wave function.

The computation of the level-shift part of the
initial. -channel potential would necessitate the cal-
culation of a large number of coupling elements at
various energies c for each internuclear separa-
tion. However, if we again assume that the cou-
pling elements are fairly independent of the ener-
gy of the ejected electron [Eq. (47)] the level shift
vanishes,

The transition rate dw/dq from an initial state
i to a final state f per unit interval of the final-
state variables {q] is'

(56)

where Tz, (q) is the T matrix defined by Eq. (11).
For Penning and associative ionization, the final-
state variables (q) are c and E'. The coordinate-
space representation of the T-matrix elements is

Tq, (E', K IE) = dRgq(E', R)*(Z IR&g', (E,R) .

(57)

To utilize the results of Sec. III on radial wave
functions, we again substitute the partial-wave
expansions. [Eqs. (26), (27), and (36)] into Eq. (57),
note that Y„* (|))=(—1) Y„(Q) and then use Eqs.
(40), (Blb), and (83c) to obtain
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T«= g g (-1)""1',.„,(Q') &„(~)
J' j(f' fk

x i,„(ft)(Zd t IE,E,s)
x [(2@+1)(2j'+1)]' '

mine the total contribution to the remaining angu-
lar cross section. %e choose to integrate over 0'
(the angle of the product nuclei) to discover the
angular differential cross section of the electrons,
~.e. ,

X

JI/t I' k I0 0 0&

where

(ZZ't l E, E', s) = (i) '(-i)' exp(iq,') exp(i)t~')

(58a) de
dE

dE'dc

d&'! &~;(E,', ZIE) ~ p(E,')p(Z), (59a)

x
~

dRF~ (E', R)(s l (R) F((E,R).

(58b)
It is experimentally difficult to measure simul-

taneously the angular distributions of both the elec-
tron and the nuclei in the -final state. Thus we mill
integrate over one of the product angles to deter-

where

(59b)

which is the result of the integration f dE' over
the energy-conserving 5 function of Eq. (56). Using
the orthonormality properties of the spherical
harmonics [Eq. (B5a)] the integral over 0' yields

(6o)—=—Q (2Z'+1) g Q (28+1)' 'Y~„(Q)&„(6))(J ' ~E,E„s)i
i

p(E,)p(K).
J~N' JN gy 0 0

If we choose the incident direction of the nuclei in the initial channel as the z axis of the c.m. coordinate
system then 0= (8„(t),) = (0, 0) and

=(2e)-' g (2J +1) p(m+1) &, „,(~)„-(dd t ~E, E;,s) p(E;)p(s).
J/ 000 Om

The subscript 0 on the spherical harmonic is used
to remind us that the angular measurement of ~
is made from the incident direction of nuclear mo-
tion, Q. This is the formula. one would normally
use to calculate the angular-energy spectrum of
the ejected electron. From Eq. (61), it is appar-
ent that the angular momentum of the ejected elec-
tron, l, satisf ies two conservation relationships
with regard to its projection. Firstly, its projec-
tion aiong the internuclear axis is zero (m = 0) to
conserve the project, ion of the total electronic
angular momentum. Secondly, it acts in concert
with the other free particles to conserve their
projection of the total orbital angular momentum in
the c.m. system.

To obtain the transition rate as a funct;ion of
electron energy only, we can return to Eq. (60).
If we integrate over ~, .use an orthogonality rela-
tion of 3j symbols [Eq. (B3b)] to sum over M' and
k, and then employ an orthogonality relationship
of spherical harmonics [Eq. (B5b)] to sum over
M, we obtain

It is common to discuss theoretical and experi-
mental results in terms of differential cross sec-
tions do/dq. These are related to transitions rates
by22

8V (f) 2dm)
(63a)

where the flux(f) is given by

(f )=
I
X'(E, ) I'~, = [&',/(2~)'@]p(E) '. (63b)

s, is the statistical weight of the initial state (the
probability that the system mill be in state i given
the experimental. procedure employed). v,. is the
incident speed of the particles.

Using Eqs. (61) and (63), the angular-energy
double-differential cross section for Penning ion-
ization is

4m3 2.(E,E)=s, , P gT;,„,,(E,E,C)
J'N' J l

x p(E') p(~)p(E), (64a)
where

1—=(22} ' P [(2Z'+1)(2Z+1)]'~'(
)dc JJ'! 0 0 0

x (JJ't
t E,E,s & p(E,)p(s) . (62)

I

ioM Ml
l g'( )0 J'-(( 1 )P}

(64b)
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7'~, »(E, E') p= [(28'+ 1)(28+ 1)]' '~J J'
&o o o&

x (i)'(-i)' exp[i(»i»~+ o»)]

xt ~~, »(E, E')~, (64c)

(&t (cl I R)E, ) = dR E t '(E', R)

x(y„o Ia E I p,)E';(E,R) .

t,',(E,E ),=( i)'exp(i»i,')(E,'(cl IR)7;),
(64d)

4@3—(E E ) =s» .g g 7'. (E E )
Jl

x p(E ')p(c) p(E) . (66)

(67)

To obtain the formulas appropriate for the cross
sections of associative ionizations, we again can
formally do an integral over a 5c about an allowed
c. This gives

7T3

o(E,E„",)=s, „', PIT",, ,(E, E„",)„I'p(c)p(E).

(64e)

The bars over the matrix elements are used to
remind us the exact, complex radial wave func-
tions and phase shifts of the entrance channel are
employed. We have also dropped the subscript on

E,' (i.e. , E' —=E,'), but it is to be understood that
these transitions must still be energy conserving
(E = E'+ c).

For associative ionization, only discrete values
of g are aQowed, since the final nuclear state is
discrete. Thus, there is really no differential-
energy cross section in this case. However, in
any experiment, the measurement of the electron
energy has some width 5c. By formally integrating
the differential cross section represented by Eq.
(64a) over such a 5c centered on an allowed energy
c, the energy 5 function in p(E') produces a dis-
crete cross section. Thus, for associative ion-
ization, the angular differential cross section of
the electrons ejected in transitions to a particular
vibrational-rotational state (v', J', M') of the mo-
lecular ion is

4n 2—(E, v', J', M') = s», g 7 ~z, ~, »(E, E ~,', »())„
Jr

x p(c)p(E), (65)

where the matrix elements of associative ioniza-
tion differ from those of Penning ionization only
in that they do not contain the factor (—i) exp(i7lt')
in t ~,

» [Eq. (64d)]. Equation (64) differs from that
given by Koike and Nakamura mainly in the rela-
tionship of the phase shifts of the exponential (Eq.
(64e)].' Apparently, they used a boundary condi-
tion of outgoing waves for the final state instead
of the appropriate incoming condition [see Eq.
(11)]. Note that for the complex potential, the
outgoing-wave boundary condition is appropriate
[Eq. (25)].

To determine the energy differential cross sec-
tion for Penning ionization, we use Eqs. (62) and

(63) to obtain

,+),()))+2, —Z) I" f(E, )=0.))

(68)

Qne would expect this to be reasonably accurate if
the imaginary part of the complex potential,

, -~1"(R), is small compared to the real part, V»(R).
The differential cross section using this approxi-
mation is

4m'
(E E.)=.. . g g Iz . (E E), I

x p(E') p(c)p(E) (69)

The lack of the bar over the T-matrix element in-
dicates that barred quantities in Eqs. (64c)-(64e)
are to be replaced by their approximations. I" ~J

replaces Ef in Eqs. (64d) and (64e). The approxi-
mate initial- channel phase shift, g~ = X& + i p, J, re-
places )7»~ in Eq. (64c). .(Actually, only t»»~ is spe-
cifically needed, since only the squared modulus
of the matrix elements are used. ) X~ is readily
obtained-when E, (E,R) is computed Eq. (68)].

The cross-section formulas given by Eqs. (66)
and (67) will be the most accurate discussed in the
remainder of this paper. They are exact to the
extent that Eq. (55) is exact for the complex po-
tential. Most of the remainder of this paper will
concentrate on Penning ionization. Numerical re-
sults obtained from approximate formulas, devel-
oped below, will be judged in comparison to the
exact results obtained from Eq. (66).

Two approximate formulas for the electron en-
ergy spectrum will now develop. These will be
numerically tested in Sec. V to ascertain their
validity. The first approximation will be to re-
place the complex, entrance-channel wave function,
E, (E, R), by an approximate form, E~»(E, R), that
is totally real. E ~»(E, R) is the solution of the
radial equation using only the real part of the po-
tential:
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sinh( p & ) = 2 w dR F, (E, R) I'(R)F& (E,R)p(E) .
Q 0

If we replace F, by its approximate, totally real
form, we obtain

~ CO

sinh(p, , ) =— dR [F, (E,R)] I'(R) p(E)
dp

dR [F, (E,R)]'r(R)p(E),
2 +0

(7 lb)

since we are assuming I"(R) is small in this ap-
proximation. This now offers a means of ca,lcu-
lating the imaginary part of the complex pha, se
shift without solving the complex-potential radial
equation [Eq. (55)]. Simpler classical and semi-
classical formulas are also available for the imag-
inary component of the phase shift. '"

One final approximation will now be made with
respect to the energy differential cross section.
This will be to average over the effects on the T
matrix of the angular momentum of the initial
state. This approximation is required for the
semiclassical analyses of this and analogous pro-
cesses.""This is done by replacing J by its
average value. This is just 4' since IJ' —I I

~Z
&J'+/. By doing this, we can employ the same
technique used to produce Eq. (50), and thereby
sum over 8 in Eq. (69) to obtain

(E E~i)
dG

4m3=s, .g (2&'+I) g lexp( pf)(Fg'(«I»-F;& I'

x p(E') p(c) p(E) (»)
Note that in this approximation, it is assumed that
the angular momentum of the nuclei does not
change during the transition.

p, is an approximate value of p, , = Im(q, ). To
calculate p, , we employ a perturbation method
identi. cal to one used to calculate Born-approxi-
mation phase shifts. ' By multiplying Eq. (55) by

F, and Eq. (68) by F, , subtracting, and then in-
tegra. ting to R', we have

~ dF, ~dF—~('iI
Fq dR

" dR)..
2 8'

=i— F]ER F ER. VO
0

By exten. ding R' to and taking the derivatives of
the asymptotic forms of the ra.dia, l wave functions,
we ha.ve

V. NUMERKAL RESULTS FOR He + 8

In. this section, we will numerically examine
the Penning and associative ionization processes
specified by Eqs. (3) and (4). We will consider
both the total and differential cross sections as-
sociated with a particular thermal kinetic energy
in the initia. l state. In computing cross sections
the main problem is to produce the numerical
quantum mechanical wave functions [Eqs. (30) and

(55)]. Fortunately, the author had access to com-
puter codes written by Allison that could be modi-
fied to construct the required wave functions over
the entire region of interest. ' ' The asymptotic
condition for free states is given by Eq. (30b).

The Numerov method was the numerical tech-
nique used to integrate the radial equations for the
initial- and final- channel wave functions. "'" The
radial internuclear distance is divided into grid
composed of short steps. Starting at some very
small internuclear separation, the wave function
is integrated outward by taking successive steps
along the grid.

We will first consider the computation of a wave
function for a channel containing a purely real po-
tential. It is not efficient to use Eq. (30b) to de-
termine the phase shift in the asymptotic region.
It is better to write the asymptotic condition as

F,'(E, R) -W(E, p) cos(q,')kR

x [j ~(kR) —tan(q~)n~(kR)], (I3)

s ~ s 2p R2

To determine the phase shift, we have the com-
puter check if the wave function has just gone
through zero at each of the grid-point distances
(R„) in the asymptotic region in which we expect
the condition above is satisfied. If it has done this
at the grid point R„, we compute the pha, se shift
by

R„,W„q, (kR„) R„W„,q, (kR„,)
R„W„,n, (kR„,) R„,W~, (kR„) '

where the W„are the un-normalized computed
values of the wave function. We continue this
search until the phase shift has finally converged
to within. some specified tolerance; in the compu-
tations reported here, the tolerance was chosen
to be 0.001 rad. The phase shift is then used to
normalize properly the computed values of the

where j ~(kR) and n~(kR), being the spherical
Bessel and Neumann functions, are exact solutions
of the radial equation [Eq. (30a)] for V,(R) = 0 at
all R. The computed values of F~(E,R) will be-
come proportional to this form when
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[H(R) —E]F„(E,R) = — I'(R—)F (E,R),

[H(R) —E]F (E,R) = —1'(R)F (E,R),
where

(77a)

(77b)

H(R) =
i
—,+ V,(R)+, . (77c)

t' k' d' k' J'(4+ l)

The boundary con.ditions are

F'„(E,o) = F;(E,o) = o
and

(78a)

Fs(E, R) -A (E, p) cosh( IJ, , ) sin(kR —,Zv+ 7, ),—

(78b)

Fl (E,R) -A(E, p) sinh(P~) cos(kR ——,
' jv+ X~),

(78c)

where

wave function.
Unlike the problem considered so far, the exact

initial-channel radial equation [Eq. (55)] contains
a potential that is partly imaginary. If we divide
the wave function into real and imaginary parts,

F) (E,R) =Fs(E,R)+iFI (E, R)

and substitute these into Eq. (55), we produce two
coupled second- order equations"

values obtained by Miller and Schaefer appear to
be too small by 8. factor of approximately 2 com-
pared to the expected behavior. " The two poten-
tials used are shown in Fig. 2.

We also need to determine numerical values of
the electronic coupling elements, (sl ~R), which
are- transition amplitudes between initial and final
states of nuclear motion. The coupling element
(&„l IR) that exists for vertical transitio'ns
[& = s„=&V(R)] produces essentially the same nu

merical effect as the more general (cE IR) for two
main reasons. One is that coupling element de-
pends only weakly on c."'" Secondly, the major
contribution to the nuclear integrals in the T-ma-
trix elements occur around semiclassical station-
ary-phase points, Rs, defined by c= AV(Rs), the
vertical- transition condition. "'" It is especially
convenient to set (cl ~R) equal to (c„l ~R) for the
processes considered here [Eqs. (3) and (4)] be-
cause Miller, Schaefer, and Slocomb (MSS) com-
puted the values of (s„l IR) at R='2. 0, 4.0, 8.0, and
8.0 bohrs for l from zero to nine. ~ The tabulated
results of MSS indicate that the (cl IR) are oscilla-
tory functions of both R and l since sign changes
occur (Table I of MSS). Such sign changes also ap-
pear in the listed results of more-recent caIcula-

X, =Re(q~),

g,'= fm(gf).

(78d)

(78e)

0.24—

0.22—

Although more complicated than the real-potential
problem owing to the coupling, Allison's computer
code utilized a Numerov technique to calculate the
phase shifts. In the process, all information
needed to construct the complex wave function is
computed. Using this information and appropriate
formulas, " the author modified the code to produce
the wave function at each of the grid points R„.
Hickman and Morgner apparently have used a simi-
lar method in their computations on the Penning
process involving Ar and He*.44

Numer ical quantum-mechanical computations
were conducted for the Penning and associative
ionization processes involving metastable helium
and atomic hydrogen [Eqs. (3) and (4)]. For this
particular process, only the doublet '5 molecular
state produces the ionization, . Since a quartet 'E
electronic configuration can also form from the
initial atomic species, the appropriate statistical
factor is s, =2/(2+ 4) = &. The entrance-channel
potential for the HeH" ( Z') state was determined
from a numerical fitting of the values computed
by Miller and Schaefer. " Although they also com-
puted the HeH'('Z) potential, data calculated by
other investigators were used to fit this poten-
tial.""This was done because the asymptotic

0.20—

O. I8—

0.00— He(l S) + H

-0.02—

-0.04—

-0.06—

—0.08—
I I I I I I I I

I.O 2.0 3.0 4.0 5.0 6.0 7.0 8.0
R (bohr)

FIG. 2. Intermolecular potentials for Penning and as-
sociative ionization involving He {ls2s,2 3S)+H{ls, 1 2S).
The upper curve is the potential for the HeH~{2Z') molec-
ular state, while the lower curve is the potential for the
HeH'{~Z'. ) mo1ecular-ion state. [Atomic units are dis-
played {Ref.25): 1 bohr=0. 52917 &10 cm; 1 hartree
= 4.3595 &&10 ergs = 27.211 eV.)
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tions by Hickman, Isaacson, and Miller (HIM)."
However, it is obvious that some of the sign
changes that appear in these works do not actually
occur. For instance, the results of MSS and HIM

agree fairly well as to the magnitudes of the cou-
pling elements, but sometimes disagree on the
sign. Unfortunately, there appears to be neither
uniform agreement nor disagreement in these
signs for either constant R or constant l. This
problem with signs is even more apparent in the
values of the coupling elements given in Tables III
and IV of HIM. These represent results of differ-
ent computational methods of determining the cou-
pling elements. They agree quite well as to mag-
nitudes, but quite often disagree as to sign. The
problems may be due to the manner in which
the coefficients of the electronic basis sets are
numerically calculated. Even for constant R, they
may have switched signs (for reasons known only
to the computer) as / is varied even though an os-
cillation is not warranted theoretically. " Thus it
is not apparent which of the signs changes are
spurious, although we expect some oscillations
should occur owing to the oscillatory nature of the
continuum electronic orbital used in the computa-
tions [Eq. (31)]. [In their numerical computations
of the imaginary width, both MSS and HIM used
Coulomb wave functions to approximate the elec-
tronic continuum orbital at all r in Eq. (31); i.e.,
they set f '(s, x) = Il '( k ', kr). This and the other
numer ical approximations just discussed introduce
some computational inexactness even in cross sec-
tions based on exact formulas. )

In the calculations presented here, we will em-
ploy the values of the coupling elements given by
MSS. At least for (c0 ~R), the oscillation in R
given in MSS is more consistent with the wave-
length of the ejected electron than is that given in.

HIM. A separate numerical fit of (el ~R) as a func-
tion of R was made for points between 2.0, 4.0,
6.0, and 8.0 bohrs. Since these functions oscillate
as a function of R, they can produce an undulatory
pattern in the total width of the channel [Eq. (73c)].
This is seen in Fig. 3, which displays the total
width and the contributions from the three partial
waves of the ejected electron. Previous investi-
gators have only used a width that is a smooth fit
of the computed values for the total width at R
= 2.0, 4.0, 6.0, and 8.0 bohrs. ""If the dips were
there, they would be missed by this method. Such
dips will have their most-pronounced effect in the
energy differential cross section. As has been
discussed elsewhere, the magnitude of the differ-
ential cross section is mainly determined by the
values of the coupling elements at two points of
stationary phase that depend on electron energy. "
For stationary points in the undulatory regions of

4.0—

th
CD
CD
L

Lo 3.0—

C)

2.0—

I.O—

0.0
2.0 3.0

R (bohr)
4.0 5.0 "60

the width, the absolute magnitude of the energy
differential cross section may be affected signi-
ficantly if such undulations do occur.

However, it should not be inferred from Fig. 3
that the undulation appearing around R= 3.5 bohrs
must be there in physical reality; the oscillatory
structure of (ct (R) cannot be unambiguously deter-
mined from published values. [The more accurate
values of I"(R) reported in HIM at R =2.0, 2.5,
3.0, 3.5, and 4.0 bohrs indicate that it does not
really exist. ] However, the issue of whether or
not such undulations exist for the particular Pen-
ning and associative ionization processes exam-
ined here will not affect the intent or conclusions
of this paper. Yet these considerations should in-
dicate that undulations may exist in the imaginary
widths of other systems and processes.

The actual numerical computations using the
complex potential were done for an incident nu-
clear kinetic energy of 0.00184 hartrees (0.050
eV). This energy was chosen because it was the
typical incident energy involved in the experimen-
tal measurements of the electron energy distribu-
tion. "' Although the main thrust of this paper is
the calculation and interpretation of ejected-parti-
cle energy distributions, we begin our investigation

FIG. 3. Magnitude of the imaginary width of the HeH*
{2Z ) molecular state. The contribution from the first
three partial waves of the ejected electron are indicated
by a dashed line for E=0, alight solid line fork=1, and
a dash-dot line for l =2. The heavy solid line is the total
width, obtained from the sum of the contributions of /=0
to 9. fAtomic units are displayed {Ref. 25): 1 bohr
= 0.52917 &&10" cm; 1 hartree=4. 3595 X10" ergs=27. 211
eV.] For R &6.0 bohrs, the width is adequately given by
I'(R) = 0.09 exp(- 1.13B) in hartrees.
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with an examination of total elastic and inelastic
cross sections. To compute these, we only need
the complex phase shifts of the entrance channel.
The total elastic and inelastic cross sections
are"'"

(79b)

(2~+1) ~I S.'~', (79a)

o„=—", g (2m+ I)(I IS,'I'),

where S~ is the S matrix associated with elastic
scattering. This is related to the initial-channel
phase shifts by S,'=exp(2iq~) = exp(2iÃf) exp(-2g,').

Wave functions and corresponding complex phase
shifts were computed for values of J up to 60,
where the real and imaginary parts of the initial-
channel phase shift become effectively zero. This
diminishment of the phase shift is owing to the
fact that the penetration of the centrifugal barrier
begins at J= 26 for the incident energy we are
using. As the angular momentum increases, the
wave function penetrates the barrier less and less.
Since the wave function correspondingly feels less
and less of the effects of the interior potential
(where the real and imaginary parts are large),
the real and imaginary parts of the complex phase
shifts go to zero. The computed total elastic
cross section is v„= 255.67 bohr' (7.1601 x 10 "
cm') and the total inelastic is o„=105.27 bohr'
(2.9481 x 10 "cm'). This is in agreement with the
inelastic cross section obtained by Cohen and
Lane (3.0 x 10"cm') in their complex-potential
computation. " Although inadequate to compute the
electron energy spectrum, even simple classical
dynamical models can produce nearly the same
result for the total cross section. ~ The computa-
tional result is consistent with the experimental
cross section obtained by Morgner (120+20 bohr')
at the same average kinetic energy of 0.05 eV."
(For a review of experimental measurements on
Penning ionization, see Ref. 57.)

We can now begin to compare the exact calcula-
tion with the approximate results achieved by em-
ploying the wave function F~(E,B), which is com-
puted using only the real part of the potential [Eq.
(68)]. Since the imaginary part of the complex po-
tential is much smaller than the real part (com-
pare Figs. 2 and 3), we expect that the initial-
channel wave functions will not be greatly per-
turbed by the presence of the imaginary width. To
verify this, we first examine the phase shifts in
detail. For nearly all values of the angular mo-
mentum, the totally real phase shift of F, (E, R)
equals the rea, l part of the complex phase shift, to
within the convergence tolerance of 0.001 rad. The
only significant deviation occurred for J values
just prior to barrier penetration. At J=21, the

difference in these phase shifts was 0.006, and at
J= 26 it was at its maximum of 0.059. For J= 27
and greater, there was again no difference within
the tolerance. This is consistent with the effects
one might expect by considering the relative mag-
nitude of the width in comparison to the other
terms in the radial equation. When the imaginary
part of the entrance- channel potential is much
smaller than the other terms in the radial wave
equation

—(R) «z v(a)
2 2p, R' (80)

we expect that the imaginary part of the potential.
will have only a relatively small effect on the wave
function. In the process we are considering here,
~-, I'(R) ~«V, (R) everywhere.

Thus, the condition. above is usually not met only
around classical turning points where the term on
the right-hand side is zero. Near the interior
turning point of the entrance channel, the potential
is rapidly changing. Consequently, the condition
expressed by Eq. (80) is not satisfied only within
a small region about the turning point. In this
case then, the imaginary width of the potential
[—,'I'(R)] will only have a small overall effect. The
effects of the turning points of the centrifugal bar-
rier should be larger since the barrier spans a
greater distance. The condition of Eq. (80) may
then not be met over a significant range of inter-
nuclear separation about the peak of the barrier
for values of J near the onset of barrier penetra-
tion. This is precisely what occurs in the approxi-
mate, real phase shifts between J= 21 and J= 26
(which is when barrier penetration occurs). A
simila, r deviation in the approximate, ima, ginary
phase shift [Eq. (71)] occurs in comparison to the
imaginary part of the complex phase shift of
F~(E, R). Only in this case though, the error be-
gins at J=24 with a difference of 0.004 rad and in-
creases to a maximum of 0.032 at J=26. (The
imaginary part of the complex phase shift, 7, , is
fairly constant until penetration begins, having a
typical value of 0.33V.) Again, there is no devia-
tion for larger angular momentum. -

Even though these deviations exist, they are not
particularly large. This implies that the entrance-
channel wave function may not be greatly affected
by the presence of the small imaginary width. We
should then be able to estimate the effect of th!s
width on cross sections by only considering the
totally real, approximate wave function [Eq. (68)].
To probe this possibility, we return to Eq. (VV).

If the condition of Eq. (80) is satisfied nearly
everywhere, the equations for the real part [Eq.
(77a)] and the imaginary part [Eq. (VVb)] of
F~(E, R) are essentially decoupled. Since both



408 RONALD JAMES BIEN IEK

1&F( &sl IR)F,"))'= [ &F'„&sl IR)Ff ') ('

+ 1&F;&sf IR)Ff') (81)

we see that the imaginary part will increase the
magnitude of the T-matrix elements as long as the
contribution from the real part is not significantly
decreased. Again, by direct examination of the T-
matrix elements, the contribution from the real
part of the wave function is within a few percent
of the value obtained using the approximate wave
function produced by only the real potential. [This
was also indicated by how well the totally real,
approximate wave function, F, (E,R), worked in
phase shift calculations. ) This part of the T ma-
trix is, therefore, not significantly affected by
changes in the real part of the radial wave func-
tion even in the presence of the imaginary poten-
tial. From these considerations, the average
fractional contribution of the imaginary component

F„(E,R) and F, (E, R) then satisfy nearly the same
equation, their ratio over almost the entire range
of R should be largely determined by their asymp-
totic conditions [Eqs. (78b) and (78c)]. (We expect
this should breakdown near classical turning
points. )

Consequently, we expect F~~(E, R) and FI(E,R)
to be out of phase with respect to one another by
—,m rad, even in the nonasymptotic interior region
of the potential. This was verified for typical an-
gular momenta by a direct examination of the com-
puted real and imaginary parts of the wave function.
This also shows up in the contribution to the T-
matrix elements from Fs~(E, R) and F~~(E, R). For
fixed l, J', and E', the real and imaginary contribu-
tions to T~~, ,(E, E') oscillate between positive and

negative for increasing J. This happens because
the main contribution to the elements of fixed E
and E' occurs around a stationary-phase point
that is largely independent of J." As J changes,
the local phases of E„and I', also change owing
to the centrifugal term in the effective potential.
Thus the values of these component wave functions
around the stationary-phase point oscillate as a
function of J. These oscillations are reflected in
the matrix elements. The contribution from
F~z(E, R) is large when that from F, (E, R) is small,
and vice versa. This means that the contributions
are out of phase by about —,'m, since the final-state
wave function. is the same for both contributions.
This is precisely what one wo uld expect if the
wave functions are also out of phase by this
amount.

A second hypothesis that we can suggest from
the asymptotic condition concerns the relative
size of the contributions from the real and imagi-
nary parts of F, (E,R). By noting that

to the T-matrix elements should be given by

I &F;&sf I R)F,') I,2„slhh'(gf)
~
&F~&sl I R)F& ') I'„cosh'(p f)+ sinh'(p, )

'

(82)

Using a typical value of the imaginary phase shift
(0.337) prior to barrier penetration, this ratio is
about 0.1. By neglecting the contribution from
F~~(E, R), which we do in the approximate energy
differential cross section of Eq. (6S), we expect to
introduce an error of about 10'L

In Fig. 4, we compare the energy differential
cross section obtained using the complex radial
wave function [Eq. (66)] and the approximate real
wave function [Eq. (69)]. As expected the exact
results are generally larger than the approximate.
The maximum error in the approximate result is
8/a, 'with a typical error being 6%. This is quite
consistent with the 100/~ deviation predicted from
Eq. (82). We thus conclude that relative contribu-
tions of the real and imaginary parts of the initial-
channel wave function are indeed determined main-
ly by their asymptotic conditions when the imagi-
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FIG. 4. Comparison of the energy differential cross
sections of ejected electrons from Penning ionization
[Eq.(3)], computed using three levels of approximation.
Crosses indicate results obtained by using exact, com-
plex radial wave functions in T-matrix elements [Eq.
(66)]; triangles are results using totally real, radial
wave functions [Eq.(6S)]; circled dots are results using
totally real, radial wave functions with average angular
momenta (O'=4') [Eq.(72)]. [Atomic units are displayed
{Bef.25)". 1 hartree=4. 35g5 &&10 ~ ergs; 1 bohr /hartree
= 6.4232 &10 cm /erg= 1.029 X10 cm /eV. ] The initial
kinetic energy of';the colliding nuclei i.s E= 0.001 84
hartree = 0.050 eV.
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I
(F~ (cl I R)F~~ ) I'„si.nh'(p ~)

I (F', (cl I R)F~~') I'„cosh'(g f)
' (83)

We can push this even further by employing the
knowledge that the imaginary and real contribu-
tions are —,'n out of phase with respect to one an-
other Supp. ose that l (Ff(cl IR)F&~') ~' has two con-
secutive maxima at J=J, and J=J» with an inter-
vening minima at J=j. Since the matrix elements
of F, are about &~ out of phase with those of E, ,
I(Fz(cl IR)F&~') (' should be near a maximum at
J=j. We can estimate its magnitude as

s s 2 cosh'(p~)

x()(F', ~(cf IR)F,') I'

+ l(F;2«f IR)F ) I2). (84)

Consecutive approximate values of these matrix-
element maxima can be used to estimate

I (Fz (cl I
R)F~~') I' for values of J in between the

j 's.
The final approximation we investigate is that

of replacing the angular momentum of the initial
state of nuclear motion, J, by its average value,
J'. This approximation leads to Eq. (72) as the
formula for the differential cross section. As
previously mentioned, this step is generally re-
quired if one wishes to employ JWKB semiclassi-
cal approximations. The cross section that re-
sults from Eq. (72) is also displayed in Fig. 4.
The maximum deviation from the exact computa-
tion is 20%, with a typical value of 10%. Although
this error is larger than the previous approxima-
tion, it is still quite tolerable for many applica-
tions. (This error will of course be smaller for
processes in which less l of the electronic transi-
tion are significant. ) It is particularly interesting
and useful that this approximation, like the prior
one, correctly reproduces the positions of the ex-
trema of the oscillatory structure. This can lead
to a detailed semiclassical analysis of the source
of this structure, which is analogous to that em-
ployed in elastic angular scattering near a rainbow
extremum. " The simpler and more-intuitive
semiclassical results are in good agreement with
the quantum-mechanical results reported here.

As the final computation of this paper, we pre-
sent the individual cross sections of associative

nary width of the potential is small [Eq. (80)]
nearly everywhere.

This approach can be used to estimate the ma-
trix elements involving F~ even if only the approxi-
mate, real wave function F~ is computed [Eq.
(68)]. We know F~~ nearly equals Fz. Consequently,
the relative sizes of the average values of the ma-
trix elements a,re given by

ionization (summed over M') to each of the 149
bound states of HeH'('&'), using exact formulas
[Eq. (67), but again employing the numerical ap-
proximations discussed after Eq. (V8)]. The in-
cident kinetic energy of the colliding nuclei is E
=0.00184 hartree (0.050 eV). The bound-state
eigenenergies and eigenfunctions of HeH' were
computed using a Numerov technique that matched
solutions of outgoing and incoming numerical inte-
grations. The resulting energies and cross sec-
tions are given in Table I. At the incident energy
considered here, the v'=2, 3, and 4 vibrational
levels of HeH' are preferentially populated as a
result of associative ionization.

VI. CONCLUSION

The main conclusion that we can draw from
these numerical results is that the effects of the
imaginary width of the complex potential can be
rather accurately determined from computations
dealing with only the real part of the potential-
as long as the width is small compared to the other
energy terms [Eq. (81)]. The totally real, approx-
imate wave functions [the solutions of Eq. (68)]
give quite accurate values for the real part of the
complex phase shifts. Using a perturbation tech-
nique [Eq. (Vl)], these approximate wave functions
yield accurate values for the imaginary part of the
complex phase shifts. These can be used in turn
to compute total elastic and inelastic cross sec-
tions [Eq. (79)]. We have found that the ratios of
the magnitudes of the real and imaginary compo-
nents of the complex wave functions are largely
determined by their asymptotic forms. Both their
local values and their overall effects (as revealed
by matrix elements) are generally —,'v out of phase.
This can be used to make a reasonable estimate
of the contribution owing to the imaginary part of
the complex wave functions to the transition ma-
trix elements [Eqs. (83) and (84)]. However, all
these results are dependent upon the imaginary
width of the complex potential being much less
than the real part. When the imaginary part be-
comes comparable to the real, such as in the as-
sociative detachment process H+ H -H, + e, the
approximate formulas for cross sections to indi-
vidual final states [e.g. , Eq. (69)] are many
orders of magnitude in error. " In such cases,
only exact formulas [Eqs. (66) and (6V)] will work.
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TABLE I. Cross sections of associative ionization [Eq. (4)] to individual rotational-vibrational states of the molecular ion HeH+

(i Z+). J' is the rotational quantum number and v' is the vibrational quaritum number. E~, is the eigenenergy of the (v', J') state

(1 hartree = 4.3595 X 10 ergs = 27.211 eV). 0(E, E, ) is the cross section to the (v', J') state, summed over the degenerate magnetic

quantum numbers N' [Eq. (67)]. (1 bohr = 2.8002 X 10 cm~. ) The initial kinetic energy. of the colliding nuclei is E=0.001 84
hartree = 0.050 eV.
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1.7141 (-04)
5.3040 (-03)
6.8474 (-02)
2.9988 (-01)
9.9767 (-02)
1.2663 (-01)
9.1062 (-03)
2.4158 (-03)
3.5278 (-03)

2.2477 (-04)
6.8410 (-03)
8.7330 (-02)
3.5446 (-01)
7.8345 (-02)
1.5219 (-01)
2.5066 (-02)
1.3073 (-03)

2.9520 (-04)
8.8428 (-03)
1.1128 (-01)
4.0994 (—01)
5.0230 (-02)
1.6717 (-01)
4.8114 (-02)
7.6252 {-03)

3.8907 (-04)
1.1489 (-02)
1.4191 (-01)
4.6187 (-01)
2.2155 (—02)
1.6212 (-01)
6.9376 (-02)
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E, (hartrees)

TABLE L (Continued)

0(E, E, , ) (bohr2) EJ, (hartrees) a(EQ~, ) (bohr2)

1.2

13

14

0
1

2
3
4
5

-4.8595 (-02)
-3.5650 (-02)
-2.3755 (-02)
—1.4462 (-02)
-7.6987 (-03)
-2.9971 (-03)
—3.4157 (-04)

-4.5348 (-02)
-3.2556 (-02)
—2.0993 (-02)
—1.2195 (-02)
—5.8281 (-03)
—1.6464 (-03)

-4.1904 (-02)
-2.9278 {-02)
—1.8100 (-02)
—9.8502 (-03)
-3.9355 (-03)
—3.4295 (-04)

—3.8275 (-02)
—2.5832 {-02)
—1.5103 (-02)
—7.4481 (-03)
—2.0655 (-03)

5.1503 {-04)
1.5031 (-02)
1.8122 (-01)
5.0309 (-01)
5.0813 (-03)
1.3006 (-01)
7.3102 (-02)

6.8505 (-04)
1.9838 (-02)
2.3159 (-01)
5.2384 (-01)
1.2417 (-02)
7.4974 (-02)

9.1648 (-04)
2.6469 (-02)
2.9582 (-01)
5.1304 (-01)
5.3632 (-02)
2.0677 {-02)

1.2360 (-03)
3.5817 (-02)
3.7690 {-01)
4.6070 (-01)
1.2301 (-01)

16

17

18

20

22

0
1

2
3

—3.0522 (-02)
—1.8523 (-02)
-8.9243 (-03)
-2.5586 (-03)

—2.6427 (-02)
—1.4709 (-02)
-5.8161 (-03)
—1,4576 (-04)

—2.2205 (-02)
—1.0827 (-02)
-2.7491 (-03)

—1.7871 (-02)
—6.9162 (-03)

—1.3440 (-02)
-3,0228 (-03)

-8.9305 (-03)

-4.3607 (-03)

2.3229 (-03)
6.9147 (-02)
5.9156 (-01)
2.2409 (-01)

3.2352 (-03)
9.8541 (-02)
7.0619 (-01)
8.2398 (-02)

4.5565 (-03)
1.4250 (-01)
7.8837 (-01)

6.5606 (-03)
2.1037 (-01)

9.7414 (-03)
3.1659 (-01)

1.4665 (-02)

2.2911 (-02)

15 —3.4476 (-02)
—2.2240 (-02)
—1.2033 (-02)
—5.0083 (-03)
—2.6951 (-04)

1.6847 (-03)
4.9311 (-02)
4.7662 (-01)
3.6179 (-01)
1.8830 (-01)

APPENDIX A: NORMALIZATION OF A CONTINUUM STATE

If Qr(x, y)j is a complete set of functions with

continuous variables x and y, then the proper
orthonormality relations are"

g~(x', y) p(x, y)r/)(x, y) dy= 6(x —x'), (Ala)

port for this work was received from the Air Force
Office of Scientific Research (AFOSR 71-2132) and
the National Aeronautics and Space Administration
(NASA NGL 22007-136). The author would like to
express his indebtedness to A. Dalgarno, Harvard
University and Center for Astrophysics, for his
many helpful discussions and suggestions concern-
ing the subject of this paper. The author would al-
so like to thank A. Allison, University of Glasgow,
who, with patience and understanding, tutored the
author through his novice years of writing large-
scale computer codes.

4*(x, y') p(x, y)P(x, y) dx= ~(y —y'). (A1b)

y(E, R) = [pk/0'(2w)']' "e'"",
where

(A2a)

k= [(2 p,/0 )E] Q. (A2b)

Letting x=E and y=R, we have

t/i*(E', R)g(E, R) dR

= [pk/h'(2w)'](2m)'6(k —k')

= (q//a') [6(/' u )/u']6(A 6 )
-1

6(Z- Z )6(D 0 )e'u ( yE )
= 6(E—E')6(Q —0') = 6(E —E') . (AS)

p(x, y) is the density of the functions.
Consider a continuum wave function of the form
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Likewise

li g*(E,R') P(E, R) dE

, exp[ik (R —R') dEdQ

APPENDIX B: RELATIONSHIPS INVOLVING D MATRICES,

3j SYMBOLS, AND SPHERICAL HARMONICS

(i) D-matrix relationships (Eqs. 4.1.9 and
4.1.10 in Edmonds. Note mistake in Eq. 4.1.12):

exp [ik ~ (R—R') ]dk
2w J

= 6(R-R'). (A4)

Dl (+P ) e(2().'dl (P)e13))'

and (Eq. 4.2.7 in Edmonds):

D', (uPy)*= ( 1)
' D'„, (nPy) .

(Bla)

(Blb)

Thus, g(E, R), specified by Eq. (A2), is an energy-
and space-normalized wave function with p(E)
= p(R) =1.

We can make a partial-wave expansion of
exp(ik R) to obtain"

i/2
p(E, R)=!,", (4w) Q Yl (0)Y, (8)ih' 2w '

lm

x (i)'jl(kR)R ',
(A5)

where j,(kR), the spherical Bessel function, is
related to the ordinary Bessel functions by

j,(k&) = («/2k)'i2J„, )2(kB) . (A6)

Thus

(ii) Expansion of the product of two D matrices
in terms of single D matrices (Eq. 4.3.2 in Ed-
monds):

(2)+)) ( ' ' ')&' (ll)'
%3m3

im,' m,' m,'

(B2)

(iii) Relationships of Sj symbols (Eqs. 3.7.7,
3.7.8, and 3.7.6 in Edmonds):

)t' ll l2 l32'+ "I

)C)(E, R) = Q Y*, (Q) Y, (R)(i) 'F '(E,R),
lm

(A7a) =6 (m,' —m, )I5 (m,' —m, ), (BSa)
where

F'(E, R) = (2 tu/wh'k)' ~'kj, (kit) . (A7b)

x exp(ill )F (E,R), (A8a)

In Eqs. (A7), we have shifted the normalization
coefficient into the radial function F'(E, R).

It can be shown that the same analysis holds
true for wave functions produced by the scattering
of a plane wave off a central potential. " In this
case

q(E, R) = [11k/n'(2w)3]'"

x [exp(ik ~ R)+f(8) exp(ikR)R ']

YJu YJg R i
JM

(I, t, l3'

(nz, m, m' rn, m, m j
= (2l3+1) '6w(l,' —l3)6w(m3 —m, ) 6(l„l„l ),

(BSb)

(
l l l1 2 3

( 1)ll+l2+l3 ( 1 2 3l l l

rn m2 m !

(BSc)

where 6(l„l„l3)= 1 if II, —l21(l3 (l, +E„and is
zero otherwise.

(iv) Spherical harmonics: (a) Relationship to D
matrices (Eq. 4.1.25 in Edmonds):

where asymptotically

F (E, R) - (2 i1/wI1'k)' ' sin(kR ——,
' Jw+ li ) .

(A8b)

4w ) 1/2
D.'.( A)=(-I)" „„!Y,.(~ ),

4~
D,' (&Py)= 2I 1 Y, (Py)

(B4a)

(B4b)

p(R) = 1 (A9a)

With this normalization, the density of states is
still (b) Orthogonality relationships (Eqs. 2.5.4 and

4.6.6 in Edmonds):

and

o(E) =1. (A9b)
dQ Y*, (0) Y,gQ) = 6w(/' -.l) 6w(m' —m), (B5a)

For convenience, we can make

o(E) = p(~) = o(R) = p(ft) = 1. (A10)
Y* QY O' = P cosQ 0' (B5b)



COMPLEX POTENTIAL AND ELECTRON SPECTRUM IN. . .

~F. M. Penning, Naturwissenschaften XV, 818 (1927).
2M. B. McElroy, Planet. Space Sci. 13, 403 (1965).
3C. K. Rhodes, IEEE J. Quantum Elecron. 10, 153 (1974).
H. Nakamura, J. Phys. Soc. Jpn. 26, 1473 (1969).

~H. Nakamura, J. Phys. Soc. Jpn. 31, 574 {1971).
F. Koike and H. Nakamura, J. Phys. Soc. Jpn. 33, 1426
(1972).

TM. Mori, T. Watanabe, and K. Katsuura, J. Phys. Soc.
Jpn. 19, 380 (1964).

8M. Mori and H. Fujita, J. Phys. Soc. Jpn. 20, 432
(]965)

M. Mori, J. Phys. Soc. Jpn. $1, 979 (1966).
U. Fano, Phys. Rev. 124, 1866 (1961).
M. Mori, J. Phys. Soc. Jpn. 26, 773 (1969),

12H Nakamura J Phys. Soc. Jpn, 24 1353 (1968),
~3H. Nakamura, J. Phys. Soc. Jpn, 25, 519 (1968).

H. Nakamura, J. Phys. Soc. Jpn. 26, 614 (1969).
5H. Feshbach, Ann. Phys. (N. Y.) 19, 287 (1962).
6R. H. Lemmer, Rep. Prog. Phys. 29, 131 (1966).
YT. F. O' Malley, Phys. Rev. 150, 14 (1966); 156, 230
(1967).
C. Bottcher, Proc. R. Soc. A 340, 301 (1974).

~~W. P. Miller, Chem. Phys. Lett. 4, 627 (1970).
B. G. Newton, Scattering Theory of Waves and Particles
(McGraw-Hill, New York, 1966).
N. F. Mott and H. S. %'. Massey, The Theory of Atomic
Collisions (Oxford U.P., New York, 1965).
L. I. Schiff, Quantum Mechanics (McGraw-Hill, New

York, 1968).
W. H. Miller, H. F. Schaefer, III, and C. A. Slocomb,
J. Chem. Phys. 56, 1347 (1972).

24H. Hotop and A. Niehaus, Z. Phys. 238, 452 (1970).
2~K. L. Bell, J. Phys. B 3, 1308 (1970).

G. W. King, Spectroscopy and Molecular Structure
(Holt, Binehart, and Winston, New York, 1964).
A. R. Edmonds, Angular Momentum in Quantum Me-
chanics (Princeton U.P., Princeton, N.J., 1960),
A. M. Arthurs and A. Dalgarno, Proc. B. Soc. Lond.
256, 540 (1960).

9E. S. Chang and U. Fano, Phys. Rev. A 6, 173 (1972).
W. W. Robertson, J. Chem. Phys. 44, 2456 (1966).
A. L. Schmeltekopf, F. C. Fehsenfeld, and G. I. Gil-
man, Planet. Space Sci. 15, 401 {1967).

32H. Fujii, H. Nakamura, and M. Mori, J. Phys. Soc.
Jpn. 29, 1030 (1970).

3~A. P. Hickman, A. D. Isaacson, and W. H. Miller, J.
Chem. Phys. 66, 1483 (1977).

I

A. P. Hickman, Ph. D. thesis (Rice University, 1973)
(unpublished).

3~A. S. Davydov, Quantum Mechanics (Addison-Wesley,
Beading, Mass. , 1965).
J. C. Y. Chen and J. L. Peacher, Phys. Bev. 163, 103
(1967).

3~B. J. Bieniek, J. Phys. B 7, L266 (1974).
R. J. Bieniek, Phys. Rev. A 15, 1513 (1977).

39A. C. Allison, Ph. D. thesis (Glasgow University, 1967)
(unpublished).

40A. C. Allison, J. Comput. Phys. 6, 378 (1970).
4~A. C. Allison, Comput. Phys. Commun. 3, 173 (1972).

K. Smith, The Calculation of Atomic Collision Process-
es (%iley, New York, 1971).

43P. G. Burke and M. J. Seaton, in Methods of ComPuta-
tional Physics, edited by B. Alder (Academic, New-
York, 1971), Vol. 10.

44A. P. Hickman and H. Morgner, J. Phys. B 9, 1765
(1976).
W. H. Miller and H. F. Schsefer, III, J. Chem. Phys.
53, 1421 (1970).

4 J. D. Stuart and F. A. Matsen, J. Chem. Phys. 41,
1646 (1964).

47L. Wolniewicz, J. Chem. Phys. 43, 1087 (1965).
H. H. Michels, J. Chem. Phys. 44, 3834 (1966).

~A. Dalgarno and A. E. Kingston, Proc. Phys. Soc. Lond.
73, 455 (1959).
W. H. Miller, J. Chem. Phys. 52, 3563 (1970).

~~A. P. Hickman (private communication).
~ J. S. Cohen and ¹ F. Lane, J. Phys. B 6, L113 (1973).

H. Hotop, E. Hlenberger, H. Morgner, and A. Niehaus,
Chem. Phys. Lett. 10, 493 (1971).
H. Morgner, Diplom. thesis (Universitat Freiburg,
1971) (unpublished).

~~E. %'. McDaniel, V. Cermak, A. Dalgarno, and E. E.
Ferguson, Ion-Molecule Reactions (Wiley, New York,
1970).
H. Morgner, Doktorarbeit {Universitat Freiburg, 1976)
(unpublished).

~TH. Hotop, Badiat. Res. 49, 367 (1974).
58B..J.Bieniek and A. Dalgarno, Astrophys. J.(tobe pub-

lished).
59P. H. Morse and H. Feshbach, Methods of Theoretical

Physics (McGraw-Hill, New York, 1953).
B. A. Buckingham, in Quantum Theory: I. Elements,
edited by D. H. Bates (Academic, New York,
1961).


