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Upper bounds are derived to the many-electron density p„(x„...,x„) (2 & k & n) of an n-electron atomic
or molecular wave function. The derivation is based on former results on the decay of the one-electron
density aud on the "SchrMinger inequality" for (pk)"- which, by means of a comparison theorem, allows the
deduction of upper bounds for pt. in the retp'on 6" = ((x„..., xk)

~
r; & c, l & i & k J, c being a constant aud

r, =
~
x, ~, provided an upper bound to p„ is available on the boundary a 6".The latter can be obtained

from bounds to pk, . A recurrence procedure leads to the fmal result which for the case of an atom is given
, 2 Z I2 2e 1I2 ]-] 2e 1/2

by p„& dSII"; 1 r',. " 'f'~ e + 'f~ r,. (d is a constant, S acts as a symmetrizer, Z denotes the nuclear
charge, and the c, (1 & i & k) denote the successive ionization potentials of the state under consideration).
%e further report an improved bound for p2 which depends explicitly on the interelectronic distance.

I. INTRODUCTION

This paper generalizes results of a recent paper'
(referred to as I) on asymptotic properties of one-
electron densities of atoms and molecules to
many-electron densities. We consider bound
states of atomic and molecular systems described
by a Hamiltonian in the infinite nuclear mass ap-

proximationn

V(xt) = Q ~X) —xt
~ Z),

and the corresponding eigenvalue problem

HP=Eg, (1.S)

where g(x„.. . ,x„) is the normalized wave function
in configuration space B'" (spin enters only via
permutation symmetry). Our notation will follow
essentially the notation of I.

Let us define the k-electron density by

p.b . '~.)= f ~k(~„,~.)I*0., «.
(1.4)

We shall investigate the asymptotic properties of

p~ for the case that all k electrons tend simultan-
eously to infinity.

This problem has been investigated so far only
by Ahlrichs et al. and by Hunziker et al. for the
many-particle case. For the three-particle prob-
lem the work of Slaggie and Wichmann, Morgan, '
and Mercuriev' should be mentioned. Qther

p, ~Sexp — 2v'2c, r,
)=1

(1.5)

where S acts as a symmetrizer.
Here we shall obtain explicit upper bounds to ps,

for r», r~ greater than some constant c, which
exhibit the same asymptotic behavior as (1.5) con-
cerning the exponential factor (the existence of
such bounds has been already conjectured by Mor-
gan. ') For atomic two-electron densities we shall
give an upper bound where the pre-exponential
factor depends explicitly on the interelectronic
distance. Although our r'esults for the pre-expo-
nential term are still not satisfactory, they im-

work" "on the decay of subcontinuum wave func-
tions deals only with the case that one particle (or
one cluster in the general nonrelativistic many-
particle problem) tends to infinity. The results
obtained there contain only the first ionization po-
tential e, (for a definition of et see, for instance,
l).

As has been shown for the three-particle prob-
lem' and for the many-particle problem~' in cer-
tain regions of configuration space the other ion-
ization potentials e, (t & 1) [e, is defined as the first
ionization potential of the (t' —,1)-fold ionized sys-
tem derived from P] should also enter a more sat-
isf factory description of the asymptotic behavior of
a many-electron density. This can be easily vis-
ualized on physical grounds by considering an
atom described by a Hamiltonian within the infinite
nuclear mass approximation and without interelec-
tronic repulsion. There the asymptotic behavior,
aside from a polynomially bounded pre-exponential
factor, is given by
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prove the results reported previously by the pres-
ent authors. 2 They seem to be also essentially in
accordance, concerning the exponential factor,
with the very general results of Hunziker et aL. on
the asymptotic behavior of subcontinuum wave
functions. '

However, it should be noted that we, as every
other worker in this field, obtain only upper bounds
on the asymptotic behavior of pk, whereas lower
bounds remain a completely unsettled problem at
least for Coulombic systems. (For three-particle
systems with potentials decaying faster than the
Coulomb potential, Mercuriev' obtained results on
the exact asymptotic behavior. ) For instance, it
is not known whether or not the one-electron densi-
ty of helium is decaying like, say exp(-r»), which
admittedly appears to be very unlikely on physical
grounds, but has not been ruled out yet.

II. MATHEMATICAL PRELIMINARIES

Since subharmonic functions will frequently enter
our subsequent considerations we recall their de-
finition and some of their properties.

Let B„(x)denote the sphere (x'cR" lx -x' l«] and
let S„(x) and lS„(x)l denote the surface and surface
area of B„(x), respectively. A function s, defined
and continuous in a domain D(-R is called sub-

harmonic (s.h.) if it satisfies the mean value in-
equality

s(x) ( lS„(x}l ' s(x'}dv(x'),
S „(x)

(2.1)

whenever B„(x)cD [d. o(x) denotes the surface
element of the sphere. ]

It can be shown" that the following conditions are
equivalent: (i) s is s.h. ; (ii) As -0 in the distribu-
tion sense. (If s has continuous second partial de-
rivatives 6s) 0 in classical sense); and (iii}

s (x) ( l B„(x)l

' (2.2)s (x') dx'
a„(x)

for every B (x)CD, lB„(x) l
denotes the volume

of B„(x). Furthermore it can be shown" that the
mean value inequality (2.1) implies the maximum
principle for s.h. functions. The maximum princi-
ple tells us that a nonconstant function s.h. in some
domain D has its supremum at 9D, the boundary
of D.

A consequence of (2.2) is the following lemma
which we shall apply frequently.

Lemma 2. Let s:A k-8 be a non-negative, con-
tinuous integrable function s.h. in a domain DC R k

and let (x„.. . , x») cD with. x, cR (1(i -k). Then
for every 6 & 0 with B,'"4' (x„.. . , x,) cD

B~(k-j.) [ max
s (Q)»e ~ i X»l '

~

»)») '(xmas .~ ~ sf»-i/ ~() (x1t ' ' ' s x» '(} s'(-x») ~ ' ' ) x») dx» '
B6 gt5

(2.3)

Proof: Clearly B,'"»' (x„... , x„)cB,"(» " (x„... ,x»,)xR~which together with (2.2) and the positivity of s
leads to

s(x„.. . , x,)= (a,'"' .* f s(x„... , x,)dx, " dx,'.
Bg (xl, . . . ,xk ~) X Brtt(k -1) m

(2.4)

Inequality (2.3) now follows immediately.
In Sec. III we shall derive upper bounds to the &-

electron density with the aid of a slight modifica-
tion of a comparison theorem given by Simon. ~2

Theorem 1. I.et G be an unbounded domain in
R" with sufficiently smooth boundary 8G. Suppose
f and g are continuous functions in a neighborhood
of G and that

(0 ~lfl-vlf l

(ii) 6 lg l) w g, x cG,
[(i) and (ii) are to be understood ln the distribu-
tional sense]
(iii)f,g-o as lxl--, xcG,
(iv) W(x)-V(x)-0, xcG,
(v) lfl- lg, xcsG.
Then lfl- gl, for allxcG.

Proof. Let g= lgl —lfl and D=(xcG:P&oj which
is open. (i) and (ii) together with (iv) lead to b,Q) 0 for xcD. Since p-0 for xcsDU(~) we con-

elude by the maximum principle that P ( 0 on D.
Therefore D is empty which proves our assertion.

III. SCHRODINGER INEQUALITIES AND ASYMPTOTIC
BEHAVIOR OF THE MANY-ELECTRON DENSITY

In I we derived the following distributional in-
equalities for Vp» (1(k (n) which we called
Schrodinger inequalities because of their suggest-
tive structure:

Theorem 2. Let s, (i =1, . . . , k) be the succes-
sive ionization energies of a.molecular or atomic
system described by the Hamiltonian (1.1), then

[-2A, +e, —V(x&)]v p, + g lx, -x&
l

'v
p» (0.

j&g

(3.1)

Especially for k =n, Z", , ('. , = lE l
and (3.1) reads

(e-E) lyl- o.
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and

v, ~ max [p,(x)]"',
Ixl ro

(s.s)

~Z&.„,1& 2

denotes the Whittaker function. "
In the following we shall extend this result to the

k-electron density p~. To make the notation sim-
pler we shall abbreviate

Wx( ~( «[2(r& -p)v'2E)]

by W, (r, -P).
T&eoxem ~ Suppose 1- c2 ~ ~ ~

~ &„. Let 6,
=(xcR:~x~~ Z/e, +p+5}, 5& 0, then there is a
constant as ' such that

As for the one-electron density, (3.1) can be
used to demonstrate the absence of local maxima
of p~ in certain regions of configuration space.
(3.1) implies that p« is s.h. in every domain Dc 0,
II'=((»„.. . , x„):

p [e, - V(x,)]+ p ~x, -x,
~

'& O}.
f~l

Hence by the maximum principle p„has no local
maxima for all Dc- Q~.

For k =1, theorem 2 enabled us to derive an up-
per bound to [ p, (x)]' «(Ref. 1), which we state here
again for further reference. 1'

Theorem 3. Let Z=Z&., Z&, p =max~
& „X&~ and

ro ~ Z/e, +p. Then

[p, (x)]'~' & cr-'W„~ „,[2(r -p)v'2~, ],
(3 2)

where X& are the nuclear positions.

c = var, [W~ q ~,q, (4Z/v'2e, )] ',

and vo as defined in (3.3). For r„.. . , r« large
enough, the asymptotic formula holds for some
constant d:

[ p«(x„. . ;,x«)]"'

[ p, (x„x,)]'~« ~a«&«&(r, r«)' '[W, {r, p) W,—(r, —p)

+ w, (r, p) w, (-r, p)) . -
(s.e)

Now let

f(x) =Z/(r -P),
Then obviously

0 ~(& -f(x) ~~(& —V(x), x c G&& .

(s.io)

(s.ii)
If we find a solution vm(x„x«) of the differential
equation

(&f
~™'(r 1(r p)z/ &2«p&&&&
J ii ~

JES~ jal

&& exp[-(2e~«&) ~ (r, -p)]}. (3.8)

Remarks. (a) The assumption e~ ~ a«. . . appears
natural on physical grounds. However, a proof of
this conjecture is still lacking and seems to be a
rather delicate problem since for a two-electron
system in the infinite' nuclear mass approximation
the conjecture is easily verified, whereas it turns
out to be false for a helium atom with finite nucle-
ar mass and without interelectronic repulsion.
(b) The method we shall develop to prove Theorem
4 can also be used to verify Theorem 3 which has
been proved in a different manner in I.

Proof. We first consider the case k =2 and pro-
ceed then by induction over k. For k = 2 inequality
(3.4) reads

[ p«(x ~ ~ ~ x«)7' '-a&I" g ..., r&'Ws «&( &

P& Sg )-„1

for (x„.. ., x,) c G", . (3.4)

(-«E, —«6«)v«+[«, +a« —f(x,) —f(x«)]v«=0

(s.i2)

S„denotes the symmetric group and , ' is the &-
fold Cartesian product of G6. /he constant ig given
by

( ) Z Z Z

g 1
x )[Z

(c&")"' w, —p

with the property

Wp,
~ v2 for (x„x,)c 8G,', (3.13)

(aG,' denotes the boundary of G,'), then Theorem 1
implies v' p, ~ v, for (x„x,) cG««since Mp, satisfies

(-«s& —«a«)~p«+[a&+& -f(x&) -f(x )pp, ~O,

(3.14)

with

(3 6)

as can be seen from (3.1) and (3.11).
Obviously (3.12) can be factorized into differen-

tial equations like

q = .,sup (r(r ~) 'W, (r -p - &)[W,(r -p)]-'},

(3.7)

«au(r)+[a, -f(-r)]u(r) =0, (j=1,2) . (3.15)

Transformation of variables" leads to the differen-
tial equation for Whittaker functions with the solu-
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W„,&,(t) = e '~'t"[1 0+(t ')] . (s.2o)

tion r W&(r-p). Therefore the function V» given
by

V,(x„x,) =u,"'(r,r,) '[W, (r, p-) W, (r, -p)

+ w, (r, -p)w, (r, -p)]
(s.i6)

satisfies (3.12). We shall now show that this func-
tion satisfies (3.13). According to Lemma 1

[p,(x„x,)]"'-(c~9')"' max [p,(x)]' ',
1

0&&'- &, (X„x,)cG', (S.iv)

Using Theorem 3 and the monotonicity of W,(r —p)r '
for r ~ Z/c, +p, (3.17) leads to

[ p (x„x )]'~» ~ (c' )' 'v (Z/e, +p)[W (Z/e )] '
x (r, - o) 'w, (r, -p - s) .

(3.13)

For the next step of the proof we need the following
lemma on Whittaker functions.

Lemma 2. Let t„v be chosen such that ~y~ &t,
and W„,&,(t)&0 for t~ t, —~y~, then there is a con-
sta-nt c„with

(t —y) 'w„„,(t —y) - c„t 'w„„,(t), t - t, .
(s.i9)

Proof. For sufficiently large t & t, & t, this fol-
lows by the asymptotic properties of the Whittaker
functions

[--,'a, +e, —f(x,)]v, = 0, (3.21)

with f(x,) defined according to (3.11). From (3.1)
we see that

g [--.'~, +e., -f(x,)]Mp, -O, (x„.. . ,x,) c SG».

Hence in order to apply Theorem 1,

Ppp v» ) (x»y ~ ~ ~ y x») c sG

(3.22)

(3.2s)

remains to be shown. Since this can be verified
analogously to the case k =2 we just sketch the
procedure: By Lemma 1 we have

»

For t, ~t ~t, suppose (3.19) false. Then W„,&,(t)
&0 leads to a contradiction to the boundedness of
W j / 2 in this interval .

From (3.18) we can show after some manipula-
tions with the aid of Lemma 2 that (S,9) holds for
(x„x»)c &G', . Now Theorem 1 implies that (3.9)
holds for (x„x»)c Gs», hence proving Theorem &for
k =2.

The extension to arbitrary k, k -n, is straight-
forward and will be done by induction over k.
Therefore we assume that Theorem 4 holds for
the case k -1.

Denoting the r.h.s. of (3.4) by v, it can be shown
in the same way as before that V~ is a solution of
the differential equation

[ p»(x„

Using the assumption that Theorem 4 holds for
p»., we obtain (3.23) after some algebraic manipu-
lations with the aid of Lemma 2. Application of
Theorem 1 completes the proof of Theorem 4.

IV. CORRELATED BOUNDS FOR THE TWO-ELECTRON

DENSITY OF ATOMIC SYSTEMS

The derivations presented in the preceding sec-
tions have been greatly simplified by the fact that
the interelectronic repulsion could be neglected
[cf. (3.1) with (3.12)]. However, proceeding this
way we clearly could not derive the best possible
bound for p» obtainable from (3.1). Explicit inclu-
sion of the interelectronic repulsion for p,
leads —in complete analogy to the treatment in' Sec.-

III-to the consideration of s=r, +r»t=r, -r„u= ~x, -x, ~t~-u-s.

. . x)]' '~(c"')' ' m~ [p, ,(x,', . . . , x,' ]' ' (3.24)
(xf, , x~ ~)E'8~ (x, ~ ~ ~,x~„)

I

electron atom) instead of (3.12) under the boundary
condition (si13), (4.1) is actually the Schrodinger
equation of two-electron systems except for the
different boundary condition. Since a complete
solution appears hopeless we mainly tried to im-
prove (3.9) in the neighborhood of ~x, -x,

~
=0 and

f 2 large since we expected in this region of con-
figuration space a faster decay of the obtainable
bound to p2.

Our efforts in this direction have been only part-
ly successful. Since the algebraic manipulations
are tedious, though straightforward, we only
sketch our considerations. The necessary deriva, -
tions are conveniently performed using Hylleraas
coordinate. s"

(4.i)(K"'+c,+e,)v(x„x,) ~ 0.
(K~' formally denotes the Hamiltonian"of a two- Let

(4.2)
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K=-3'-(V'2&, + V2i3), k = -,'-(l2a3 —V'2&,),
y, =Z/vsse, —1, i =1,2; y =y, +y, ,

(4.3)

(4.4)

Q =min(Q, ~, P,), (4.7)

where Q„ is just the asymptotically dominant term
of the "Whittaker split-shell function" (3.9), and

Q, may be also written as

y, (s, u) =y„(s, o)s 'e '"M(1+ 1/2k, 2, 2k'). (4.8)

We shall now prove the following refined asymp-
totic estimate for vp~:

Th.eorem 5. If

y„(s, f) = —,'[(s —f)"~(s+f)'3e "'

+ (s f)&3(s+f)&je3&je && (4.5)

P, (s, u) =s 3s "e 'e "M(1+1/2k, 2, 2ku), (4.6)

where M denotes the Kummer function. " Futher-
more let

Q, (s, tl) ~Q, (s, u) in G (4.18)

since P, (s, u) is monotonically increasing in u and

ltl-u. Hence we have p=Q„in G and Q„cIearly
satisfie, (4.1).

It remains to verify (4.12) for the points where

@, equals p„. Since /=3(Q„+p, —lQ„—Q, l) we
conclude by Kato's inequality" that Dp ~ 3(&Q„
+a/, ) for (x„x,) c G with Q„=P,. With. this dis-
tributional inequality and the continuity of aP„
and 4P, for these points it is not difficult to show
that (4.1) holds.

As for the boundary conditions we first note that

Ag„ fulfills (3.13) for suitably chosen' because
of (3.9). On BG we have p =p„—cf. (4.14)—except
for a compact region near r, =r3=c (where p=p, )
in which (3.13) clearly can also be satisfied for
sufficiently large A.

Now let us compare the bound (4.11) for Mp3 with
the one derived in Sec. III for the special caseu=0.
Inequality (3.8) then reads

(4.9)

0- P - min(2k'Z/[K(K k')j, I/2k I} (4.10)

vp -d~"e "'
whereas (4.11) yields

-„-~St-0e-E3

(4.1V)

(4.18)

then there is a constant A (P) & ~, such that

VP3 ~A) (4.11)

+ O(s ') (4.12)

for (x„x,}c G. In (4.12) we took into account only
the corresponding asymptotic terms since c can be
chosen sufficiently large. If

(K —Z) 4s3
2 ( P)(s3 ]3)

then (4.1) obviously holds. Let G be the subset of
G where (4.13) does not hold, i.e.,

(4.13)

2(~ -K)
[K(~-e)j

'

The r.h.s. of (4.14) is positive by assumption
(4.10). Hence, for c sufficiently large the use of
the asymptotic expansion of M is justified in G,
and it can be shown via (4.9) and (4.10) that

(4.14)

p, (s, i) - g (s, lt I) in G.

On the other ha, nd,

(4.15)

for (x„x,) cG, G=[(x„x,):r„r,o cj. -
Proof. We have to show that P satisfies inequal-

ity (4.1) for (x„x,) c G and that A.P satisfies the
boundary conditions (3.13). We first get, after
some algebra

( ),( (3) )
(K- Z)4s 2K(y —P)II +'Cy+'E3

(
3 )

+

This means we have improved the pre-exponential
factor of the bound to Mp, by s"3 for u = 0 under the
presuppositions (4.9) and (4.10). However we do
not know whether p, itself decays faster along u =0
compared, for instance, to tbe decay for I =2m,
I;= 0, and x- ~. Our efforts to find functions sat-
isfying (4,1) with stronger decay concerning the
exponential factor failed. This supports our opin-
ion that the interelectronic repulsion term in (4.1)
affects only the pre-exponential factor in possible
bounds.

The restriction (4.10) on P seems to be rather
artificial and the condition (4.9) on k is certainly
not satisfied for highly excited atoms. Neverthe-
less we note that the experimental ionization po-
tentials and quantum-mechanical computations in-
dicate that for ground states of neutral atoms with
the exception of Li, Na, and possibly K, condition
(4.9) is satisfied. In order to illustrate the re-
striction (4.10) imposed on P we briefly consider
the ground state of He-like ions. The condition
(4.9) holds for all Z ~ l. By standard perturbation
arguments we ha.ve

~, =-,'Z' ——,'5Z+O(l), e, =-3'Z, (4.19)

which implies

P g ~B Z-3+ O(Z-3) (4.20)

[o»y «r H, Z=1 is the second term in the mini-
mum in (4.10) smaller than the first onej. Al-
though we cannot say whether (4.20) is quantitative-



1S ''SCHRODINGER INEQUALITIES'' AND ASYMPTOTIC. . .

ly or qualitatively significant, the trend P- 0, if
Z- ~ and hence P - P„appears reasonable. This
is in accordance with perturbation theoretical con-
siderations since in the 1/Z-expansion the inter-
electronic repulsion enters with a Z ' factor in the
Hamiltonian.

Furthermore we point out that P satisfies the so-
called cusp condition" at the Coulomb singularity
u =0'

8 in/ s 1np, 1

, u=o 8~ a=o
(4.21)

V. FINAL REMARKS

In order to discuss the quality and possible im-
provements of our bounds we have to consider the
estimates we had to make. There are two esti-
mates, both stemming from electronic repulsion
terms, which affect the accuracy of our bounds in
various ways: (i) In the derivation of the Schrodin-
ger inequality (3.1) the most severe estimate is
probably the neglect of the term

( -n. k)(up, ) ' Q

as can be seen following the derivation of the
Schrodinger inequality in I. We expect that (5.1)
behaves asymptotically for large x, (i = 1, . . . , k)
like

z„,=z-(n-a),
for r, (i =1, .... , k) large enough. This would

change the pre-exponential term in the bound for
vp„as already conjectured in I ' for p, . (ii) The

(5.3)

(n —u) Qr, 'vp, . (5.2)

Such a term would express the screening of nuclear
charges seen by electrons at large distances from
nuclei due to the presence of the remaining elec-
trons. The effect of (5.2) if added on the l.h.s. of
(3.1) would be the replacement of Z by a Z,«,

other essential estimate in the derivation of the
bound 'to v p, was the neglect of the term

(5.4)

in (3.1) in order to obtain a separable differential
equation. By taking into account (5.4) we improved
(Sec. IV) the bound (3.8) to up, for the atomic case.
The inclusion of this term accounts for the angular
correlation of the bound. [(3.8) already shows in-
out correlation. ]

The estimates described in (i) and (m) occur in
each step of our recursion procedure for the bound
to up„and therefore the inaccuracy is propagated
in each step. However, it seems reasonable to ex-
pect that the inclusion of the terms (5.1) and (5.4)
does not affect the exponential factor of the bound
(3.8). This conjecture is also supported by the

side of (3.8) solves the Schrodinger equation as-
ymptotically in those regions of configuration
space where the potentials vanish.

I et us finally compare our present results ith
the results on asymptotic properties of electron
densities obtained by the same authors in previous
work' by completely different methods. There,
upper bounds to expectation values have been de-
rived which led also to an upper bound of a locally
averaged A-electron density. This bound coincides
essentially with (3.8) but is weaker concerning the
pre-exponential factor and holds in a smaller part
of conf lgur ation space.
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