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We derive a new form for the matrix element of the two-particle mutual spin-orbit interaction in the Breit-
Pauli approximation. The complexity of standard tensor-operator expansion techniques is obviated by suitably
decomposing the mutual spin-orbit interaction into products of spin and orbital angular-momentum operators,
whose matrix elements in the lm&sm, scheme are obtained in a straightforward manner. Graphical
representations are given for both the one- and two-particle spin-orbit interactions, thereby permitting the
analytical evaluation by graphical techniques of the spin-orbit interaction between arbitrary configurations in
any coupling scheme. The graphical procedure for evaluating these matrix elements is demonstrated for LS-
coupled configurations having two nonequivalent electrons outside closed shells. Various properties of the two-
particle mutual spin-orbit operator are easily illustrated using its graphical representation.

I. INTRODUCTION

The spin-orbit interaction plays an essential
rote in the calculation of atoDHc structure,
atomic oscillator strengths, 4 and other atomic
processes. ' However, the calculation of spin-
orbit interaction in many-electron atoms is com-
plicated by the presence of the two-particle mu-
tual spin-orbit interaction. In the older accounts, '
the total spin-orbit interaction of a many-elec-
tron atom is represented approximately by a sum
of one-particle spin-orbit operators of the follow-
ing form:

V„=Q t'(&;)Lg ' sq

where% is the number of electrons, and L, and s,
are the orbital and spin angular-momentum opera-
tors of the ith electron. The spin-orbit parameter
g(r, )is commonly . taken in atomic units as

where n is the fine-structure constant, and V(r,.)
is the effective central potentia1 in which the ith
electron moves. Unlike the one-electron atom
case, in the many-electron atom the mutual spin-
orbit interaction cannot in general be interpreted
by considering an electron moving in a central
field. That is, it cannot be reduced to an effective
one-particle spin-orbit operator but must be trea-
ted as a two-particle operator.

The mutual spin-orbit interaction between elec-
trons in a many-electron atom is obtained by a
series of successive approximations. The rela-
tivistic theory for a single electron is described
exactly by the Dirac equation, ' provided one ne-
glects quantum electrodynamic and field-theoretic
effects. The existence of the electron spin gives

rise to the one-particle spin-orbit interaction in
the single-electron case. For many-electron
atoms, the quantum electrodynamic interaction
between electrons to the lowest order in 0. is due
to the exchange of a transverse photon. ' This
lowest-order interaction may be approximated,
to terms of order (v/c)', by the Breit interaction. '
In the Pauli approximation, ' the Breit interaction
gives rise to the mutual orbit-orbit, spin-orbit,
and spin-spin interactions as well as others. "
Although in a complete treatment of multiplet
structure all these interactions have to be con-
sidered, the spin-orbit interaction is by far the
largest one, after the Coulomb interaction, for
medium and heavy atoms.

Many studies of the mutual spin-orbit interaction
have been carried out. "" A number of these re-
searches were aimed at deriving amore realistic
spin-orbit parameter using Hartree-Fock wave
functions. In particular, Blume and Watson"
have developed a theory of the spin-orbit param-
eter for many-electron atoms and applied it to
calculations for a number of atoms and ions.
Although they obtained a tensor-operator expan-
sion for the mutual spin-orbit interaction, calcula-
tions were carried out only within the same con-
figuration for atoms having a single open shell.
Using Blume and Watson's tensorial expression
for the mutual spin-orbit interaction, Jucys and
co-workers"' ' obtained matrix elements of the
mutual spin-orbit interaction within the same con-
figuration. Also using Blume and Watson's ten-
sorial expression, Jones". calculated its general
matrix element in the lm, sm, scheme (which will
be referred to as "the m scheme" or "the zero-
order coupling sheme" in this work) and pointed
out a procedure to obtain. SL-coupling matrix ele-
ments by adapting Eissner and Nussbaumer's"
algebraic approach. A main goal of Jones'"
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formulation is to provide a numerical algorithm
for the calculation of mutual spin-orbit matrix
elements by digital computers; however, it is not
a convenient formulation for the analytical study
or calculation of the mutual spin-orbit matrix ele-
ments.

In this paper we present an alternative form for
the mutual spin-orbit interaction operator in
terms of products of orbital and spin angular-
momentum operators. Because wave functions of
the zero-order coupling scheme are usually eigen-
functions of orbital and spin angular momenta, this
form yields matrix elements in a straightforward
manner. The most general matrix element of the
mutual spin-orbit interaction is obtained by this
method and is then presented in a graphical form.
This graphical form permits one to calculate the
mutual spin-orbit matrix element in any coupling
scheme for arbitrary configurations by standard
graphical techniques. "" While in all cases both
analytical and graphical forms are presented, we
do gain i.n the graphical form some physical in-
sight, similar to the visual understanding of phy-
sical processes provided by Feynman diagrams.
Moreover, the graphical formulation gives a
transparent repr'esentation of the angular-mo-
mentum selection rules. Although by today' s
electronic computers it is possible to manipulate
complicated analytical expressions, ' the present
graphical approach furnishes a means to obtain an-
alytical results from easily constructed diagrams.

In Sec. II we derive the desired angular-'mo-
mentum form for the mutual spin-orbit interac-
tion. In Sec. III we obtain the general matrix ele-
ment in the m scheme and introduce its graphical
counterpart. In Sec. IV the procedure is given
for computing the matrix element between arbi-
trary LS-coupled configurations using the graph-
ical formulation of Fl Baz and Castel" and the co-
variant notations" for Wigner's 3-j symbol. The
procedure is illustrated for interacting configura-
tions having two electrons outside closed
shells. In Sec. V the procedure is given for
computing the matrix element between arbi-
trary LS-coupled configurations using the
graphical formulation of Briggs. " In Sec. VI the
trivial case of spin-orbit interaction in a central
field is treated for completeness. The physical
significance of the mutual spin-orbit interaction is
reviewed in Sec. VII, where some commonly used
terminologies are explicitly defined, and their
graphical representations given. Also in Sec. VII
the reduction of two-particle spin-orbit operators
to one-particle spin-orbit operators for certain
cases is demonstrated graphically, and the spin-
orbit parameter corresponding to Blume and Wat-
son' s" g, is calculated. Appendices A and B sum-

marize the graphical rules used in this paper.
Appendix. C summarizes the results for the ma-
trix element obtained in Sec. IV in the special ease
of interacting configurations having two electrons
outside closed shells. Comparison is also made
with certain previously tabulated results
in particular cases.

II. SPIN-ORBIT INTERACTIONS IN THE PAULI

APPROXIMATION

As mentioned in the beginning of See. I, the
quantum electrodynamic interaction between elec-
trons to the lowest order in a can be approximated
by the Breit interaction, and the Breit interaction
gives rise to the mutual spin-orbit interaction,
among others, in the Pauli approximation. Con-
sequently, the total spin-orbit interaction for
many-electron atoms can be written„ in atomic
units, as"

(3)

y, =-—,' xp, ~ (s, +2s,),
n' (r, -r, )

(4)

x Py 2 ry x py x ry x

which may be derived by utilizing the identities

where n is the fine-structure constant, Z the
nuclear charge, and N the number of electrons.
Here the first term on the right-hand side of (3)
accounts for the spin-orbit interaction of each
electron in the field of the nucleus, and the sec-
ond term arises from the mutual spin-orbit inter-
action between electrons, including the spin-self-
orbit and spin-other-orbit contributions. Blume
and Watson" have derived a tensor-operator form
for the mutual spin-orbit interaction (4), but we
find, however, an alternative form in terms of
products of spin and orbital angular-momentum
operators. Because wave functions of the zero-
order coupling scheme are usually eigenfunctions
of spin and orbital angular momenta, the latter
form will yield the matrix element in a straight-
forward manner; By inspecting the mutual spin-
orbit interaction in E(I. (4), we see that the spatial
part has the form V, (l/&»)xV, . We can rewrite
this as
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Ax(BxC)=B(A C) —(A ~ B)C,

Ax(Bx C)+Bx(CxA)+ Cx(AxB) = 0.
Hence we can decompose the mutual spin-orbit
interaction into three terms,

V„=——,xp (s, + 2s, )
u' (r, -r, )

12

V (1)+ V (2)+ V (3)

where
. Q 1 ~ 1y("=i——L xL ~ (s +2s )

2 r2 1 r 1 1 2
1 12

1y('& =-——L — ~ (s, +2s,),2 r, 'r» Br

+21 8 1
L, ' (s, + 2s, ) .

2 r -ar r ~

Here I, = -i r, &V, is the orbital angular-momen-
tum operator of electron 1. It is worth noting
that V» & V», and that the total mutual spin-orbit
interaction between electrons 1 and 2 is V(12)

V12 + V„, which is symmetric with respect to
electrons 1 and 2.

III. GENERAL MATRIX ELEMENT IN THE rn SCHEME

Matrix elements of a two-particle operator in
any many-particle configuration can always be ex-
pressed as linear combinations of matrix elements
in corresponding two-particle configurations. "
We therefore deal first with the general matrix
element for two-particle configurations in the m
scheme,

&nb
I v|2 I

ed)

=-&y„, „„(1)y„,.„(2)I

v"'+ v"'+ v"'

tively, etc. The orbitals have the explicit form

y„,.„&i)=R„,(r,.)Y,„(a,)x „(i),
where X„denotes the spin eigenfunction with s, = p, .
To evaluate the matrix element (7), we n'ote that
vector spherical harmonies may be generated from
scalar spherical harmonics" "

Qy the use of the
orbital angular-momentum operator

LY, = [l(l+ 1)]'i'Y™„

= [l(l+ 1)j'~' Q C(lil; m —q, q)Y, („,)e„

and similarly,

sX, =[-,'(-,'+1)1'"QC(l12i ~ —q q)X -,e, . (10)

Here C(ill;m -q, q), andC( —,'l~', p —q, q) areClebsch-
Gordan coefficients, and e, are spherical unit
vectors defined in terms of Cartesian unit vectors
by

8., = -(1/v 2)(&„+ie,),
A A
e() = 8g ~

e, =(1/ 2)(e„-ie,).
Making u,se of (10), we can easily obtain the spin
part of the matrix element (7),

&x»,(1)x,(2)
I s, + 2s,

I x..(1)x.,(2)&

= 5„,„(W3/2)C(s, 1s,; p„ li, —p, )8„
+ 25„„(W3/2)C(s,1s,; p„p,, —p,,)&„,„,. (12)

Here in order to show the coupling of spin angular
momenta explicitly, we use s„s„s„and s„ in-
stead of their numerical value 2.

For the spatial part, we note that

where n, denotes the principal quantum number,
l, the orbital angular-momentum quantum number,
and m, and p, are the magnetic quantum numbers
of the orbital and spin angular momenta, respec-

1 v-4=Z
2l 1 r.a Yi.%)Yilfl.);

r12 )m 2l+1 r (13)

therefore, the angular integration of the electron
2 reduces to

t (2l, + 1)(2l+ 1)
4w 2l„+1

By using (9), we canperform the angular integration of the electron 1 and obtain the results:
(i) For V"',

l l+1 2l+1l, l~+1 2l, +1
2m(2l, + 1)

(14)

x g C(l1l; m —q, q)C(l, ll, ; m, —P, P)

x C(l, ll, ; m„m —q)C(l, ll, ; 00)C(111;qP) 5 &„„»e„»



GRAPHICAI APPROACH TO THE SPIN-ORBIT INTERACTION

where we have used

e, x 2» = iV 2C(111;qp)e~~,

which can be derived from the tensor property of the spherical unit vectors.
(ii) For V"'

l(l+ 1)(2l+ 1)(2l,+ 1)

(iii) For V"',

(2l+ 1)l,(l,+ l)(2l, + 1)
'
~

4s 2l, +1

(18)x C(l, ll, ;00)5„(„,„
Hence it is a simple task to express the m scheme matrix element (7} in terms of radial integrals with the
result:

( ab
) Vie (

cd ) = (ab
~

V"'
~

cd) + (ab
(
V"'

)
cd)+ (ab

~

V" '
~
cd),

where

(19)

(ab
~

V"'
~
cd) = 6[(2l, + 1)(2l»+ l)(2l, + 1)(2l~+ 1)]' '[(2l, + 1)l,(l, + 1)]'

x( )'""g[(2i+1)l(l+1)]"'~ '
~~

' ' ~aI"(ab;cd),g, (l, ll,l! l, l l~l (, )

fqP &Oooj &0 Ooi

(m, l l, )(m, l -m+m )(/, qm, -q)( l pm, -m, +q)

l, m, -m +qm, —q j(l» m~ l j (m, 1 l, i ( m»+m~ 1 l

(p, 1 s )(p, p 11-1 (g» 1 s&(li» li 111
I+ 2.~..., 1

j20aj
&qj ' '&s»1»-u. ~jk 1 qpi

(ab
~

V"'
~
cd )= -2(i)' '[(2l, + 1)(2l»+ l)(2l, + 1)(21~+ 1)]' '

x( )' '"Q[(21+1)l(1+1)]'~'( ' '
[(

' " [RI"(ab;cd) '

L, O 0 0i %0 0 Oi pl, m, m, -m, j), l» m~ m»-m~ j
(li, 1 s, ) (m, —m, m»-m„ li, —p,,)
(s, I, p, p, j) -, l l 1 j

(li, 1 su')) (m, -m, m»-ms p»- pu')

ks» l),»-lip p,gjE l l 1

(ab
~

V" '
~
cd ) = 2(—', )' '[(2l, + 1)(2l»+ 1)(2l,+ 1)(2l~+ 1)j' '[(2l, + l)l, (l, + 1)j' '

x( ))~wig
~

s c
~

» d ~fl(s)(ab. cd)
l l l )(l l l~)

&0 0 Oj&0 Ooi

(m, l ™,-m»+ mu) (m» -m»+ mu 4
(le -m»+m~ l, j(l, l m~ j

(p,, 1 s, ) (l(,-li, l, l, )
(s, g, —li, li, j ( 1 -m, -m, +m, m, j

(l(»
"al'c

(s» g»- gu pu j ( 1 -m, -m»+m~ m, j
The radial integrals in Eq. (20) are defined by

(20b}

(20c)
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8"'(ab;

llI"(al;
Q2 C0 00 1

0

Q2 00 1
R) '(a(R cd)= — r', rdf r', drd , („r )R„, (r )— „, R„, (r)R„, (r ) (21)

where r& and x& denote the greater and lesser of
x, and r„respectively. Also in E(l. (20), we have
replaced all the Clebsch-Gordan coefficients by
Wigner's 3-j symbols in the covariant notation"
to better represent their tensor property and to
avoid carrying phase factors. For example, the
component of the 3-j symbol which is contravariant
in the first two indices and covariant in the last
is

, m, &

I=( v-"I
im, m, j, ) Im, m, -m, )

Note that this definition of El Baz and Castel" is
different from that of Wigner, "who assigns the
names "covariant" and "contravariant" inversely.

We can visualize the mutual spin-orbit interac-
tion by presenting its matrix elements graphically.
The expression (20a) is represented graphically as

(ab
~

V"'
~
cd) = 6 [(2l,+ 1)(2l~+ 1)(2l,+ 1)(2ld+ 1)]'~'[(2l,+ 1)l,(l, + 1)]'~'

x ( )'()+'((g[(2l+1)l(l pl)]~~'~ ' '' '
~~ R"'(ab;cd)~l l lN/l l lh

), 0 0 0) (O 0 0)

Sb Sg
2

so , sc
I

sa y so
I ==:;: I

Sb + Sg
r

x( (22a)

e.
"

c. c,
"

e,
2 ~ d 1 ~ 2

+

The notational rules used to describe a 3-j
symbol are as follows:

(i) Each vertex, indicated by a node, represents
a 3-j symbol: each contravariant component is
represented by a line with an outgoing single
arrow, and each covariant component by a line
with an ingoing double arrow.

(ii) The plus (minus) sign at the vertex means
that the angular momenta are to be read counter-
clockwise (clockwise).

The magnetic quantum number of each angular-
momentum line is usually suppressed where no
confusion may occur. Also, we note that the "cur-
rent" of magnetic quantum numbers is conserved
at each node due to the selection rule for magnetic
quantum numbers of .the covariant 3-j symbol;
for example,

( IIlb Cg -II)b+ fn(I l

ic, m~ c

c, In,

where we have the ingoing current "m, + (—m, + m„)"
= the outgoing current "m„".

The notational rules used to combine 3-j symbols
are as follows:

(i) The summation, or in the tensorial term "con-
traction", over a pair of magnetic quantum num-
bers (one of which is always contravariant, and the
other covariant) is performed by joining the cor-
responding angular-momentum lines to form a
linked single- arr owed line.
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(ii) The change in direction of a linked angular-
momentum line j introduces a phase factor (-)' .
As a result, we may suppress the arrow of a linked
angular-momentum line j whenever j is an integer.

Although we do not write a magnetic quantum
number. for a linked angular-momentum lin.e, the
summation over the magnetic quantum number is
always implied. Nevertheless, in many cases be-
cause of the conservation of the "magnetic current, "
the summation implied by a linked angular-mo-
mentum line exists only formally.

The scalar product of a covariant eigenvector

(j,m, ! and a contravariant eigenvector !j,m, ) is
denoted graphically by

( J IYI jhmh ) Jo mo Jb rn
I

ej, jb sm, mb-

The number 1 or 2 at the free end of an open
angular-momentum line signifies the electron 1 or
2, respectively. ; these electron indices will be
suppressed where no confusion may occur.

With the foregoing graphical rules, we can sim-
ilarly represent (20b) and (20c) by the diagrams

(ab! V ~2~!cd) =-2(2)~~2[(2l, + l)(21~+ 1)(2l,+ l)(2l~+1)]

x (-)'o"& g [(2l+1)l(l+1)]' '! ' ' ' ' IR'"(ab cd).
n i fi(t

L io o oj&oooj
Sb Sd

2 == I = 2
so, sc

I ==', = I

so + sc Sb + Sd
2 ——,. — 2

e.

+ . p x

e.

(22b)

2 == ". = 2
+ 2

+

(ab !
V'"!cd) = 2 (2)'~2[(2l, + 1)(2l~+ l)(2l, + 1)(2l„+1)],'~'[(2l, + 1)l,(l, + 1)]' '

x ( )i~+ ting ( a e~t t b 41ftI3) (ab cd)(l l l. ~(/ f l~1

(000)(000)
Sb Sd

2 == I = 2 So, Sc,

so + c

1 ~'

+JL I

Sb + Sd
2 ==:: = 2

(22c)

2 == '-' = 2
+

e, -ee,
2 ==:.' = 2

To facilitate the calculation of the matrix element in different coupling schemes, we find that the expres-
sions (20a), (20b), and (20c) can be rearranged into a sum of similar diagrams. The rearrangement can
be easily carried out by graphical transformation rules presented in Appendix A. For example, in the first
diagram in (22c) we apply rule (A5) to the open angular-momentum lines l, and l, and the linked angular-
momentum lines 1 and E. As a result, we obtain a sum of products of an open diagram similar to those in.

(22b) and a closed diagram which is just the graphical representation of a 6-j symbol. The second diagram
in (22c) andbothdiagramsin(22a) can be reduced in a similar way to diagrams of the form of those in (22b).
Thus by such procedures, we can rewrite (19) as

(ab! V„!cd) =Q Q,~(ab; cd)G»(ab;cd) . (23)

The graphical portion G»(ab;cd) is
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Sb S4
2 =: ' — -2

So Sc

Sq S~
I ==', =—I

G&&(ob;cd ) ~

e.
'

e.

+ px

~eh 2

(24)

or, analytically,

(m, —m, m~ —m~ p, —g) I'p, 1 s)

It'm, - m, mb m„-g, p„)-/p, 1 s
+25

k l 1 j (soph —pa E4J
(25)

where all the summations over magnetic quantum numbers are eliminated due to the conservation of the
"magnetic current" although we may formally reinstate the summations as implicitly represented by the
diagram (24). The coefficient Q» (ab;cd) in (23) is

Q»(ab;cd) =2(—')' '[(2l, + 1)(2l,+1)(2l,+1)(2l„+1)]' '(-) "+'~'(l l l &(l ll&
&o o o)&o ool

6»[(2l+ 1)l(l+ 1)]'~'R,'~'(ab cd)+ [(2l,+1)l,(l, + 1)]'~'(2k+ 1) ' ' I»(ab;cd)E, l, ~,

4 l, 1
(26)

where the radial integral I»(ab;cd) is defined as

I»(ab; cd) = ,' [l (l + 1—)—k (k + 1) + 2]R,"' (ab; cd) + R,"'(ab; cd) (27)

D'we represent the factor Q»(ab;cd) by a circle about the vertex involving angular momenta (kll) then the
general matrix element (23) of the mutual spin-orbit interaction in the m scheme can 'be graphically repre
sented in the simple form

Sb Sa
2 -= ' = 2

So , c
I == ,'= I

(ab VI2 cd) =g(
ek

&~e,

+ P R

e. ,

II

(28)

IV. MATRIX OF SPINARBIT INTERACTION

IN THE LSD SCHEME

By using the form (28) for the general matrix
element of the mutual spin-orbit interaction in the

m scheme, the calculation of these matrix ele-
ments for arbitrary configurations in any coupling
scheme can be carried out easily by the graphical
method. Here, as an example, we will treat the
particular case of configurations having two non-
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equivalent electrons outside any number of closed
shells in L8-coupling. The extension to the cases
of equivalent electrons is given in Appendix C.
Calculation of the mutual spin-orbit -matrix ele-
ments for other configurations by the graphical
method requires the construction of the appropriate
configuration diagram. Appropriate configuration
diagrams, for use with our mutual spin-orbit dia-
gram (28), may be constructed using the techniques
of El Baz and Castel. " An alternative form of the
spin-orbit diagram (28), appropriate for use with
configuration diagrams constructed by Briggs"'
techniques, is given in the next section.

In terms of m scheme eigenstates, the LS-cou-
pled state for two nonequivalent electrons is rep-
resented by

I y.,(12)& =1(E,Eo)L(s,s )SJM&

"al y&

ma mb
~a~b

Here lab& are the m-scheme eigenstates

(29)

/m~ J mq)

(L MS) (31)

l E»=-ly„, „„(1)P„,...,,,(2)&

=
l E,m, (1)& l s, p, ,(1)& IE,m, (2)& Is,p, (2)&, (30)

and the expansion coefficients C a b"a"' are

g~a ~ n"a & s = -[(2S+ 1)(2L+ 1)(2J + 1)]

~m, L ~,) (g,
m m (E m~ Eq ) (s, mg sg, j

The LS-coupled state (29) can be represented in
graphical form in a number of ways, but the two
common forms are those of El Baz and Castel"
and of Briggs." In this paper we propose to use
a modified form of El Baz and Castel's notation, "
i.e. , we employ 3-j diagrams to construct a con-
figuration diagram, rather than using Clebsch-
Gordan coefficient diagrams, and use a bar on an
angular-momentum symbol j (i.e. , g ) to indicate
the multiplication factor (2j + 1)'~' thus incurred.

We represent, then, the LS-coupled state (29)
by the diagram

Sb
I

~ (- i).

(32)
In (32) a bar on an angular-momentum symbol j
indicates a multiplication factor (2j + 1)'~'. The
contravariant vectors (or ket vectors)

l E,m, (1)&,
ls, g, (l)&, etc. are each denoted by a vertical bar
with an outgoing single arrow. The dotted lines
indicate the linkage of the eigenstate lab& with the
angular-momentum coupling coefficient C
this corresponds to the summa)ion over the mag-
netic quantum numbers m, , m, , p, , and p, b in the
analytical version (29) of the LS-coupled state.

The conjugate LS-coupled state is represented by

(Q, (12)l =
ma

[(2S+1)(2I.+ l)(24+ 1)]'~'
ma mb
&a»

m~ E~) (s, m, s~~ (L
x p l

'
ll Il 1&E,m, (1)l&s, p, (1)l&E,~,(» 1 &a,p „(»l,

(ping, L mJ(p, S p, )(m J'm, j (33)

or graphically by row denote covariant vectors (or bra vectors).
Also note that C a b "a"b=C», . For closed
shells, we can simply use the m-scheme eigen-
states

l E, m, & l s,g,.& and (E,.m,. l(s, p, l, i.e.,

s„.

{-l) ~ (34)
1

IC„.m, & s,.E;.&

S ~

. (35)

where the vertical bars with an ingoing double ar- (C„.m„(s.p.,
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Using the graphical expressions (32) and (34) to
represent the L8-coupled states of two nonequiva-
lent electrons and using (35) to represent the
closed-shell electron states, we employ (28) to
evaluate matrix elements of the mutual spin-orbit
interaction between configurations having two non-
equivalent electrons outside closed shells. These
matrix elements are conveniently divided into
three categories: the interaction between the outer
electrons, the interaction between the outer- and
closed-shell electrons, and the interaction between
the closed-sheQ electrons. In what follows, we
consider each of these in turn.

A. Mutual spin-orbit interaction between the outer electrons

For any two-particle operator, the interacting
configurations can differ at most by two orbitals.

Therefore, the most general matrix element in
this case involves four different outer electron or-
bitals, i.e., &$„(12)lV»lg~(12)&, where Ip,', (12)&
=-

I (l, l„)L'(s, s„)SUM&. This matrix element can be
expressed as a linear combination of m-scheme
matrix elements, i.e.,

„„&abIV»lcd&C'"~~~"'+. (36)
a11ma,d p

a b "a "b

Graphically, the summation over magnetic quan-
tum numbers in the matrix element (36) can be
carried out by joining corresponding angular-mo-
mentum lines of the diagrams

Sb Sg so , sc

"C,

(37)

This procedgre yields

Sb so

(38)

L'
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To evaluate these diagrams, we first join together
the remaining covaiiant and contravariant angu-
lar-momentum lines J and divide them by the fac-
tor (2J'+ 1) since values af the diagrams are. inde-

- pendent of the total magnetic quantum number M.
This is represented by the graphical transforma-
tion rule (A2) in Appendix A. Next we use the
graphical transformation rule (A4) to separate the
diagrams into

Se

These are recognizable as basic diagrams whose
analytical values are given in Appendix B. By sub-
stituting the analytical value for each basic dia-
gram in (39), we obtain the general matrix ele-
ment in ~ coupling for two nonequivalent elec-
trons,

&y.,(12)l V„ly,', (12)&

= P Q)&(ab; cd)(-)'"""'[2+(-)"']
&& f(2L+1)(2L'+ 1)(2S+ 1)(2S'+1)]' '

—= D(ab; cd) . (4 0)

(39)

Since a, b, c, arid d represent arbitrary orbitals,
the calculation of direct and exchange terms is im-
plied.

Now we denote the antisymmetrized L,S-coupling
state of the whole atom by lp, )&(12)(II)„,„,&» where
&I)),).„d represents the normalized state of any num-
ber of closed shells, and the subscript A outside
the ket signifies the antisymmetrization. There-
fore, the general matrix element of the mutual
spin-orbit interaction between the two nonequiva-
lent electrons outside closed shells is

(
oyen

A.n(»)e.)0.. Z V(g ~4cu(12)v.)... =&@"(12)IVi2lt!.(12)&~+ &e.o(12&..lecu(12)&~
f sej A.

where the summation is only over the outer electron pairs, and the subscript A. indicates that the
matrix element is taken between the antisymmetrized states. To calculate matrix elements of a
two-particle operator between antisymmetrized states considered here we use the following simple
two-step procedure: %e first evaluate the matrix element using unsymmet, 'rized states. Then we- re-
place each two-particle matrix element by the difference of the direct and exchange terms. Thus,
the antisymmetrization can be carried out only in the last step. of evaluating the matrix elements
with two-particle configurations. Consequently, we can express (41) in terms of (40) as follows:

(41)

open

a(»)& . 2.«i &'~.(.»)&.i..~) =.(&.~(»)I(' I(!~((2)&-&&.~(»)1« I&.'.(»)&+ &&.,(»)I« IK.(»)&

—&y. (»)Iv.,ly! (»)&

=D(ab;cd)+ (-)""((' '~ D(ab; dc)+(-) ' ' ' D(ba;dc)

+ (-)'"'~""D(ba cd) (42)

The first and third terms of (42) arise from the direct contribution, and the second and fourth terms arise
from the exchange contribution.

B. Mutual spin-orbit interaction between the outer electrons and the closed-shell electrons

For the interaction between the outer and closed-shell electrons, the two interacting configurations can
differ at most by one orbital. However, due to the coupling between the outer electrons, the matrix ele-
ment will in general involve four different orbitals for the case of two nonequivalent electrons outside
closed shells. The total mutual spin-orbit interaction between a pair of electrons is V(12) = V»N V», and
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for each term there are direct and exchange contributions. Thus there are four different types of matrix
elements, which we consider in turn:

S~ S~ So Sc

(4$)

C„'i

,(.
k

L

Here Q;(2) is any nt-scheme eigenstate belonging
to closed sheQs. The summation over magnetic
quantum numbers in (43} is carried out by joining
corresponding angular-momentum lines, as stated
in the last subsection. In addition, we sum over
the closed subshell i by joining the corresponding
contravariant and covariant lines of /& and s, .
Hence, the res@it of summing the first term of
(43) over the closed subshell i is

Sp

This has the analytical value

g q (, ')( )1+8+8'+ lg+ly6

lh

x [(2l~8)(21 + 1) l [(21 +1)(2I I+1)(2S+1)(2S'+ 1)]' '

(45)

The second term in (43) gives zero contribution
because upon joining the s, lines the diagram as-
sumes the form

(46)

(44)
The vanishing of (46) can be seen by virtue of the
transformation rule (AS) in Appendix A.

(i) &0, (13)4;(2)ly. 14! (12)4~(2)&

Sf1 Sg S SL

mm&off

p&uc

(4'f)
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These graphs give zero contri'bution after summing over closed shells. The first term results in a diagram
similar to (46) after connecting the s, lines. The second term results in a diagram of the following form
after connecting the l, lines:

(48)

By rule (A4) in Appendix A, l must equal unity. This causes Q,„, represented by the circle about the (kl 1)
vertex, to vanish due to its factor (", ,' 'J), which is zero for odd l.

Summarizing (i) and (ii), we have for the direct. terms

D(aib; cib) = g (P,~(13)p,(2)((V»+ V»)~P~~(13)p, (2))
mph' g

= o. (21)+1)R',"(ai; ci)5, , g(ab; cb),

where the Kronecker delta 5, , is due to the factor (';,' ';), and g(ab; cb) is defined by

(49)

g(ab;cb) =(-)~' + '"'"''[(2L+1)(2L'+1)(2S+1)(28'+1)]''

Note that for a = c,g (ab; ab) = (g~(12) ~ L, ~ s, ~ Q,', (12)).
(iii) The exchange counterpart of (43) is represented graphically as

Sc
I So, S~

+ p x

After summing over the closed subshell i, the first term of (51) gives the following connected diagram:

L
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The analytical value of this diagram is

g qg~(aiy ic)(-)~' ' ' ""~""[(2I,+ 1)(2L,'+ 1)(28+ 1)(28'+ 1)j"'
lk

(53)

Other than the factor of 2, the second term of (51) gives the same connected diagram as (52). Therefore,
its contribution is twice the value (53).

(iv) (p,„(13)g,(2)~V»~Q,', (23)Q, (1)): Similarly, this exchange counterpart of (ii) can be evaluated, and the
total contribution of the corresponding graph is

Q Q (ia ci)(-) ' ' "&"~"3[(2L+1)(2L'+1)(28+1)(28'+1)]"'
p p E, l, l; L'S' j /, E, l,

(54)

From (iii) and (iv), we obtain the exchange contribution

E(gib; icb) = Q (P,„(13)P( (2) ~(V„+V„)(P,', (23)P)(1))

(I. I I,)f'I, i I,
=6&2[ +1&(l

&1 +I&)
grab'ct & ~ l(0 0 0) qo 0 0 I T„,

where g (ab; cb) has been defined in (50), and T» is defined as

l
T,~

= [(2l+ 1)l(l+ 1)]' ' [R,' (ai; ic) -RI,' (ia; ci)]5&~
a c i

l]ll, L, EE)
+ (-)"""(2k+ 1)[(21,+ 1)l,.(I,. + 1)]"' l»(ai; io)

(55)

E, I l; E, El;
+ (2k+ 1)[(2l,+1)l,(l, + 1)]'" f»(ig; ci) . (56)

(open closed) closed

((p~(12)p,,„,d ~ Q V, , ~ Q,'~(12)g,h„d )~ = Q g)(aib; cib) —E(gib; icb) J,

where the summation symbol on the left indicates that only open-closed and closed-open pairs are to be
included, and the summation on the right is over all closed shells.

(57)

C. Mutual spin-orbit interaction between closed-shell electrons

The vanishing of this contribution has been noted by Bfume and Watson. " This can be seen easily by
considering the appropriate m-scheme matrix element

In terms of (49) and (55), we can express the general matrix element of the mutual spin-orbit interaction
between the outer electrons and the closed-shell electrons. as

(ij v, ij)
Ck

(58)

C(



GRAPHICAL APPROACH TO THE SPIN-ORBIT INTERACTION 367

where i and j may or may not represent the same
subshell. Upon summing over the closed s'ubshell
either i or j [which corresponds to joining the con-
cerned contravariant and covariant lines of (58)],
we obtain diagrams having the form of (46) or (48),
which give zero contribution. The exchange dia-
grams of (58) also vanish upon summing over a
closed subshell because they lead to diagrams
having the form of (46).

D. Summary remarks

The graphical technique developed in this sec-
tion may be used for the calculation of mutual spin-
orbit matrix elements between arbitrary configu-
rations. The construction of more complicated
configuration diagrams may follow El Baz and
Castel. " As stated in the beginning of Sec. III,
matrix elements of a two-particle operator in the
many-particle configuration can always be expres-
sed as linear combinations of matrix elements in
corresponding two-particle configurations. Graph-
ically, this corresponds to joining contravariant-
covariant angular-momentum pairs in a diagram
similar to (3V), with appropriate diagrams for the
interacting configurations. All the coefficients
concerning the coupling scheme of the interacting
configurations are contained in the resulting connec-
ted diagram, which is similar to (38). Alternative-
ly, we may adopt an analytical approach by using
the analytical expression (25) of G»(ab; cd) instead
of its graphical version (24) although this approach
is more laborious than the graphical one.

We summarize in Appendix C the results for the
matrix element obtained in this section in the
special case of interacting configurations having
two electrons outside closed shells. Comparison
is also made with certain previously tabulated re-
sults in particular cases.

V. m-SCHEME MUTUAL SPIN-ORBIT DIAGRAM

APPROPRIATE FOR USE KITH BRIGGS' CONFIGURATION

DIAGRAMS

Briggs' paper" on graphical methods of evalua-
ting matrix elements only considered spin-indepen-
dent interactions in LS coupling; therefore Briggs
found it convenient to consider spin and orbital
angular-momentum graphs separately. In this sec-
tion we show first that in LS coupling, even spin-
dependent interaction diagrams can always be fac-
tored into spin and orbital parts. We then present
our m-scheme spin-orbit matrix element (28) in
an alternative form appropriate for use with
Briggs' configuration diagrams.

For any interacting LS-coupled configurations,
the matrix element of spin-orbit interaction can
always be factored into a product of an orbital

diagram, a spin diagram, and a 6-j symbol ac-
counting for the transformation from the L,SM,M~
scheme to the LSJM scheme. An example is
shown by (39). This factorization is due to the
fact that spin and orbital momenta are coupled
separately for LS-coupled configurations. Specif-
ically, in the diagram below we have two arbitrary
IS-coupled configurations at the top and bottom
whose total spin and orbital angular momenta are
coupled to total angular momentum J. In the
middle is the nz-schememutual spin-orbit diagram
(28):

a'

By separating the diagram along the dotted lines
according to rule (A4) we obtain the desired factor-
ization:

G,~(ab;cd) = g [S„(ab; d)c+28„(ba;dc)]

where

x I »(gb; cd), (60)

(59)

Here the diagram on the left is an orbital diagram,
the diagram on the right is a spin diagram, and
the diagram in the middle represents a 6-j symbol
describing the coupling of tota1 spin and orbital
angular momenta.

Alternatively, we can factor the matrix element
of mutual spin-orbit interaction in the m scheme
into a spin part and an orbital part from the out-
set, and obtain diagrams in the spin and orbital
space separately. Although this procedure does
not simplify pur calculation in any way, it does
give some physical insight. We first factor (25) in-
to a spin part and an orbital part:
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S (ab cd)=& 1s
Vying'

(s, vp, , ]
(61)

m, , k f, ) (m~ 1 l~ ) m, -m, m~-m v)

f, m, -m, mj (l, m~-m~mj k f 1]
(62)

Note that the summation over the magnetic quantum number v only exists formally. Thus we can
rewrite (23) as

(ab
l V» lcd) = g 3„$",

V

where the spin part is denoted by

(63)

I 2
Sa , Sc

I

g„= S„(ab;cd) + 2S„(ba;dc} =

+ sc
I ==, :: = —

I

+ p x

Sb +' Scl
2 ==:: = 2

(64)

Note that, when taking the matrix element in the spin space, the free angular-momentum line 1v in (64) is
to be joined with the total spins of the two interacting configurations to form a closed diagram multiplied by
a diagram representing a 3-j symbol [cf. rule (A4)]. The orbital part of (63) is denoted by

V
cI'j = g Q k(ab;cd} L „(ab;cd) = g +::

Ck Ck C.I',
+

I I Cb

+

"Cg

Similarly, when taking the matrix element in the
orbital space, the free angular-momentum line 1v
is to be joined with the total orbital angular mom-
enta of the two interacting configurations. The
two 3-j diagrams obtained, one from the spin space
and the other from the orbital'space, will be com-
bined with two other 3-j diagrams, accounting for
the coupling of the total spin and orbital angular
momenta to the total J in the two interacting con-
figurations, to form a 6-j diagram. The final re-
sult has been shown schematically by (59}.

Upon changing the signs of the nodes in (64) and
(65) and eliminating the double arrow notation, we
obtain mutual spin-orbit diagrams in the m scheme
suitable for use with Briggs"' LS-coupled configur-
ation diagrams. Thus we represent (64) as

2 Sb Sy
I

Sa—
I

Ck

k
)

(A

2 +" 2

and its exchange counterpart as

Similarly, we can represent (65) as

Sg
I

1v

(67)

(68)

Sg , Sc
2 '

I

Sg Sg
2 I 2

Sa — Sc
I " I

fv

+ p x

Sa Sc
I

I
I

sb — Sa
2 2

(66)
(69)

and its exchange counterpart as
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Here the circle at the vertex involving 0 and l rep-
resents the multiplication factor Q»(ab; cd) in Eq.
(26). When using the diagrams in (66)-(69) in con-
junction with Briggs' rules" for computing matrix
elements, Fig. (3.11}of Ref. 27 should be con-
sulted. Firstly, Briggs' p, o, p', o' notations cor-
respond to our a, b, c,d. Secondly, oui diagrams
(66) and (68) correspond to the spin and orbital
parts of Briggs' general diagram (S.lla); our (67)
and (69) to his (S.lib); our (66) and (68) in which
lines a and 5 are crossed to Briggs' (S.llc); and
lastly, our (6V) and (69) in which lines a and $ are
crossed to his (S.lid). The, matrix element of the
spin-orbit interaction between arbitrary configur-
'ations is'now obtained by evaluating the matrix
element of each of the four spin and orbital inter-
action diagrams corresponding to (3.11 a-d) in Ref.
27 using the rules in Sec. 6.1 of Ref. 27. When

applying these rules the following minor modifica
tions of rules (iii) 'and (x) should be observed:
(iii) There is an overall factor (-1) 'corresponding
to Briggs' diagram (S.lib) and (3.11c};(x) When
connecting the free lv line in (66)-(69) with total
spin and orbital angular momentum, the sign can-
ventions in our diagram (59) should be followed.
Lastly, the 6j symbol in our (59),

I j
y )L+S+J'+L+L'+1

S'S
multiplies the overall matrix element.

(a IK, s;Ic) =(2)' '[(2l.+1)l,(l, +1)]' 'G(a;c),

Sa + Sc

G(a;c) (75)

Here the summation over v only exists formally
since v=m, - m, = p.,—p, , due to the conservation
of the "magnetic current" at each node or, analy-
tically, due to the selection rule for magnetic
quantum numbers of the covariant 3-j symbol.
Thus we can write (Vl) as

So Sc
1

(aIC(r)L;. s;Ic) = A(a'c) G(a:c) =

C. „C;-.C.

(76)

where ch, (a;c) is defined as

where
1

G(ac)=6 Q ~ ' ' ~ ~ ' '~' (V4)
I, f. m, lj (-,' v p,,j

or, graphically,

VI. SPIN-ORBIT INTERACTION IN A CENTRAL FIELD
&(a c) =C (-')' 't(2f, +1)l (f +1)]'i' (77)

For completeness, we present here a graphical
treatment for the trivial case of spin-orbit interac-.
tion in a central field. The interaction Hamiltonian
assumes the general form

V'"= g C(r }L (7o)
)=1

Any two interacting configurations can differ at
most by one orbital, although they must have the
same set of angular-, momentum quantum numbers.
We first derive the matrix element in the m
scheme,

(e,,...(&)
I
C(r }L s, I e....,.(&»

=g„(aIX, s, Ic), (71)

where the radial integral f„is defined by

and represented by a triangIe at the node involving
l, and l,.

As an example of the use of (76) to compute ma-
trix elements of (70) between LS-coupled states,
we will once again treat the case of configurations
having two nonequivalent electrons outside any
number of closed shells. The matrix element of
spin-orbit interaction of an electron in the closed
subshell. j,

( 4'... „,( } I &(,)L, s, I e...,„,„,( )&,

can be' represented graphically as

Si si

Ci

r,'dr, R„, (r,)g(r, )R„, (r,), (V2)

and we use the rounded bra (a
I

and ket Ic) to de-
note the angular and spin part of the m-scheme
states ( p„, „(i)I

and IQ„, „(i)},respectively.
Making use of (9) and (10), we can easily obtain

The summation over the magnetic quantum number

m,. or p& corresponds to joining the free ends of
angular-momentum lines l,. or s&, respectively.
This gives zero contribution', a,s may be seen im-
mediately by virtue of (46). Hence the summation
over electrons in closed shells vanishes.
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For the spin-orbit interaction of the outer electrons, the two interacting configurations may differ
by one orbital. Therefore, we consider the matrix element ((P,~(12) ~f(r, )T, s, ~(t),',(12)), which has the
graphical form

~S- s,

~C, .

"
&c

„C,=
Sc + S' J

(78)

Its analytical value is

)s)(a c)( )~'e e's+& ())(s+&)[(2L, + 1)(2L, '+ ]}(2$+1)(2$'+ ] )]& &2 x
SS'1 L'L1 S L J
2 2 2

Thus the general matrix element for the whole atom is given by

N

(79)

(80)

where g(ab; cb) and f„havebeen defined in (50) and
(72}, respectively. ' The extension of the present
graphical method to more complex configurations
is straightforward and can easily be obtained by
using (76} and graphical representations of the cor-
responding configurations. 2' ' There is also an
existing computer program by Klotz" to compute
matrix elements of (70) using an analytical ap-
proach.

I

of curly brackets is proportional to the effective
magnetic field experienced by;the jth electron with
respect to the ith electron. Since the spin angular-
momentum operator is proportional to the spin
magnetic moment of the electron, the mutual spin-
orbit interaction (81) simply represents a certain
type of mutual magnetic interaction between elec-
trons. On grouping separately terms involving p,
and p&, we retrieve the commonly used form

VII. DISCUSSION

A. Analysis of the various contributions to the mutual

spin-orbit interaction

)'(jj)=- ',"'
xjiI (s,. +ms, )

2

In order to review the physical meaning of the
mutual spin-orbit interaction, we write the mutual
spin-orbit interaction between electrons i and j in
the form'

x
j~I (a~ + Rs,.) . (82)

(r( —r j)x (p. —p )—,xp& s.
0

(rj- r;)x (p —p.}- 3
ig

(81)

Here inside the first pair of curly brackets, the
first term may be derived from classical argu-
ments. It is proportional to the angular momentum
of the ith electron with respect to the jth electron.
The second term is of purely kinematic origin due
to a relativistic effect called the Thoma, s pre-
cession. " We have a similar account for the terms
in the second pair of curly brackets. 'Physically,
the expression in the first pair of curly brackets
is proportional to the effective magnetic field ex-
perienced by the ith electron with respect to the

jth electron, and the expression in the second pair

In this discussion, we shall call terms involving

p and s of the same electron the spin-self orbit in--
teraction, and terms involving p and s of different
electrons the spin-other-orbit interat."tion. The
mutual spin-orbit interaction has been and will be
used to refer to both the spin-self-orbit and spin-
other-orbit interactions. To facilitate our dis-
cussion, we shall further call those terms included
in the first pair of curly brackets in (81) the mutual
spin orbit intera-ction in the field of the jth elec
tron, and those terms included in the second pair
of curly brackets in (81) the mutual spin-orbit in-
teraction in the field of the ith electron. In the
zero-order coupling scheme, each contribution to
the total mutual spin-orbit interaction between two
electrons can be summarized using the graphical
diagram (24):

(i) Spin-self-orbit interaction of the electron 1 in
the field of the electron 2:
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Sb Sd
2

/ 2
Sg , Sg

I

(83) (85)

~)b 2

S, l',

2

(ii) Spin-other-orbit interaction of the electron 1
in the field of the electron 2:

So , ScI

4

(iv) Spin-other-orbit interaction of the electron
2 in the field of the electron 1:,

(84)

b, Sd
2 —I

— 2

(86)

(iii) Spin-self-orbit interaction of the electron 2
in the field of the electron 1:

B. Graphical reduction of the two-particle spin-orbit interaction to an effective one-particle spin-orbit interaction in certain cases

There are certain simplifications when considering the mutual spin-orbit interaction between an
open-shell electron and a closed shell within the Hartree-Fock description of the atom.

(i) c'he direct c'ontribution to the spin-self-orbit interaction of an open-shell electron in the field
of a closed shell always behaves like an effective one particle spi-n orbit interact-ion.
seen by considering the corresponding diagram

So+ Sc

N. P.
4

(87)

e. „

which couples (or connects graphically) the interacting configurations in the same way as the one-particle
spin-orbit interaction (76). Here the Kronecker delta 5, , is due to the factor (t~,' tg) in Q», which is
denoted by the. circle about the (k/1) node. This result: can also be deduced by noting that the field of a
closed shell is a central one. A specific example for two nonequivalent electrons outside any number of
closed shells is illustrated by (44).

(ii) The exchange contribution to the spin self orbit interacti-on of-an open-shell electron in the field of
a closed shell behaves like an effective one Particle sPin-orb-it interaction only within a configuration.
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The exchange contribution is

S„.
I

Sc

Sa+ Sc
3 C

(88)

i,'C„.

This is an effective one-particle operator. But since we do not have the kronecker delta 6» here, thislglc
only behaves like a one-particle spin-orbit interaction within a configuration, in which case the condition
l, =l, is guaranteed.

(iii) The direct contribution to the spin self orb-it in-teraction of a closed shell in the field of any other
electron vanishes. This can be seen immediately from the diagram

So , Sc

( l

= 0, (88)

'C.

which gives zero contribution due io (46). This may also be expected intuitively by noting that the total
spin and orbital angular momenta are zero for a closed shell.

(iv) The exchange contribution to the sPin self orbit i-ntera-ction of a closed shell in the field of any other
electron is an effective one-particle spin orbit interac-tion only within a configuration. The exchange eon-

'tribution has the diagram

So

Ws„'Ws. So + Sc

As before, this is a one-particle operator, but only within a configuration can this be treated as an ef-
fective one-particle spin- orbit interaction.

(v) For the spin-self-orbit interaction between open shell electrons-, neither the di ect nor the exchange
contributions can in general be considered as an effective one-particle spin orbit interaction. -Only within
the same configuration are part of the contributions proportional to a one-particle spin-orbit interaction,
e.g. , for /=0,
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Sb, Sb

SN + 'So

-8
Qo, {ab;,ab}x

J5(23'+ i)
(91)

Sb So

S4 + So

(92)

L.
'

C,

Cg II

(vi) The direct contribution to the spin-other-orbit interaction of an electron in the field of a closed shell
vanishes. Graphically, this is elucidated by the diagram

So ~c

m. p, .

r

Ws; Ws.„
S„

(93)

This is what would be expected intuitively since the total orbital angular momentum of a closed shell is
zero.

(vii) The exchange contribution to the spin-other-orbit interaction of an electron in the field of a closed
shell behaves like an effective one-particle spin orbit interactio-n. The diagram for the exchange contribu-
tion is the same as its spin-self-orbit counterpart (88), but twice as large.

(viii) The direct contribution to the spin-other-orbit interaction of a closed shell in the ft'eld of any other
electmn vanishes. Graphically, we have

$ S„s
g

Sg Sg

S„=0 (94)
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This diagram vanishes for the same reason that diagram (48) vanishes. This conclusion also follows from
the intuitive argument that the total spin angular momentum of a closed shell is zero.

(ix) The exchange contribution to the spin oth-er or-bit interaction of a closed shell in the field of any
other electron is an effective one-particle spin-orbit interaction only within a configuration. The diagram
for the exchange contribution is the same as its spin-self-orbit counterpart (90), but twice as large.

(x) Only part of the spin oth-er orb-it interaction between open-shell electrons can be related to an ef
fective one par-ticle spin orbi-t interaction Thi.s result is similar to that for the spin-self-orbit case F. or
two open-shell electrons (either equivalent or nonequivalent) which are directly coupled to each other, all
contributions to the spin-other-orbit interaction between t;hem have a magnitude twice as large as those of
their spin-self-orbit counterparts and a relative phase factor (—)'", where s and s' are the resultant spin
angular momenta of the electron pair under consideration in the two interacting configurations. We can
easily verify this graphically,

Sb , Sdsa
IS ~C

Sd
S

I

S

(95)

Jag b

f4@d

C, j

Sa , Sc
I

Ws, Ws,

S

= 2(-)

I
S — 2 +

(96)

~Cc ~Cb

C
il

Other cases can be analyzed similarly. However,
the relative magnitude and phase factor depend in

general on the coupling scheme of the interacting
configurations.

Note that except for (95) and (96), the results we
have obtained so far were derived without making
any assumption about the coupling scheme of the
interacting configurations; therefore, they are
valid in any coupling scheme. Also note the in-
teresting fact that the spin-other-orbit interaction
in many cases contributes twice as much as the spin-
self-orbit interaction, a fact also noted by Blume
and Watson. " This can be attributed to the Thomas
precession, ' which reduces the spin- self- orbit
interaction by half but does not affect the spin-
other- orbit interaction.

C. Derivation of an effective spin-orbit parameter g, equivalent

to that of Blume and Watson
/

The result that a large part of the mutual spin-
orbit interaction within the same configuration
can be regarded as an effective one-particle spin-
orbit interaction has been noted implicitly or ex-
plicitly by other authors ix-x7 In fact, a major ef-
fort in the past has been the derivation of effective
spin-orbit parameter s for many-electron atoms.
Blume and Watson" derived an effective spin-orbit
parameter f, for configurations having a single
open shell by. considering only the mutual spin-
orbit interaction between the open- and closed-
shell electrons. Using our graphical approach,
we derive an effective spin-orbit parameter g,
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which is equivalent to that of Blume and Watson. "
Blume and Watson's definition for f, can be

written

ZQ
g, &a

l L, . s, la) = &al, L, s, l
a)

1
closed

+ 2 2 [&abl(vi. +V2x)la»
ny ly tnyg b

(a lL, s, a)='(-', )' '[(2l, +1)l,(l,+1)]' '

~(m, l, v) {'p, 1s,)
(l, m, lj (s, v p,,j

~, I/2
(2'L, + i) f,(L,+ I)

So + So

g, & a
l

L", s, l
a) = g, (a l L, s, l a), (98)

and the first term on the right-hand side of (97) is

Zn' 1 ZQ

1 1 a

(ab—
l (V„+V„) lba)] .

{97)

According to (71), the left-hand side is simply

G. 4

(100)
Here the summation over v only exists formally
since v=0.

The second term on the right-hand side of (97)
has been calculated more generally in (87)-(90),
(93), and (94). By using the analytic expressions
associated with those diagrams and substituting
the following relations between our radial integrals
(21) and the radial integrals N'(ab), N' '(ab),
V' '(ab), and M'(ab) of Blume and Watson, '~

where

(99) R '(ab; ba) =R"'(ba;ab) =N' '(ab)+N'(ab),

R'"(ab ba) —R"'(ba ab) = V' '(ab)

R,"'(ab; ab) = -M'(ab),

R,' '(ab; ba) =R,"'(ba; ab)

Here for easy reference, we repeat (a l L, s, la)
which was defined in (73),

= lN' '(ab) —(l + 1)N'(ab),

we obtain the following result:

(101)

closed

p g [&ab l(v, +v„) lab) —&ab 1(v.+V. ) lba)]
ny Q. nay pp

= (a lL, s, la) p -4(2l~+1)M (ab) —6(2l~+1)l l l
—

l
g

~

' ~

~

7» . (102)
ny ly ~ &00 oj

Here we have defined

T»= [(2l+ l)l(l+1)]'~' V' '(ab)5»+t (»k2+1)
l l 1 l, l l,
l, l, f~ kl, 1

X (—)"""[(2l~+1)le(le+ 1)]'~' ' + [(2l, + l)l, (l,i 1)]'l

lq 1 kl, 1
(103)

and

t, &, » = (2l + 1)N' '(ab), t» = (l + 1)N' '(ab) —lN'(ab), t« „,&

= —(2l + 1)N'(ab) .
Hence from (97)-(99) and (102), we can write our expression for the spin-orbit parameter as

closed 2l +1
2(2le+ 1) 2M (ab)+ 3

l l 1 QI ~

7» ~

1 e nate ''+1» (oo oj

(104)

(105)

Alternatively, we can also start from (22a), (22b), and (22c) and by a similar procedure get

2(2l, +1) 2M'(ab)+3+ ' '
l

S,
1 a ny ly ' &0 ooj

(106)
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where

(107)

The expressions (105) and (106) and Blume and
Watson's'7 expression for the spin-orbit param-
eter f, are all equivalent to each other. Although
a general proof of equivalence is not given here,
one can easily show the equivalence for the specific
cases l~=0, l, = 1, etc. by substituting the corres-
ponding values for l, in the expressions.

APPENDIX A: TRANSFORMATION RULES FOR GRAPHS

There are only two fundamental transformation
rules: Rule (1):

or closed, we mean that the diagram either has or
hasn't any free angular-momentum lines; for
example,

I
I

I

I

I
I

J

The diagram block on the left is closed while the
one on the right open. Rule (2):

(Al)

This rule follows from the graphical relation for
3-j symbols,

JI Al)

g {2k+1) +

(A2)

Here e denotes a closed diagram. Since deriva-
tion of this transformation rule is more involved,
we refer the reader to Refs. 25 and 26 for its
proof. Note that for a null block P, rule (A2) be-
comes

which represents the orthogonality relation

lg2

)2m2

8 . 8
) ) ) g )Tl) N2

Rj, + 1

Here we use the blocks o. and P to represent arbi-
trary diagrams either open or closed. By oPen

This transformation rule results from the rota-
tional invariance of the diagram.

From these two fundamenta, l rules, we ean easily
derive the following additional useful rules:

ko Ii)a LI f2

Q(2 j,+ I) (2$,+ I)
(A3)

(A4)
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g(2k +l}

jcm, )~m~
'I (i, m, ii,m, ) = s. . s

JIja emu

P, j + l e

J( J~ J~ triangular delta'~

~& Ii,-i,l& i,«i, +i, )

0 othervtise ',

6-j symbol ~

C, C, C,

'
i i, i, '

9-I symbol .
, ki ka ks,

The transformation rules (Al) and (A2) and the
rules derived from them allow one to rearrange
diagrams or to factor out basic diagrams whose
analytical values have been tabulated. Some of
those basic diagrams are presented in Appendix
B. For manipulating diagrams, note that the
change in direction of a linked angular-momentum
line j will only introduce a phase factor (-)+, and

a sign change at the node (j„j„j,) will introduce
a phase factor (—)'& "2"s. For more details of
the transformation rules, see Refs. 25 and 26.

APPENDIX 8: ANALYTICAL VALUES OF SOME BASIC

DIAGRAMS

APPENDIX C: MATRIX ELEMENTS OF THE MUTUAL

SPIN-ORBIT INTERACTION BETWEEN CONFIGURATIONS

HAVING TWO ELECTRONS OUTSIDE CLOSED SHELLS

n

We summarize here the example, treated in Sec.
B7, of the matrix element of mutual spin-orbit in-
teraction between configurations having two elec-
trons outside closed shells. In addition, we sim-
plify our formulas for the special case of interac-
tion between the two-electron configurations n s n' l'

and n"s n'"l"' for a comparison with previously pub-
lished results"""''" b and for application to ns-
subshell photoionization in the rare gases. " As
is known, " the results previously tabulated by
Marvin" and by Jucys and Dagys" ' are in error
due to their omission of integrals of the type V'.
Furthermore, these previously tabulated re-
sults""~' '"" are given, generally, for interac-
tions within the same configuration, whereas our
general formula treats the case of different inter-
acting configurations. Note especially that even
if the orbital angular-momentum quantum numbers
of the interacting configurations are the same,
the fact that the principal quantum numbers differ
in the two configurations gives rise to additional
radial integrals. For example, in the special
case of interacting two-electron configurations
n, l,n, l, and n, l,n, i, (where the orbital angular-
momentum quantum numbers are the same) the
interaction matrix element contains certain radial
integrals which vanish when n, =n, and n„=n„.

Matrix elements of the mutual spin-orbit inter-
action between configurations having two electrons
outside closed shells can be summarized from
Eqs. (42) and (57) for each of the following three
cases:

(i) Nonequivalent outer-electron orbitals:

&p.,(i2) p.i. .d I Q l';; l4".s(l2) 4.i"d &~=D(ab' cd)+ (-) '
+ (

)a+s+s'+ s'D(ba dc)+ (-)'&"'~+ + D(ba; cd)
closed

+ Q ((-)'~+'~+ ~+ s 5~[D(bia; cid) —E(bia; icd)]
n;S;

+ (-)~+ s+~ + s 5 [D(bia; dic) E(bia; idc)]+ 5,s[-D(aib; cid) —E(aib; icd)]

+ (-)'~+'~+~ + s
5~,[D(aib; dic)-E(aib; idc)]), (Cl)
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where a, b, c,d in 6~, etc. stand symbolically for all the quantum numbers of the respective orbitals.
(ii) Orbitals a and b are equivalent:

{Q„(12)P„„,~ ~ g V,.&~Q,'~(12)Q„,„~)„=a2 [D(aa;cd)+ (-)~ ' s D(aa;dc)]

closed

+&2 g (-5~[D(aia; cid) -E(aia;icd) J

+ (-)~ 's 5 [D(aia;dic) E(-aia; idc)]j. (c2)

(c4)

(C5)

(iii) Orbitals a and b are equivalent, and orbitals c and d are equivalent:
closed

(P„(12)g„„,d ( g V„. [P,', (12)P„„,~ )„=2D(aa;cc)+25 g [D(aia; cic) -E(aia;icc)].
t wj ni l i

In Eqs. (Cl)-(C3), D(ab; cd), D(aib; cid), E(aib, i cd), and their permutations are defined by Eqs. (40), (49),
and (55), respectively.

For the special case of interacting two-electron configurations in which l, = I, = 0, Eq. (Cl) gives the ma-
trix element between the triplet terms ('Lz ~, 'Lz ~) as

-[3/(2l, + 1)][(2l, + 1)R,' (ba; dc) +R,' (ba; cd) +R,' (dc; ab) ]

and between the singlet-triplet or triplet-singlet terms ('s"L~ ~, 's "L~ ~)s„s as

([I,(l» 1+) J' '/(2l~+1)][(2I, +1)R,' (ba;dc)+(-) Rg' (ba;cd)+(-)s R,'(dc;ab)].

Or in terms of the following commonly used radial integrals

2 Oo „CO y1
N'(ab; cd) =— r,'dr, r2pr, R,(1)R,(2), ,', B(r, r,)R, (l)-R, (2),

0 0

2 00 OO

V'(ab; cd) =— r',dr, r,'dr, R,(1)R,(2), ;a r, r, R-, (1)R,(2),

(ce)

(C7)

Eqs. (C4) and (C5} become

[3/(21„+1)][(2& + 1)N'(ba; dc) + (l~+ 1)N'~ '(ba; cd) —l,N'&(ab; dc)+ V'& '(ab; dc)]

and

f [I&(l~+ 1)]' /(21~+ 1))J -(2l&+ 1)N (ba; dc)

-(-)s [(I,+ l)N' ~(ba; cd) —l~N'&(ab;dc) + V'b '(ab; dc)+ 2R~,',~(ba; cd)]).
In particular cases, these formulas give the correct version of previously tabulated results. "'"'
In making comparisons with Refs. 13 and 21(a), note that we use LS coupling whereas these other
works use 8L coupling. Note also that (C5) and (C5') are generally not symmetrical with respect
to interchange of S and 8'.

(c4')

(C5')
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