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Varlational principles have been used extensively for estimating some given functional F(f,gt) where the
functions P and Pt are well defined by a set of differential equations and boundary conditions but cannot be
determined exactly. The variational principle for the estimation of a matrix element of an arbitrary
Hermitlan operator W involves not only the trial wave functions P, but also trial' auxiliary Lagrange
functions L„ the L, depend on the P, and on W. To determine the parameters in the L, efficiently, a
functional M(L„) is constructed which is an extremum for L„=L, . The technique was recently used

successfully in the variational estimation of two diagonal matrix elements. We here use this technique for the
variational estimation of an off-diagonal matrix element, the ge'neralized oscillator strengths of helium for
the transition between the ground state and, the excited 2'P state. Two L, 's must be determined. Our
results on helium indicate that variational estimates are a significant improvement over the first-order
estimates. The results are also compared with those obtained nonvariationally using more elaborate ground-

and excited-state wave functions; the comparison represents a check on the method. It is not yet clear
which of the two approaches is more eAicient.

I. INTRODUCTION

The diagonal matrix element of a Hermitian
operator W with respect to the lowest state of
some given symmetry is usually estimated by
first evaluating the variational parameters con-
tained in a trial wave function P, by a Rayleigh-
Bitz energy minimization procedure, and then
evaluating the matrix element by using P, . For
off-diagonal matrix elements for which each of
the two wave functions is associated with a state
which is the lowest state of a given symmetry,
each of the two trial functions is obtained by a
Rayleigh-Ritz method. (For higher states, one
would use the generalization of the Rayleigh-Ritz
procedure, the Hylleraas-Undheim approach. )
However, the estimate of a matrix element evalua-
ted by such a procedure is not comparable in ac-
curacy with the energy estimate obtained in a
Bayleigh-Ritz calculation.

An alternative procedure is to use a variational
principle to estimate the relevant matrix element;
by definition a variational principle gives an esti-
mate good to second order in the error in p„
which is of course the accuracy of the energy es-
timate obtained in a Bayleigh-Ritz calculation.
A variational estimate of a bound-state matrix
element of an arbitrary Hermitian linear operator
can be constructed from trial normalized bound-
state wave functions and certain auxiliary func-
tions." (More generally, ' one can construct a
variational principle for just about any entity of

interest in mathematical physics, with the auxil-
iary functions particular examples of Lagrange
undetermined multipliers —which can be a con-
stant X, a function I-, an'operator A, . . .). A La-
grange undetermined multiplier function L is well
defined by an inhomogeneous differential equation
and appropriate boundary conditions. One need not
obtain the L's exactly to maintain the variationa1
principle; one need "merely" obtain an estimate
I-, good to first order. One can obtain an adequate
estimate L, for a very restricted class of P, 's—a
Hartree product, for example. If, however, one
seeks an accuracy greater than that thereby
achieved, one would like to introduce a general
Q, ; but a near singularity then arises in the in-
homogeneous differential equation that had been
used as the defining equation for I., for all but
some very special cases of the wave functions
that appear in the matrix elements, and the vari-
ational principle is destroyed. This difficulty has
recently been circumvented. ~ With an appropriate-
ly modified equation defining L „one constructs
a functional M(L „)which is an extremum for L«
=L,. The minimization of M determines the para-
meters contained in I «, an approximation to L,
(which is, in turn, an approximation to L).

This technique was recently used successfully
in the variational estimation of two diagonal matrix
elements, namely, the diamagnetic susceptibility
and the form factor of the helium atom in its
ground state. ' In the present work, we have used
this technique for the variational estimation of an
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off-diagonal matrix element, the generalized oscil-
lator strengths of helium for the transitioh be-
tween the ground state and the excited 2'P state.
The results of the present work represent the
first effort to estimate var. iationally an off-diagon-
al matrix element using an extremum principle.
Such an estimation requires the determination of
two I-,'s, which can be determined independently.

(For the particular matrix element involved, the
commutation trick used by Schwartz' should be
free of singularities; his procedure works for
nodeless functions, and the 1'S ground state is
known to be nodeless, and the pr'ocedure can prob-
ably be adapted to the 2'P state. However, his,
procedure can surely not be used for matrix ele-
ments involving excited 'S and/or higher 'P states
The extremum principle procedure, 4 however, is
always free of near singularities; we have chosen
to consider the transition between the lowest 'S
and 'P states because we are interested in study-
ing the applicability of the extremum principle
formulation of a variational principle to an off-
diagonal matrix element, and we therefore chose
a relatively simple case.)

The generalized oscillator strength of the helium
atom for the transition from the ground state (wave
function P„energy E,) to the excited state (wave
function &t&„energy E,) is defined as

f(&') =(,./', )(', ).
where

W~ = e'"'&+ e'"'2

(1.1a)

(1.1b)

kA is the change in momentum of the fast incident
electron undergoing inelastic collision with the
helium atom. r, and r, are the coordinates of the
two bound electrons.

II. THE EXTREMUM PRINCIPLE

In this section we outline the extremum prin-
ciple applicable to the variational estimation of
the off-diagonal matrix element of interest. A

complete discussion of the general case, along
with the detailed derivations, can be found else-
where. '4

Let g„and P„be normalized approximations
to P, and P„ the true normalized ground-state and

the lowest 'P excited-state wave functions, re-
spectively, and let E„and &2t be the corresponding
variational estimates of &, and E„ the true
ground- and excited-state energies, respectively.
We are interested in obtaining a variational esti-
mate of the matrix element (W) = p|tWQ, for a linear
Hermitian operator 5". Note that the trial estimate

=—(W), + b„+&„, (2.2)

where I-„and I-„are solutions of the inhomo-
geneous diff erential equations

mod&t «) 1t 2WP 2t

(H"'a, t —E2~)L2~ = ='W4« '

(2.3a)

(2.3b)

the trial modified Hamiltonians are defined by

8'

H(») H 4'jt4it
mod, t

4=x $t
(2.4)

+yt and ~2t are first- order corrections that can-
cel the first-order terms in (W), which arise due
to the approximate nature of Q„and P„, respec-
tively. We note that two requirements for the pos-
itivity of the operators H",'d, -E« for i= 1 and 2,
which are essential for the extremum principle, 4

namely, that (P„, &t&2,)=0 and (P„,HP„)=0, are
trivially satisfied in the present context since P„
and P„are states of different total, orbital angular
mome nta.

L„and L„are uniquely defined by Eqs. (2.3) and
the requirement' of quadratic integrability, since
the corresponding homogeneous equations have no
solutions. In particular, the boundary conditions
on L„and I-„.are obtained by projecting Eqs.
(2.3a) and (2.3b) onto P„and g„, respectively;
one finds

Alt 1t 2 ( )t/ 1t& Amt 2t & ( 9t/Emt (2 5)

These conditions provide a useful numerical check
on the results obtained o Lxtt and L2tt) respec-
tively, but the cheeks can be satisfied even if
important components of L,«and I-,«are very
much in error. '

It was shown' that the operator (H'",'~, -E~)is'
positive definite provided the inequality

(2.6)

differs from the true value (W) by first order in
&4i -=Ax~ —4| and in &42-=42~ —0'2 ~

Although we are ultimately interested in ~(W) ~',
we are here concerned with (W) itself, and one
cannot construct a variational principle for (W)
unless (W) has been uniquely defined. It will there-
fore be necessary to define the phase of (W). This
can be done by defining the phases of both g, and
Q„or simply their relative phase. We will re-
turn to this point in Sec. III.

By construction, the variational estimate (W)„
differs from (W) only in second-order terms; it
is given by' '

(W)„= (W)~+ 2L )(H —E«) (f)~ (+ 2Lat t (H —E2q) $2q

(W)g= 4|gW4w (2.1) holds. This is always possible in principle for
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sufficiently accurate wave functions, and in the
present context poses no difficulties at all in prac-
tice. Thus L,«and L,«can be obf, ained by min-
imization of the functionals

Max(L~tt) =Last(Hm'o',
&
—Ex&)Lat t+ L~&tWQ2& (2.Va)

III. RESULTS

To define () uniquely, we take g, to be real
and we take P, to be of the form

y, =z(~„r„r„)Y„(f,)+ 1-2,
with I real.

For p„we chose the real 20-parameter wave
function of Hart and Herzberg. ' For the 2 'P. ex-
cited state of helium, we determined a 20-para-
meter wave function of the form

y„=r,f(r„r2, r„)e ' ""~'2'"Y,o(r",)+1 2 (3.1a)

with

f(r„r„r»)=g Cr

l, m, and n are non-negative integers and l+m+n
- 3; n and P are nonlinear variational parameters;
and the C, „are linear variational parameters.
Table I gives an indication of. the accuracy of the
wave functions. Inequality (2.6) was always satis-
fied, ensuring the positivity of (H'",'', -E«). Table
II shows the generalized oscillator strengths of

helium for a transition between the ground state
and the 2 'P excited state, for a few values of

ka'„ui sngthe above g„and P„. These results
are also compared with the results of Kim and
Inokuti, ' which were obtained with more elaborate
trial functions, containing 53 and 52 linear para-
meters, respectively. Neither of these sets of
results is variational. (Our variational results
will be given later. )

L're~ a d La~~ was made
as foOows. The Hamiltonian of the helium atom is

(3.1b)

M.2(L.qt) =Lan((Hm'O'. , E—~q)L~~q+Lmq)Wy, t, (2.Vb)

respectively, with respect to the variational para-
meters contained in the particglar choices of L,«
andI „.

2 8 8 8H= — (Vm+ V,') —2 —+—.+
2m ' ' r y.

' r. (3.2)

Note that 8"' is not Hermitian. However, to within
an irrelevant factor of i, the matrix element of
W'between P, and g, is the same as that of the
He rmitian operator

W-=(12m)'~'[j, (kr, )Y„(r,)+j,(kr,)Y„(i,)]. (3.3)

5' is the component of unit total orbital angular
momentum of -iR".

The angular dependences of L„and I-„are de-
termined by the operator W and the angular de-
pendence of the wave functions. From Eq. (2.3a),
we note that L„has components of angular mo-
mentum zero and two. However the component
of L„of angular momentum two does not contri-
bute to the variational estimate, Eq. (2.2), of the
matrix element and can be ignored. Thus we take

to be of the form

L„,= e " '"& """gA, „„r,'H(r,"+r,")r"„, (3.4a)

where E, m, and n are non-negative integers.
Similarly Eq. (2.3b) suggests that L,«be chosen
to be of the form

([yJ 1~+m (ne'r1 'r+)/ 2Y2(fr)]

+(1» 2)] r,", , (3.4b)

where, again, l, m, and n are non-negative in-
tegers. O', P', and y' are nonlinear variational

The dependence of the wave functions on the Euler-
ian angles —the angles which define the normal to
and the angle of rotation of the triangle determined
by r„r„and r»—is determined completely by
angular momentum, parity, and symmetry. In
particular, p, is a function r„r„and r» only,
while P, also depends on the Eulerian angles [see
Eq. (3.1)]~ On the other hand, the dependence of
the auxiliary functions on the Eulerian angles is
determined also by the operator W' whose matrix
elements are sought between the ground and ex-
cited states. The operator whose Matrix elements
are required is

0 W

TABLE I. Energy estimates in atomic units for the wave functions used.

Wave function
Accurate value

of energy Energy

Ground state
Excited state

-2.903 724 4
-2.123 843 lc

-2.903 717 9
-2'.123 795 4"

2.24 (-6)
2.25 (-5)

Reference 6.
"Present work.

cReference 12.
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I

Present value Kim-Inokuti value~

TABLE II. Present values of the generalized oscil-
lator strengths for 2 P excitations of helium (in a.u.)
and the Kim-Inokuti values. Neither estimate is varia-
tional.

TABLE IV. Monotonic convergence of M22 as a func-
tion of Nz, the number of linear parameters in 1.2tt, for
k a0=2.2. b2t is the first-order correction to the ma-
trix element [see Eq. (2.2)]. A partial check on the cal-
culations is pxovided by a comparison of the values in
the fifth column with the value P2t+2, = ~2(W), /E2,
=-0.036 162.

0.1
0.5
2.2
5.0

10.0
100.0

2.3400(—1)
1.2816(-1)
1.6728 (-2)
1.6294(-3)
1.0406 (-4)
6.9587{-10)

~Beference 7.

2.3486(-1)
1.2852 (-1)
1.6832 (-2)
1.6655(-3)
1.1015(-4)
1.0565(-9)

NI 0!'

10 14 38
25 1.7 4.1
30 1.7 4.1
40 17 36

—0.224 539
-0.236 958
-0.237 464
-0.237 534

&2t+2tt

-0.036 471
-0.036 199
-0.036 170
-0.036 167

-0.395(-5)
0.206 (-3)
0.447 (-3)
0.432 (-3)

parameters and the A, „and the 8, „are linear
variational parameters.

In minimizing the functional M» with 7 and 13
linear parameters in I-,«, the nonlinear para-
meter y' was varied in steps of 0.01.and with 20,
30, 40, and 45 parameters in I,«, y' was varied
in steps of 0.05. In the minimization of the func-
tional I», the nonlinear parameters n' and P'
were always varied in steps of 0.1. Tables III
and IV show the functionals M, y ~22 the check
on self-consistency, and the first-order correc-
tions &» and ~„ to the matrix element as a func-
tion of the number of linear parameters for the
particular case (kao)2 = 2.2.

In Table V, we give the generalized oscillator
strengths of helium for a few different values of

In calculating these values we used 45 para-
meters in I hatt and 40 parameters in. I-,«. These
values of the generalized oscillator strengths
should be among the most accurate theoretical
values available at present.

IV. DISCUSSION

The differential equations (2.3) for L„and L„
are uncoupled so that each of these functions is
estimated independently. Further, we notice from

13
20
30
40
45

2.29
2.78
2.35
2.85
2.50
2.50

-0.007 379
—0:.010 599
—0.013 087
-0.014113
—0.015318
-0.015 545

& tt+&tt

-0.025 815
-0.026 477
—0.026 559
-0.026 455
-0.026 442
-0.026 443

0.992(-5)
0.498(-5)
0.420 (-4)
0.728 {-4)
0.715(-4)
0.719{—4)

TABLE III. Monotonic convergence of M&& as a func-
tion of N~&, the number of linear parameters in I,ftt for
k a&= 2.2. 4&& is the first-order correction to the ma-
trix element [see Eq. (2.2)]. A partial check on the cal-
culations is provided by a comparison of the values in the
fourth co1umn with the value p~«I.

&& ~z(W) &/E«
= -0.026 449.

the variational expression (2.2) for the matrix
element that the auxiliary function I „corrects
for the first-order error in P„and L„corrects
for that in g„. Table I suggests that p„ is more
accurate than P„-it clearly is with regard to the
estimate of the energy-so that we would generally
expect the first-order correction 6„to be smaller
than the first-order correction L2t. This is con-
sistent with the results in Table V.

Tables III and IV show the. fulfillment of the
conditions (2.5), but as noted above, these self-
consistency conditions do not provide any criterion
for the accuracy of the estimates obtained of the
value of the matrix element. Tables TII and 1V
also exhibit the necessary monotonic decrease in
value of the functionals; this too provides a check
on the programming but does not provide any es-
timate of the accuracy of the matrix element. '%e
can make two statements concerning that accuracy.
Firstly, looking only at the entries 4yt in Table
IG, it would seem that 4„has converged to within
something of the order of 5 &10 '; similarly,
looking only at the entries in Table IV under b2t,
it would seem that 62t has converged to within
something like 1 & 10 4. The errors just quoted
are absolute errors. It follows that the matrix
element estimate is probably accurate to roughly
y1x10 4. Second, we see from Table I that the
energy estimates E„and E2t are accurate to about
two parts in 1000 000 'and two parts in 100000,
respectively. The accuracy of the variational
estimate of the matrix element is limited there-
fore to roughly 2 parts in 100 000 by the P„and
p„chosen, no matter how elaborate a choice we
make for I„and I,„. This is a relative error.
Taking the value 0.154106 5 for the matrix element
for k'a~~= 2.2, a relative error of 2 parts in 100000
leads to an absolute error of roughly 3 && 10 ' as .
the smallest possible error for the trial wave
functions chosen. .This is 100 times smaller than
the absolute error of 1 x 10 ~ estimated above.
The Kim-Inokuti value, incidentally, is 0.1540814.
This estimate is based on a more elaborate and
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TABLE V. The zeroth-order and variational estimate of the matrix element, (W)& and (W)
and the zeroth-order estimate f, (k2) = 2(E2-Et) ~ ( W), ~t/kt (see Table 10 and the variational est-
imate f„(kti =2(E2-E&)

~ (W)„~ /k2 of the generaljized osoillator strengths for different values of
k2, in atoxnic units.

2.2.

5.0
10.0

(w),

0.153602 4
0.072 269 8
0.025 828 6

0.7191(-4) 0.4322 (-3)
0.7408(-4) 0..7924(-3)
0.4801(—4) 0.7595(-3)

(w) „
0.154106 5
0.073 1363
0.026 636 1

KlDl- jnoklltI.
value of
fA' )

1.6838(-2) 1.6832 (-2)
1.6687 (-3) 1.6655(-3)
1.1067(-4) 1.1015(-4)

~Heference 7.

better pair of trial functions than those gsed in
the present calculation, for Kim and Inokuti used
Weiss' wave functions, for whihh we calculate the
fractional error

~
6E/E

~

to be 0.24 && 10 z and 1.4
& 10~ for the ground state and excited state, re-
spectively. On the other hand, since their calcu-
lation is not variational, the relative error in
their (+ is expected to be of the order of the
larger of the two values of ~5E/E ~' ', namely,
about 10 '. The absolute error in their (+ can
therefore be expected to be roughly 10"4. The
difference of 2 && 10~ between their estimate of
(W) and ours is consistent with the above error
estimates.

Preliminary attempts at an estimate of (+ for
(ka,)'= 100 indicated that the calculation would re-
quire considerably more effort than at lower values
of (ka,)' because of the difficulty in locating ap-
propriate values of the nonlinear parameters. At
high values of (ka,)', one might try to obtain the
leading term L,",' to L„, for L„written as a power
series in 1/k. If one could do so, one would then
write L„as L,', ' plus a term of the general form
of Eq. (3.1). The additional form would not have
much "physics" built into it, but the linear para-
meter it contains could be varied in the usual
way, and one mould only have to account for the
difference between L„and L,'~'. One mould pro-
ceed in an identical fashion in choosing I.„.

One can, of course, use the results of the pres-
ent work to obtain variational bound@ on the matrix
element. ' A variational bound was, in fact, ob-
tained for a diagonal matrix element, namely, the
diamagnetic susceptibility. Alternatively, one
could try to obtain an explicit value of the second-
order error in the variational estimation of the
matrix element. ' Both results mould require
considerable effort.

Equation (2.4) does not represent a unique choice

for the modified Hamiltonians. In fact, there ex.-
ist" alternative modified Hamiltonians which pos-
sess the required positive definite properties.
However, no numerical studies have been made
as yet to to test these latter modified Hamiltoni-
ans.

Finally, me comment briefly on some computa-
tiona3, aspects of the variational galculation. First,
the calculation of an auxiliary I agrange function
requires inversion of a matrix in contrast with the
diagonalization of the matrix required in the de-
termination of the mave functions. Thus round-off
error is less of a problem for the variational cal-
culation than for the direct first-order calculation
using more elaborate wave functions. Second, a
variational calculation employing a wave function
with N~ parameters and an auxiliary function with
N~ parameters is more convenient than the one
employing a wave function with N=N~+N~ para-
meters, since mave functions with femer para-
meters N~ are generally available in the litera-
ture. This reduces the problem with N parameters
to one with N~ parameters. These remarks suggest
that the variational procedure may often be more
efficient than the use of more elaborate functions,
but the question remains open.
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