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A variatjonal form of the cellular method is proposed as a new model to solve the one-electron SchrMinger
equation for molecules and crystals. The model keeps such good features of the traditional cellular method as
the arbitrary partition of space, and eliminates its main drawback, the slow convergence of the cellular
expansion series. %'ith the aid of a criterion of precision on the trial wave functions, we discuss the
possibilities ofFered by the inethod for more accurate calculations of the electronic structures of molecules
and solids. As an example of the accuracy and fast convergence of the model, computation of the energy
spectrum of the molecular hydrogen ion 82+ is presented.

I. INTRODUCTION

One of the earliest methods used to solve the
problem of finding the one-electron solutions of
the Schr5dinger equation for crystals was the cel-
lular model proposeP by Wigner and Seitz. ' An
improved version of the method was suggested by
Slater, in his classic study of metallic sodium. '
In Slater's scheme, the crystal volume iS first
decomposed into space-filling atomic polyhedra
(Wigner-Seitz cells). By reducing the crystal wave
equation to a central-field problem in each cell,
the one-electron solutions of the Schr5dinger equa-
tion are obtained by imposing boundary conditions
on the surfaces of the cells. Slater's cellular
method has been applied in various forms to many
metallic crystals, ' diamond-lattice-type crystals, '
and insulators. '

From the reported works, we can conclude that
the cellular method is an accurate technique for
the calculation of the electronic structure of solids,
even for such loosely packed structures as dia-
mond-like crystals. Furthermore, the theory of
the method is extremely simple and has the advan-
tage of discarding the muffin-tin approximation of
the selfconsistent potential, which is the main
source of errors in methods like the augmented-
plane-wave (APW) method' and Kohn-Korringa-
Rostoker (KKR) method. ' However, in order to
obtain a realistic crystal e1.ectronic structure with
the cellular method, the expansion of the wave
function has to be carried to very large angular
momenta. 4 This severe convergence problem has
been pointed out as one of the fundamental weak-
ness of the method 8

It has been show previously' that this limitatiqn
can be overcome by reformulating the solution of
the cellular-boundary-condition problem through a
variational procedure. This promising variant of
the cellular method was suggested as a new ap-
proach to the problem of finding the one-electron

solutions of the Schr5dinger equation for molecules
and crystals, in preference to the methods which
deal with muffin-tin potentials.

The aim of the present paper is to establish the
full theoretical formulation of the variational cel-
lular method as well give indications of how self-
consistency can be implemented in the method.
Viewed in a new manner, the case of the molecular-
hydrogen ion H.,'is restudied. This molecule has
already been calculated by several authors" "and
the exact solutions are available in the literature. "

It is worth mentioning that other modified ver-
sions of the cellular method have been proposed.
recently as models of molecular and crystal elec-
tronic structures. ""

g,.=Q A,g„(r), (1a)

where

f,„(r)=ft,'e(r, ) (I)r (lb)

In the equations above, & stands for the pair (l, m)
specifying the angular momentum, and 8, ' is a

II. REVIEW OF THE VARIATIONAL CELLULAR METHOD

According to the original formulation of the cell-
ular method, one starts by-decomposing the molec-
ular or crystal space into cells. Although it is com-
mon practice to partition the crystal space into
Wigner-Seitz atomic cells, in general, the cells
can have arbitrary shapes. The molecular or crys-,
tal potential can be expressed as the spatial super-
position of spherical potentials, one centered at
each atomic site. In the simplest form of the cell-
ular method, the -potential is approximated within
each cell by its spherical average with respect to
the center of the ceO.

Within the cell i, the wave function g, is expand-
ed in spherical harmonics
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solution of the radial Schrodinger equation for the
energy &, . If the trial function is a propagating
state in a periodic lattice, the coefficients A„
in different cells are related by the Block theorem.
'She unknown coefficients A,.~ are determined by
the following variational expression for the energy
eigenvalue:

dna;. g,.a=+ f dn, g;. (-v*+v)g,
t

+2 g dS (0,. —g„)(a„q,*. s g+)
1

Slj
j.

+—p
SU

()
The dA integrals are volume integrals in the cell
space, while the dS integrals are integrals in the
surfaces separating the cells. In (2), one must
sum the volume integrals of all cells and the sur-
face integrals of all cell boundaries. 8„ is an out-
ward normal derivative which, when applied to (, ,
yields an outward derivative from the cell j, while
when applied to (,. it is an outward derivative
from i.

Varying the coefficients A,.„and imposing the
condition that the variation of the energy e is null,
one arrives at the following secular equation:

P (f~(ff)f ~&w,,, =o,

where the matrix H is

(A ~H~a'~') =(& —&...) f~...(8 f,",f,., +f,',8 f,...)
(4)

Equations (3) and (4) are basic to the method. The
energy eigenvalue determination becomes a simple
matter of calculating the matrix H according to
Eq. (4), for several energies a, and finding the
energy for which Eq. (3) has a nontrivial solution.

The calculation of H according to Eq. (4) involves
the evaluation of surface integrals along the cell
boundaries. In most instances, these integrals can
only be computed by establishing a net of points in
the surfaces, and adding the values of the inte-
grands at these points multiplied by properly cho-
senweights. Thus, before discussing some special
features of the method, one must face the two
problems of how to define the cells, and how to
establish nets of points for the surface integrations.

choosing the cells judiciously, one can span the
whole space with cells for which the potential is
spherically symmetric, and obtain a realistic de-
scription of the true potential. In this respect, the
cellular method is outstanding when compared with
the multiple- scattering" methods. In the latter
case, the cells are necessarily spheres, and these
cannot be arranged without leaving much open
space.

In spite of being an important asset, the enor-
mous freedom for cell construction is confusing.
On& has so many possibilities that it is difficult to
make a choice. In what follows, we intend to show
a simple guideline by which we lose a bit of free-
dom but become much less confused when construc-
ting the cells.

To begin with, one may assume that, in each
cej.l, the potential does not depend on how the cells
are constructed. In other words, we assume that
in a variation of the cell boundaries the potential
of a cell does not vary. This assumption is arbi-
trary but not unreasonable. Indeed, one could ex-
pect that in a variation of the cell boundaries, the
wave functions and charge distribution wou1. d be
only negligibly varied. Now, if the spherically sym
metric potential of the cell is forced to satisfy
the Poisson equation, the potential in each cell be-
comes only negligibly dependent on the shape of
the cell boundaries.

Thus, consider the integrated square error in
the potential

E= dA vr —vr

v(r) is the true potential, while V(r) is the potential
trimmed to become spherically symmetric in each
cell. Consider an arbitrary variation in the sur-
face separating cell i from cell j, according to
Fig. 1. The resulting variation in E is

~E = dQ v,. —v,. 2v —v,. —v. ,

where v, and v,. are the spherically symmetric po-
tentials of cells i and j, and the integration is per-
formed just in the shaded region of Fig. 1.

The cell boundaries should be chosen so that &E

is null, or approximately, so. This is automatical-

III. GUIDELINE FOR CELL CONSTRUCTION

One important asset of the cellular method is
the freedom one gains in the cell construction. By

FIG. 1. Displacexnent of the boundary between two
cells.
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ly satisfied at the planes of symmetry for which

v ~ =v~ .

In the general case, instead of calculating the sur-
faces determined by

DE =0,
one would find insulated points for which

det(H' "")= det(H" ~'
g

+wQ (Z,'~f'M~, ,„+Z~&~~&M~,, ) =0,

or
V =V

v = —,
'

(v,.+ v,.),

(Va)

(7b)

where M is the matrix of minors of the matrix
H"~" But

P)t', &)t -O. -s')t' ~

and pass simple surfaces, such as planes or
spheres, through these points. These surfaces
would define the cell boundaries.

that is, the M are proportional to the products of
the expansion coefficients. Thus,

IV. NETS OF POINTS FOR SURFACE INTEGRATION

H(wrong) H(right ) +g (lJ ) Q
~ g, ~')' =

~)t. ~')t' ~ u.' S~ J e

where

Let a be the solution of the "right" secular equa-
tion

det(H"'+") = 0 (10a)

and let &+ && be the solution of the "wrong" equa-
tion

det(H'"""'j. = 0. (10b)

Expanding H' '"' linearly in ~& and m, we obtain

The routine use of the the variational cellular
method would be seriously hindered if the surface
integrations had to be made with much precision.
In that case, we would be forced to study the prob-
lem of establishing a net of points and their
weights in each surface, that would permit precise
integrations. Since the very shape of the surfaces
is not predetermined, this problem would be a
very serious one.

In what follows, we show that the surface inte-
grations need no special care, but can be com-
puted very naively. To prove this point, consider
a situation where the integrations have been made
wj.thmuehprecision. Let H',."~„",, be the matrix H
of Eq. (4) resulting from this precise calculation.
Consider now a deliberate error in the integrations
in the surface separating- cell I and cell J. To the
point r, of this surface we add an extra weight zo.
Let H(~ong) be the resulting matrix H. According
to Eq. (4), we write

According to Eqs. (9) and (1), the numerator of
Eq. (13) is

(I(ro) = P~ (ro),

Thus,

(14b)

This derivation proves that the present version
of the cellular method is doubly variational, be-
cause the first-order variation. in the energy is
zero for a variation in the expansion coefficients
and a variation in the net for the surface integra-
tions. In this respect, it must be remarked that
Leite et al. 4 had observed that, once the angular
momentum convergence was reached, the net of
points could be changed. In fact, they used those
changes in the net of points as a criterion of con-
vergence in the angular momentum series.

V. CRITERION OF PRECISION

We turn now to the variational expression for &,

Eq. (2). Until now we have made variations only
in the expansion coefficients A, ~. Now we will
consider the variations in the energy &, which is

Now, if the angular momentum expansion in Eq.
(1) has been carried out to sufficiently high angular
momenta, gi and P~ match at the cell boundaries,
or
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used to define the basis functions of Eq. (1b).
must not be confused with E, because & is the
eigenvalue while q, is the energy one uses in the
radial Schrddinger equation to calculate B,' of Eq.
(lb). Thus, the first term on the right-hand side
(rhs) of Eq. (2) becomes

two equations

-V'g,*(e+&e) + v(1),*. (e+ 5e) = (e+ 5e)p,*. (e+ 6e),

and, since

cfg V + *''V 0

for the functions P, and g, in the cell i, satisfying
the Schrodinger equation for energies a and c+ ~e,
it is a simple rnatter to prove that

r d5' „,(4-,*)8.4., 0; Z-—, (s„(&},1

d d

Thus, letting

Eq. (2) simplifies to

dA ]+,. = 60 dA one obtains

(19)

One then uses for a. criterion C of precision the
value of the following expression:

(15)

But the second term in the rhs of Eq. (15) is simply
related to the matrix H of Eq. (4), so

dQ,*, = &0 dQ

Now, making a variation ~t, in co, but maintain-
ing fixed the A, ~ at their values which satisfy the
secular equation (3) and setting e, = e, one obtains
the following value for the variation ~c in c:

(2o)

In Eq. (20) we sum over repeated indices.
We reckon Eq. (20) as an important asset of the

variational cellular method. In all methods for
electronic calculation one can only guess the pre-
cision of the calculation by increasing the set of
basis functions. On the other hand, in the present
method one can calculate C can reach conclusions
on the precision zvithout increasing the basis set.

It is interesting to show that C is exactly zero
when the function is continuous and has a continu-
ous normal derivative at the surfaces. To see this,
we derive the following expression from Eqs. (15),
(18), and (19):

At the exact solution, the rhs of Eq. (].7) will be
necessarily. zero. On the other hand, if the angul-
ar momentum series has been cut at a not-too-high
value, the rhs will. be small but not zero. Thus,
the rhs of Eq. (17) gives a good indication of how
precise the calculation is.

In order to formulate a practical criterion of
pr'ecision, one must write the volume integrals in
Eqs. (17) as surface integrals. Considering the

In the equation above, a dot over a function g de-
notes an energy derivative with fixed values of the
expansion coefficients A. ,~. Thus, for an exact
match of the functions of the cell boundaries, or.
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the value of C is exactly zero. Thus, the value of
C is actually an integrated error of function mis-
match at the surfaces. On the other hand, Eq. (17)
tells us that this error of mismatch is related to
the derivative dk/de, which tells how much the
eigenvalue is independent of the energy &,.

VI. SPURIOUS SOLUTIONS

Equation (3) also has nontrivial solutions which
are not physical. To recognize a physical solu-
tion, one can calculate the value of criterion C of
Eq. (20) and see whether it is small, as it should
Rt a true solution. On the other hand, there is a
simpler method to distinguish a physical solution.

First of all, it is becoming common practice to
look for the solutions of Eq. (3) by searching the
zeros of

(T—rH ') '=, , PA„*A )
)( Ag ii A

But, according to Eq. (20), near a true physical
solution

QA,*. "Aq —-—2 Q A,*N,,A, ,

and, as the matrix N is positive definite, one has

—(TrH ') '&0. (25)

Here, i and j are multiple indices and stand for the
cell index and angular momentum indices. Equa-
tion (24) is an immediate consequence of Eq. (12),
and the A's are the expansion coefficients. Thus,

(TrH ') '=0,
instead of

det(H) =0.

(21)

(22)

Or, in words, the I~«goes to tero at the nontriv-
ial solutions of the secular equation (3), and, af a
tme physical solution the I~zM is decreasing arith
increasing energy .

—(TrH ') '=- —TrH ' (TrH ')'

but

Hl Hl H 1

d& d&

Thus
&

d '

q q q dH
dc, dc
—(TrH ) '=Tr(H —H )/(TrH ') (23)

Now, at an energy very near a zero of Eq. '(2l) one
has

H]j = yA)*A) . (24)

The inverse of the trace of the inverse matrix
(I~«) goes to zero when the determinant of the ma;
trix goes to zero. On the other hand, for a degen-
erate energy level, the zero of the determinant is
also degenerate while the zero of I~« is simple.
In practice, this means that a doubly degenerate
level can be easily recognized through Eq. (21) but
is difficult to locate when one uses Eq. (22), be-
cause the determinant does not change its sign at
the zero. An added advantage is that a determi-
nant may have a fantastic order of magnitude if
proper care is not taken, while the I~«has the
order of magnitude of a matrix element. Of course.
one must pay a price for these advantages: the
calculation of an inverse matrix is three times
slower than the calculation of a determinant.

For our purpose, the use of Eq. (21) instead of
Eq. (22) permits an easy recognition of the physi-
cal solutions. Indeed, consider the derivative of
I~zM with respect to the energy,

dc
P&= lim

&

In order to relate &a and & V„we use

8
vzM(~+ ~ «} = »M(~) o)+ '—»I)

(27)

+6' (f„)=0.8

8

VII. NORMALIZATION OF THE VYAVE FUNCTION
AND THE PROBABILITY OF A CELL

The matrix N, defined by Eq. (19), could be used
to normalize the wave function and to determine
the probability P& of the electron being in the cell
i. Obviously,

(26)' Z,Z„„,A,*„N,'„,'A, „,
'

The normalization would be made by setting the
denominator in Eq. (26) equal to 1.

This method of normalization can only be relied
upon when the criterion C in Eq. (20) is very near
zero. When this does not happen, we must revert
to the secular matrix H and its energy deriVatives
to determine P, and the normalization. One must
remember that it is H, and not N, which is deter-
mining the eigenvalue, and that it is H, and not N
that can be calculated with naively constructed
nets of points in the boundary surfaces of the cells.
Thus, to determine P, , we shift the potential in
the cell i by a constant &V& and recalculate the en-
ergy level. The consequent shift in the energy
eigenvalue && is related to P, by
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Thus from the relation

( TtM)/
B(f„}/B~

(31)

Then, letting BH/Be, be the derivative of the ma-
trix with respect to the energy with which the func-
tions at cell i are calculated, and since

8 8

8&, 8V, '

we obtain, from Eqs. (23) and (24)

These probabilities add up to 1, this fact following

VIII. SPHERICAL ELECTRONIC DENSITY n (r)
IN THE INSCRIBED SPHERE

In self-consistent calculations, one can only hope
to integrate the Poisson equation if, in each cell,
the electronic density is spherically symmetric.
The spherical average n, (r) of the electronic densi-
ty in the cell i can be simply calculated only in the
inscribed sphere that just touches the boundary of
the cell (see Fig. 2).

Let ro be a radius smaller than R, the radius of
the inscribed sphere in the cell i. Let v, (x) be the
spherically symmetric potential in the cell. Anal-
ogously to the development of Sec. VII, we can
write an expression for the electronic density at
r„n, (r,),

4mr2on)(ro) = —Q Q A~~
( )

(H,.~ ~~.)A„
8g Q Aq, —(Hy), „,)A (32)

where

Bv,(r,)
denotes a functional derivative with respect to v, (r)
at roe

The calculatio~ of the functional derivative in Eq.
(32) can be done as follows: The radial functions
p„(r ) in the cell i obey the equation

energy we have overlooked the problem of how to
normalize the radial functions. Until now, this
normalization has been left completely arbitrary.
But now we shall make a choice: we will always
normalize the radial functions so that

p, , (R) = 1 or R', 0(R) = 1/R . (35)

With this choice, the derivative of P„differs from
the derivative of P,-, by

f(f+ 1)
dr.p~i+ . p~r+~—«~»« = &p« ~r (33a)

dR p„(R) „„p,, (R) = -~p, , (~.)p„(~,). (34')

This radial function p&, (x) is just r times R', o(r) of
Eq. (1b). At r, we add a potential «(r x,) With-.
this addition, the radial function becomes P „(x)
and obeys

da - l(l+1)-,p„+, p„+[v,(~)+«(r-r, )jp„=~p,,r2 jl r2

Now let q„(r) be a solution of Eq. (33a) but such
that

q„(R)=O,

q, , (R) =1.

Multiplying (33a) by p&&
and subtracting it from

(33b) multiplied by P&„and then integrating from
the origin to the'radius R of the inscribed sphere,
we obtain

cf
p„(R) „„p„(R)—p„(R) „p„(R)

= ~p„(~.)p„(~.) . (34)

When derivating the matrix H with respect to the FIG. 2. Cell with an inscribed sphere of radius R,
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Then, in the limit when ~- 0 and P &, and P„al-
most coincide, we can write, for any radius x
larger than 8,

Inserting P„(x) instead of P„(r) in the matrix
elements of &, we obtain the matrix corresponding
to the potential perturbed by

according to Eq. (34').
But this is what we rice to perform the functional
derivative in EII. (32). Thus

where the matrix Q"" is obtained from H through
the following: (i) q&, (r) is substituted for P&,(r);
(ii) the matrix elements not containing P, &

are
made zero.

IX. RESULTS FOR 82+

Having reported the theoretical framework of
the variational cellular method, we now consider
its application to the evaluation of the ener'gy spec-
trum of the molecular-hydrogen ion 8,'. Instead
of using the cells reported in Ref. 9, we now use
cells constructed according to the prescriptions
of Sec. III. The new cells are described in Fig. 3.

Table I shows the behavior of the 10 energy
level of H2' (R = 2 a.u.) with the variation of the
number of terms in the cellular expansion and %e
number of points used to perform the numerical
surface integrations at the plane and at the hemi-
spheres.

The choice of the cells according with the pre-
scription indicated in Sec. III leads to more-ac--
curate energy eigenvalues than the choice made in
our previous work (Ref. 9). According to Table I
we obtain the value -2.172 Ry for the lo. energy
level of H, '. This value is in better agreement
with the exact result, -2.205 Ry, than the value
-2.155 Ry reported by us in Ref. 9.

The entries quoted in Table I show that the varia-

FIG. 3. Partitioning of the molecular space for H2'.
The dots are the proton sites. The two atorqic cells
are spheres not centered at the protons and have a plane
surface of contact. At the points P and X, Eqs. (7) are
satisfied. The coordinates of these points are p=2.18a,
and x =2.31a, where 2a is the interatomic distance. The
outer cell extends from the atomic cells to infinity. The
figure is not drawn to scale.

tional cellular method is accurate and of fast con-
vergence. Since the energy eigenvalue was derived
from a variational principle, the expansion of the
cellular function did not have to be carried out to
large angular momenta. Table I also emphasizes
the double variational character of the method.
The same converged energy eigenvalue is obtained
for different sets of points used to perform the in-
tegrations on the cell surfaces.

In Table II we show the behavior of the criterion
of precision C as a function of the number of
spherical harmonics in the cellular expansion and
the number of points used to perform the surface
integrations. C is defined by Eq. (20). The entries
correspond to the 1o level; thus, they are related
to the entries in Table I.

Table II shows that the lack of precision in the
calculation of the surface integrals is not critical
for the method. In fact, for a converged energy
eigenvalue, the value of C is almost insensitive to
the number and location of the points for surface
integrations. Another very interesting conclusion
about the cellular method can be reached if we
observe the behavior of the criterion C as a func-
tion of l, for a fixed value of the number
"points. " There is an optimal value of / which
leads to a minimal C. If the number of basis func-
tions is increased by including spherical harmonics
with order higher tha, n the optimal value, C in-
creases. The entries in Table I show that the 10
energy level is fully convergent for E =4. By
extending the cellular expansion up to E = 5, C
increases while the converged energy eigenvalue
does not change. This has a straightforward in-
terpretation. The number of points, 15, for ex-
ample, is not enough to sample correctly a spher-
ical harmonic whose angular momentum is 5. The
inclusion of this harmonic generates a mismatch
at the cell boundaries, thus increasing the value
of C. Qn the other hand, due to the variational
character of the method, the mismatch has no
first-order effect on the energy eigenvalue. How-
ever, if more and more basis elements are in-
cluded in the cellular expansion, for a fixed num-
ber of points, the calculation loses its meaning,
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TABLE I. Convergence of the lowest energy level, E«, of H2+ for the equilibrium inter-
nuclear distance &=2.0 a.u. Em„ is the maximum spherical-harmonic angular momentum in
the cellular expansion. Values are in Hydbergs. "Points" is the number of points used for
numerical integration in the spherical surfaces and in the plane. The exact value of the E«
level is 2.205 {Ref. 13).

Points
i max

3

1
2
3

5
7
9

12
15
20

-2.127 88
-2.107 05
-2.096 12
-2.092 79
-2.09142
-2.090 31
-2.089 87
-2.089 58
-2.089 44
-2.089 34

-2.169 39
-2.16140
-2.158 03
-2.155 23
-2.154 11
-2.153 37
-2.153 04
-2.152 77

-2.15923
-2.160 75
-2.162 14
-2.163 27
-2.16385
-2.164 32

-2.182 75
-2.176 21
-2.174 19
-2.17302
-2.172 52
-2.172 15

-2.214 34
-2.182 34
-2.172 80
-2.172 15

and the solution disappears.
Our finding leads to one more argument against

the conventional cellular method based on exact
point matching. In that method, the number of
matching points is related to the number of spheri-
cal harmonics in the trial function. Thus, we fre-
quently are faced with the problem of sampling a
high-order spherical harmonic at few matching
points. According to the conclusions taken from
Table II, the roots of the secular equation may not
even be found. This limitation in the epact point
matching method was already observed by I cite
et al.' when dealing with the fourfold partitioning
model of the dia, mond crystal.

Our results for the lowest electronic energy
levels of H, ' for the internuclear distance 2 a.u.
are listed in Table III. The results of a multiple-
scattering calculation, ' and the oyerlapping-
spheres (OS) calculation" are also shown along

with the exact solutions".
From the cellular calculation of the 10 level as

a function of the internuclear distance, we obtained
the value 2.0 a.u. for the H, ' bond length, in agree-
ment with the exact result. According to Table III,
the energy obtained for the ground state 10 agrees
with the exact result to 1.5%. The molecular ex-
cited states calculated with the variational cellular
method agree with the exact values to within 5%.

X. CONCLUSION

In this paper, we have surveyed the possibility of
the variational cellular method becoming a satis-
factory tool for the solution of the Schrodinger
equation in molecules and crystals. According to
the theoretical framework of the method, no as-
sumption is made about the shape of the cells.
Thus, the motivation of the present work was to

TABLE II. Behavior of the of the criterion & of precision as a function of Lmax and "points. "
& is defined in the text by Eq. (20). The entries correspond to the 10g level and this Table
should be compared with Table I.

Points
& max

3 5

1
2
3
4
5
7.
9

12
15
20

-0.21920
-0.355 69
-0.362 45
-0.365 09
-0.366 62
-0.368 10
-0.368 74
-0.369 19
-0.369 51
-0.369 68

-0.067 77
-0.07643
-0,080 91
-0.084 9.0
-0.086 63
-0.087 81
-0.088 53
—0.088 79

-0.066 01
-0.042 76.
-0.031 18
-Q.022 85
-Q.018 91
-0.015 80

0.008 80
0.001 34

-0.000 60
-0.001 58
-0.001 95
-0.002 21

0.257 10
0.089 31
Q.031 14
0.002 57
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TABLE III. Lowest electronic energy levels of H2+ for the equilibrium internuclear distance
R=2.0 a.u.

Energy
state

10'~

2o'z

30'
4g
17r

10'„
20
30'g

40„
]XQ

Multiple scattering
model
E (Ry)

-2.071 6
-0.707 38
-0.455 74
-0.348 59
-0.446 46
-1.286 8
-0.497 22
-0.269 79
-0.249 97
-0.888 66

OS
model
E (By)

-2.155

-1.366

-0.860

Cellular
model
E (Ry)

-2.172 15
-0.71108
-0.464 51
-0.35128
-0.466 00
-1.412 00
-0.504 83
-0.272 04
-0.260 17
-0.905 26

Exact c

E (By)

-2.205 25
-0.721 73
-0.471 55
-0.355 36
-0.45340
-1.355 07
-0.510 83
-0.274 63
-0.253 29
-0.867 55

See Bef. 10.
See Bef. 12.
See Bef. 13.

add to the flexibility of the cellular method a much
faster convergence. It is just this flexibility that
makes the method suitable for treating a wide
ra, nge of problems.

It is already known from other calculations with
the cellular method4 that the resulting energy
levels are insensitive to the choice of matching
points, provided that a sufficiently large basis set
is used. Our results for H, ' show that the state-
ment above is valid as long as the number of points
for surface integration is sufficiently larger that

the maximum order of the angular momentum
series. For high angular momenta and small num-
ber of points, the eigenvalues may even disappear.
In all cases we verified that the value of C was a
reliable criterion of precision of the calculation.
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