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The functional forms of the wave functions for the bound states of hydrogenic systems and for free particles
as described by the complex-coordinate method are presented. Writing the wave function for an electron
resonance as the sum of a "boundlike" or "Q-space" part and a "scatteringlike" or "P-space" part, we

suggest functional forms or bases for these two parts based on the solutions of the hydrogenic and free-

particle systems. We present an argument suggesting that when the rotation angle in the complex-coordinat~
method is greater than erg(k„)~ for the electron resonance, this method is identical to calculations based

on a Siegert resonance. This assumed structure of the wave function should yield a rate of convergence
similar to other methods. The advantages of this method are that the basis functions are all square

integrable, a single calculation yields both the position and width, only a solution of a straightforward

eigenvalue problem is required, arbitrarily accurate target states are easily incorporated, and polarization

terms can be explicitly included. Variational calculations for the position and width of the lowest S
resonance in the negative helium ion are reported using trial wave functions containing 39, 43, 55„59, and

67 configurations. These wave functions contain 8, 8, 20, 24, and 32 "P-space" configurations, respectively.
Values of 19.387 eV and 12.1 meV are obtained for the position and width, respectively, of the resonance.
One also finds that inclusion of free-particle-like basis functions improves the representation of the scattering
states.

I. INTRODUCTION

A number of techniques such as Feshbach, close
coupling, stabilization, etc. , exist for the compu-
tation of electronic resonance parameters. How-
ever, the application of these methods to systems
of more than two electrons generally leads to con-
ceptual or computational difficulties. For example,
in the Feshbach formalism the form of the projec-
tors for systems of more than two electrons has
not been constructed, and in the close-coupling
method the construction of the coupled differential
equations is very complicated.

On the other hand, a relatively new technique, ' '
the complex-coordinate method, has recently found
application to a number of atomic processes. For
example, it has been applied to scattering theory, 4

photoionization, ' the Stark effect, ' and electron
resonances. ' " As previously used, this techni-
que is not without its difficulties. Extremely
large wave functions have been required to com-
pute resonant parameters for systems with just
two particles. Application to three-particle sys-
tems has either failed or yielded at best crude
estimates of atomic resonance parameters again
with very large wave functions. To overcome
these problems, we previously suggested a par-
titioning of the resonant wave functi, on" into a
"boundlike" or "Q-space-like" part and a "scat-
teringlike" or "P-space" part and suggested cer-
tain functional forms for these parts based on

the exact complex-coordinate solutions of certain
simple systems. In this paper we present the de-
tails of that work along with a discussion of the
scattering states.

Section II contains a discussion of the Balslev-
Combes theorem on which the complex-coordin-
ate method is based and of previous applications
of the method to the computation of the position
and width of electron resonances. In Sec. III we
use the complex-coordinate method to compute the
bound state energies and eigenfunctions of hydro-
genic systems, while in Sec. IV the wave unction
of a free particle as described by the complex-
coordinate method is obtained. We also discuss
the form of the wave function for a noninteracting
free particle and a system of bound particles in
this section. Section V contains the bases and
wave functions used for the variational calculations
of the resonant parameters of the lowest 'S res-
onance in He with the results being presented in
Sec. VI. The eigenvalues corresponding to the
scattering states are discussed in Sec. VII. Fin-
ally, Sec, VIII contains concluding remarks. Ex-
cept where otherwise noted, atomic units are
used throughout.

II. BALSLEV-COMBES THEOREM

AND PREVIOUS APPLICATIONS TO RESONANCES

Consider an N-electron Hamiltonian K for an
atomic system, i.e. ,
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and a transformation" in which

~pe
This defines the complex non-Hermitian Hamil-
tonian X
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where the last step is dependent on the fact that
the potential only consists of sums of Coulomb
potentials. According to the Balslev-Combes theo-
rem,"the spectrum of K can be divided into
three groups. One group consists of the energies
of the bound states of X which for X remain real
and independent of n. The second group consists
of the energies of the scattering states of K which
for K have the form 8~+Be "I, where E is the
energy above the threshold energy E~. That is,
they lie on rays which begin at thresholds on the
real axis and make an angle of -2n with the real
axis. The elements of the third group arise when-
ever one of the rays crosses a pole of the resol-
vent, i.e. , when

FIG. 1 (a) ~S spectrum of H" as given by X with the
bound state and first five thresholds indicated. (b) 8
spectrum of H as given by X~ with thebound state, fir'st
four thresholds and the ionization threshold indicated.

Previous applications of this method to atomic
and model systems have used a variational prin-
ciple" of the form

d7' g'P. (7)

Simon' has shown that for certain classes of poten-
tials the above result can be proved for

0 ~(Q (&2
1 (6)

where &~ is a complex pole of the resolvent. Since
the eigenfunctions of this third group are square
integrable, this is a very attractive method for
determining poles of the resolvent. That is, in
principle one need only compute the eigenvalues
of X as a function of o. and look for complex ei-
genvalues which are independent of n for a great-
er than some minimum value.

To illustrate these points, we consider the '8
spectrum of H; In Fig. 1(a) we give the spectrum
of K and note the first five thresholds, while in
Fig, l(b) we give the spectrum of K and note the
first five thresholds, while in Fig. 1(b) we illus-
trate the spectrum of K which shows the first
four thresholds and the ionization threshold along
with their associated cuts. The energy of the
bound state of H is at the same point in the com-
plex energy plane in both 1(a) and 1(b), i.e., it is
independent of n. In l(b) we have also indicated
one of the resonances which has been uncovered.

In the work of Balslev and Combes' the above re-
sults were shows to be valid for

0~(Q( g$.1

Here g' implies complex conjugation of the angu-
lar part but no complex conjugation of the radial
part. One feature of all the basis functions em-
ployed in all of these calculations' "is that they
are real functions in the p-radial coordinate. As
an example, consider the calculation of the 'S
resonance in H by Doolen et aI,.' and Doolen. '
They employed a trial Hyleraas type wave func-
tion of the form

@=expr--2'a(p, + p2)]

Z tmtlP12(plp2 Pl P2)'
g +m+n&N

(8)

In Figs. 2 and 3 we have plotted the real and im-
aginary parts of the energy as a function of the
rotation angle a for the 95 configuration wave
function for values of a equal to 0.7, 0.8, and 0.9.
These figures have been obtained from Fig. 1 of
Ref. 9. The straight lines in the figures are the
values of the complex energy of the resonance ob-
tained by Ho et a/. " The curves corresponding to
the complex-coordinate calculations should overlap
the lines from this precision calculation when (4)
is satisfied. As these figures show, the complex
energies are at best only a slowly varying function
of e over a small angular range of n.
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total wave function which contains continuum func-
tions or one relates the resonant phase shift or
width to a function of a matrix element between a
boundlike or Q-space function and a scatteringlike
or P-space function. We thus assume we can write
the eigenfunctions of X in the form

4 =4' +4
Q P~

where 4'& corresponds to a "Q-space" function and

+~ corresponds to a "P-space" function. In Sec.
III, we present a discussion which suggests an ap-
propriate form of + and, similarly, in Sec. IV
we suggest a form of +~.

0,' (RADIANS)

FIG. 2 Real part of complex resonant energy for the
lowest ~S resonance of H from the calculation of
Doolen etal. (Refs. 8and9) as a function of &; Oa=0.8,
8 a=0.9, x a=0.7.

An attempt by Bain et al. ' to use this method to
compute the resonant parameters of the lowest
'S resonance in He failed to yield a converged
value for the complex energy. Similar application
of this technique to the computation of resonant
parameters in positronium hydride"'" have yield-
ed only crude estimates and required large w@ve
functions. Thus, the basis functions used in these
calculations are clearly not an optimum choice.

One observation to be noted is that in all models
or theories which yield total phase shifts, reson-
ant phase shifts, or resonant widths (close coup-

,ling, stabilization, Feshbach, etc.), one uses a

—0.25

III. APPLICATION OF THE COMPLKX&OORDINATE

METHOD TO HYDROGKNIC ATOMS

We recall that according to the Balslev-Combes
theorem the bound-state energies of X are inde-
pendent of o. for all values of 0. while the resonant
energies are independent of n when relation (4) is
satisfied. We might expect to gain insight into the
functional form of the wave function of a state
whose energy is independent of the rotation angle
by studying the bound states. The only atomic
systems which can be solved analytically are hy-
drogenic systems.

For a hydrogenic atom the "Schrodinger equa-
tion" for X takes the form

—E ~(p) = 0.(-e '"&le, S,& Ze '.
.& 2p'

& &sp

(10)

Let

'ff(p) = p'e "u(p)~", (~, W),

where

—0.50—
~x

5 = (-2Z)'~2e «

Substituting (11) and (12) into (10), one obtains

(12)

—0.75—

—1.00—

w X

u "(p) —2[5- (~+ 1)/P] u'(P)

+ [Ze' —25(l+ 1)]u(p)/p = 0. (13)

Let

—1.25—

—1.50
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u(p)= Qa, p'.
jao

Equation (13) yields for the ratio of successive
coefficients

ay+a, Z —(-2E}'~'(j+f+1)
a& (j+1)(j+2l+2)

(14}-

(15)

FIG. 3 Imaginary part of complex energy for the
lowest ~S resonance of H from the calculation of
Doolen et al . (Refs. 8 and 9) as a function of Q.'; 0 a = 0.8,
% a=0.9, x a=0.7.

Requiring the series to terminate at n so that the
wavefunctions are square integrable, one obtains

E = - Z' [/(2n + l +1)'],
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i.e. , the normal hydrogenic energies.
Our main interest, however, is in the form of

the eigenfunctions. From (11) one observes that
the exponential contains the factor pe' . Also,
rewriting Eq. (15) using (16), one obtains

a.„/a. =26(j —n)/[(j+1)(j+2l+2)]. (17)

~ is the only complex factor and according to Eq.
(12) it contains e' . Thus, each term in the series
contains an additional factor of e' as well as p
and thus u(p) is in fact a power series in pe'
Thus, the eigenfunctions are the normal hydro-
genic eigenfunctions with x replaced by pe' .
This is, in fact, what one would expect for analy-
ticaDy continuing the Schrodinger equation.

Based on these results, one might expect that
the "bound-like" or "Q-space" part should be con-
structed from bound-type orbitals which are func-
tions of pe' and not p as in previous applications
of the complex-coordinate method. For example,
one could use Slater-type orbitals (STO's) of the
form

8„, = N(pe ' )" ' exp( @pe
' )&—P(e, P),

where N is the normalization constant and y is a
real nonlinear parameter. Considering one- elec-
tron integrals with these orbitals with regard to
operators of the form O(pel™),we find

I, = exp[—Gi(n ' —n) ]I, , (23b)

M' =exp[-3¹i(n'-n)]M . (23c)

IV. APPLICATION OF THE COMPLEX-COORMNATE

METHOD TO THE FREE PARTICLE

In the various models or theories the scattering-
like or P-space part is generally taken to be of the
form of an antisymmetrized product of a target
state function and a continuum orbital. As stated
previously, "three points must be noted about this
part, of the wave function. First, the target wave
function represents a bound state and should there-
fore be constructed from boundlike functions of
pe' . For example, for electron scattering from
hydrogen at energies below the first excited state,
a target function of .the form

Thus, integrals and matrix elements for these
functions need only be computed once instead of
having to be recomputed for each value of a. Fin-
ally, it is obvious that all energies obtained from
a variational wave function with just this type of
configuration would necessarily be real since each
matrix element is multiplied by the same phase
which would factor out o'f the secular equation leav-
ing only the normal unrotated Hermitian represen-
tation of the Hamiltonian.

I, = 5„, pe' 0 pe'
Sr =C exp(-pe' ) (24)

x S~, (pe' )p'dpsin&d&dp

=e" 8„, rOr S„, , r

x x'A sined8dp,

where the last integral is just a normal atomic
integral. This result follows since

(19)

& =-,'u'=-,.' ~u~'e "'. (25)

should be used where C j.s a constant. Second, the
"continuum orbital" must be square integrable.
Third, the "continuum orbital" cannot be a real
function of only pe ~ or the energies would all be
real, which follows from Sec. DI.

Now consider the solution of the "Schrodinger
equation" (3) for a resonant state with energy

for

lim 8„, (pe' ) -0
p oO

If the potential is sufficiently short range, the
resonant wave function should asymptotically sat-
isfy the equation

0 & a(-,'m.

From the above it is also clear that a similar re-
sult holds for the two-electron integrals I, with
the phase factor in front being replace/ by e " .
Finally, from these results we find that, if M
is a matrix element between two N-electron con-
figurations in pe' space and M is the correspond-
ing matrix element in r space, . these two matrix
elements are related by

[e '" r-2~I ~'e '*']S=o-

and thus behave asymptotically as
&-&'~ =exp(i ~k ~e '"pe' )

=exp(i tk ~pe" "),
which is square integrable for

n)P.

(26)

(27)

(28)

M~ =e ' '~M.

Also,

I, '= exp [-3i(n'- n)]I, ,

(22)

(23a)

It may be noted that Eels. (25) and (27) define the
analytic continuation of a Siegert resonance. In
addition, if we write

&,, = (E„(exp[-i[arg(&„)[]= [&„[e '", (2
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we see from combining (28) and (29) that the con-
dition for the wave function to be square integrable
can also be written

Now if we consider the complex Hamiltonian
for a system of bound particles plus a noninter-
acting free particle, we have

o. & —,
'

~arg(E, ) ~. (30) (X' E-)@~=(Xb E—+X' —~E, ~e
" )+,"=0,

Recall that this is the condition for the correspond-
ing pole of the resolvent to become an element in
the spectrum of X . These results suggest that
when (30) is satisfied that the complex-coordinate
method is equivalent to computing a resonance
using a Siegert boundary condition.

Although one can suggest the asymptotic form of
the "continuum function, " the interior of this func-
tion is the part which makes the major contribu-
tion to the calculation and the form of this part is
not known. %e thus require a suitable basis in
which to rep&esent this function, but do not wish
to require a prior knowledge of k or the need for
an iterative procedure to determine k and E„sen-
consistently. " One could use a basis containing
elements of the form (27), but this would yield a
number of complex energies independent of n and
no way of determining which correspond to reson-
ances.

To this end consider the "Schrbdinger equation"
for a free particle with energy

E= jEie '".
That is,

0=[X' —iE ie " ]4'(p)

—p' ——I-'I- IE ~e
'* +(p) (32)

Letting

8'„=e"~'e "'(1—e ')/p (40)

to represent the 8-wave "continuum orbital. "., The
factor 1 —e ' ensures that the function behaves
properly as p -. 0. In each calculation, a set of
functions with a range of v-values is used. In ad-
dition, calculations are performed with different
values of p to test the sensitivity of the calculation
to this parameter.

Another way of visualizing these functions is the
following:

(38)
'~

where X' and E~ are the Hamiltonian and energy
for the bound system and X~ and ~E& ~e

" are the
Hamiltonian and energy for the free particle. The
exact solution of (38) may be written

@a - @b (p e le
p . ele)yf(p)' (39)

where 4'b is the bound state eigenfunction of 3C"

and 4~ is the free-particle function. 4 p corre-
sponds to the asymptotic form of the solutions
for the scattering states lying on the rays which
are rotated from the real axis by -2a.

These functions could serve as a relatively sim-
ple basis for representing the "P-space" function
so long as the "continuum orbital" is multiplied by
a cutoff factor such as e "' to make it square inte-
grable. In the present calculation, we have used
the basis functions

+(p) =~,(p)l';(t), V ), (33)
8„' = exp[i(+p+i v) e '~x] =-e'~'". (41)

and substituting into (32), one obtains

, +- —+2iE i-, , (p) =0.& d' 2 d l(i+1)
I, dp' p dp p' (34)

The solutions of (34) are just the familiar spher-
ical Bessel, j,( ~k

~
p), and spherical Neuman,

n, ( ~k
~
p), functions" where

(35)

Although j, and n, appear to be functions of p and
not pe' this is because in fact we have

That is, these form a set of functions like those in
Eqs. (27) with different complex k' values. One
should note here, however, that both functions,
e'» and e '» are required for the scattering states
on the rays, while only functions of the form e'~
represent resonant states. The basis elements in
(41) are simply a convenient basis in which to try
to represent the resonant function and avoid an
iterative procedure to determine k„and E„self-
consistently.

E= ~E~e " =-,'(k~'e " = 'k'--
and thus

~, (p) =f,(~k I p)

=f,(kr)

where f, is either j, or n, .

(36)

(37)

V. CONSTRUCTION OF A VARIATIONAL
WAVE FUNCTION FOR THE LOWEST RESONANCE IN He

%e have applied the complex-coordinate method
using a wave function constructed according to
Secs. III and IV to a three-electron system —He .
In particular, we considered the lowest 'S reson-
ance. The "Q-space" part of the wave function
contains 2V of the 28 configurations used in a pre-
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TABLE I. Configurations for Q-Space part of wave
function.

TABLE III. Values of & for various calculations.

ls'2s2s
ls"2sBs
Bsls"2s
ls"2s4s
4sl s"2s
ls"Bs3s
2s2s'2s'
2s2s 3s

3S2S2s
3s2s'2s'
ls"2p2p
1s"2p3p
3p1s 2p
1s"2p4p
4pl s"2p
1s"Bp3p

2s2p'2p'
2s2p2p'
2p 2s2p
3s2p 2p
ls"BdBd
ls"3d4d
4dls Bd
2p'2p3d

Bd2p2p
3d2p'2p'
3d2p'3p
ls"2s5s
5sls"2s
ls"3s4s
4sls" 3s

Number of
continuum

conf igurations

8
20
24
32

~ sets

1.0, 0.5, 0.1, 0.05
(8 set), 2.5, 2.0, 1.5, 0.075, 0.025, 0.01
(20 set), 0.76, 0.25
(24 set), 0.0075, 0.005, 0.0025, 0.001

' Three different orbitals can be spin coupled to give
two linearly independent doublet spin functions. In this
Table the last two orbitals in each set are coupled to give
zero spin.

E =E + —'p28 ~'~
T b (42)

this is not necessarily the optimum value of p at

TABLE II. Nonlinear Slater-orbital parameters.

Orbital Orbital

ls
ls'
ls"
2s
2s'
3s
4s

2.1832
1.1886
1.9911
0.5094
2.0583
0.4287
1.1957

5s
2p
2p
Bp
4p
3d
4d

0.5017
0.4921

.2.1238
0.5761
0.4779
1.2165
0.9759

vious quasi- Feshbach calculation' of this reson-
ance plus 4 additional configurations. In Table I,
we have listed the configurations used, where the
last four configurations are the ones we added.
We did not include the corifiguration 2p'3p'3d from
the previous calculation. STO's of the form (18)
are used in these configurations.

The "P-space" part consists of a number of
configurations of the form 8„'lsls' as suggested in
Sec. IV where 8'„is defined in Eq. (40). Calcula-
tions are reported with 8, 20, 24, and 32 config-
urations of this type. In addition four configura-
tions of the form 2slsls', 3slsls', 4slsls', and
5slsls' are included where the ns orbitals are all
of the form (18}.

It should be noted that we are, in fact, interested
in eigenvalues and eigenfunctions of K corre-
sponding to resonances and not the scattering
states. The scattering states of X, multiplied
by an appropriate cutoff factor, merely serve
as a convenient basis for representing the "P-
space" part. By using a number of configurations
with different values for v, we can hopefully re-
present the "P-space" part.

Although in the asymptotic limit p is related to
E~ by

small values of the radial coordinate. Iri fact, in-
clusion of "continuum orbitals" with a number of
values for p would probably result in a better bas-
is. One would hope that the method would not be
too sensitive to p, and to check this we have per-
formed calculations with values for p of 0.0, 1.19,
and 1.5, where the value of 1.19 is approximately
the asymptotic value for the resonance.

In Table II we give the values for all of the non-
linear Slater parameters. Finally, Table III con-
tains the values of v used in the calculations with
8, 20, 24, and 32 "continuum" configurations.

VI. 1s (2s) S RESONANCE IN He

The complex Hamiltonian for this three electron-
problem is

2$A
&2 +e-«g p-~

J~& f&k f

(43)

As previously stated, computations using the var-
iational principle (7) and the Hamiltonian (43}were
performed with variational wave functions with 39,
43, 55, 59, and 67 configurations. The latter four
wave functions contained all of the configurations
in Table I. The five wave functions contained 8, 8,
20, 24, and 32 configurations with "continuum or-
bitals, " respectively. One point which should be
considered is that as n increases, the STO's be-
come more diffuse since

exp( &pe'~) =exp[--pp( scoins+inn)]

=exp(-ypcosn) exp(imp sinn). (44)

After' n is sufficiently large for a given "P-space"
part, the resonant eigenvalue becomes erratic.
Thus, one needs to ensure that the "continuum
orbital" basis which is independent of n is suf-
ficiently large to describe the system for the lar-
ger values of n.

Figures 4 and 5 summarize the results of the
calculations of the resonant energies performed
with p =1.19. At the angles 0.02, 0.08, 0.2, and
0.8, the real part of the energies for the three lar-
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FIG. 4 Real part of the energy for the lowest 2S re-
sonance of He for the five wave functions used; 039
configurations, 43 configurations, g 55 configurations,
0 59 configurations, 2 67 configurations. Note that at
&=0.02, 0.08, 0.2 and 0.8 the results for the 59 and 67
configuration wave function are not indicated since they
lie on the 55 configuration wave function result.

FIG. 5 Imaginary part of the energy for the lowest 2S

resonance of He for the five wave functions used. The
symbols are the same as in Fig. 4. At +=0.08, 0.2, and
0.8 the three largest wave functions yielded identica1
results. Also note that the lower solid square at o.=0.02
is actually acomposite of 4 and O.

gest wave functions are identical and independent
of at to four significant figures. Using the values
of -2.190758 a.u. given by the 6V-configuration
wave function for the real part of the energy, a
value of -79.0016 eV for the He ground-state
energy, and a conversion factor of 27.211 652 eV/
a.u. , one obtains a value of 19.387 eV for the pos-
ition of the resonance. The three largest wave
functions yielded identical values for the imag-
inary part of the energy to four significant fig-
ures for e values of 0.08, 0.2, and 0.8 and to
three significant figures at 0.02. For the 67-con-

figuration wave function the value of the imagin-
ary pari at n-values of 0.02, 0.08, 0.2, and 0.8 is
-2.228 x 10 4 a.u. This gives a width of 12.13 meV.

Table IV compares the results of this calculation
with other calculations and experiments. The ex-
perimental values fall basically into two groups-
one around 9 meV from differential scattering data
and one around 12 meV from transmission experi-
ments. Golden et al.27 state that their values result
from an instrumentation improvement and replace
previous results of Golden and Zecca." In addi-
tion, the unpublished value of 12 meV for the width
obtained by Andrick and Enrhardt supersedes their

TABLE IV. Comparison of experiment and theory for the lowest 8 resonance of He

Reference Method Energy (eV) Width (me V)

Andrick and Ehrhardt (Bef. 19)
Andrick and Ehrhardt (Bef. 20)
Ehrhardt et al. (Ref. 21)
Gibson and Dolder (Ref. 22)
Golden and Zecca (Ref. 23)
Sanche and Schultz (Ref. 24)
Mazeau et al. (Ref. 25)
Cvejanovic et al. (Ref. 26)
Golden et al. (Ref. 27)
Kwok and Mandl (Ref. 28)
Burke et al. (Ref. 29)
Eliezer and Pan (Ref. 30)
Weiss and Krauss (Ref. 31)
Temkin et al. (Bef. 18)
Sinfailam and Nesbet (Ref. 32)
Ormonde and Golden (Ref. 33)
Bain et al. (Ref. 7)
This work

Transmission
Trans' is s ion-
Transmission
Differential scatter ing
Transmiss ion
Transmission
Differential scattering
mfferential scatter ing
Transmission
Variational
Close coupling
Stabilization
Stabilization
Quasiprojector op'erators
Variational
Close coupling
Complex coordinate
Complex coordinate

19.3
19.3
19.3

19.30 + 0.01
19.34 +0.02
19.35 + 0.02
19.367 +0.009
19.35 +0.02
19.45 +0.15
19.33
19.3
19.368
19.386
19.4
19.38
19.398
19.387

17.5 + 2.5
12
12

8
8 + 2

9 + 1
13
19 +11
39

14
15
11.5
12
12.1
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TABLE V. Complex energies for several values of p. Numbers in parentheses denote
powers of 10, e.g. , 6.839(-5)=6.839&10 ~.

/

0.0 1.19 1.50
-EI

0.005
0.02
0.08
0.2
0 4
0.8
1.0

2.190 59
2.19063
2.19061
2.19068
2.19075
2.19075
2.19075

6.839(—5)
3.062{-5)
7.132(-5)
2.060(-4)
2.254(:-4)
2.260(-4)
2.275(-4)

2.190 74
2.190 76
2.19076
2.190 76
2.190 76
2.190 76
2.190 76

2.093(—4)
2.228(-4)
2.228(—4)
2.228(—4)
2.228(-4)
2.228(-4)
2,227(—4)

2.190 99
2.190 92
2.19077
2.19076
2.19076
2.19076
2.19076

5.049(-5)
1.592(-4)
2.157(-4)
2.228(-4)
2.228(—4)
2.228(-4)
2.228(-4)

S+- g
V V (45)

so that for this value of p, the variational wave
function only contains 51 configurations. We see
that the two large wave functions yield identical
results over a considerable range of n while the
smaller wave function yields a value for the imag-
inary part of the energy which is slightly higher.
Even in this case the value of the widths differ by
less than 1.5%. Thus, the value of the complex en-
ergy appears to be quite insensitive to the parti-
cular value of p used in the "continuum orbital"
basis. This also indicates that the complex ener-
gy is not an overly sensitive function of the asym-
ptotic form of the wave function and thus avoids
an iterative procedure to determine p and E in
some self-consistent manner. , In fact, unlike in
any previous application of this method to two-

previously published value of 17.5 +2.5 meV. On
the other hand, the theoretical values for the width
range from 11.5 to 15 meV if the two earlier cal-
culations are ignored. In fact Ormonde and Gold-
en" suggest that the close-coupling calculation of
Burke et al."is not converged. In addition, if one
includes the nonorthogonality of the quasi-Fesh-
bach projectors used by Temkin et al."in the de-
rivation of an expression for the width, one ob-
tains several terms" in addition to the "golden
rule" expression for the width. If the largest of
these additional terms is added to the "golden rule"
term this width via the quasiprojector technique'4
is 13 meV employing the same wave functions used
by Temkin et al. Thus, at present, the more re-
cent theoretical values and transmission experi-
ments appear to be in fairly good agreement.

In order to test the sensitivity of the calculation
to the value of p used in 8„', we have also com-
puted the resonance parameters using values of
0.0 and 1.5 for p in place of 1.19. The results of
these calculations are given in Table V.for the
67-configuration wave function. Note, however,
that when P =0.0,

particle systems, the complex energy for this
three-electron system is independent of n over
about two orders of magnitude of the angle n.

VII. SCATTERING STATE OF 3'. FOR He

As discussed in Sec.-II, the spectrum of X
contains energies corresponding to scattering
states. These energies are of the form

+g e -&io'
T

= [Er+E, cos(2a)]- iE, sin(2o. ), (46)

E= [E.+-'I~ I"os(2~)]-i-'I~ I'»n(2~)

= [Er + 0.7081 cos(2o.)]—i0.7081 sin(2o. ). (47)

For n = 0.02, the real part of the energy of the
scattering states with k =1.19 is X~+0.7075 a.u.
and the imagina, ry part is -0.0283 a.u. On the
other hand, when n is 0.2, the corresponding

where E~ is the threshold energy which corre-
sponds to an energy of the bound particles and

E, is the energy of the extra particle relative to
the threshold value. 'These energies lie on rays
below the real axis which begin at each threshold
and make an angle of 2n with the real axis.

Since this is a variational calculation, the ener-
gies only approximate the energies of these states.
In Figs. 6 and 7, we have plotted the comples en-
ergies for all eigenvalues with -3.0 a.u. &Re(E)
(-1.5 a.u. for a equal to 0.02 and 0.2 respective-
ly, and P =1.19. A large number of the eigenvalues
correspond to scattering states associated with the
lowest 'S threshold of He. In fact, in each figure
about a half dozen energies in the vicinity of the
dip have been omitted for the sake of clarity.

Although the scattering states associated with the
'S threshold do not lie exactly on the ray from this
threshold, they lie in the general area on a smooth
curve with a dip. To understand the source of the
dip, consider Eq. (46) with Ik I=1.19:
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quantities are E~+0.6522 a.u. and -0.2757 a.u.
These values agree well with the location of the
dips in the curves in the two figures. A similar
plot for the k=1.5 calculations yields a similar
result with a dip occurring in the complex energy
region where

E = [Er+1.125 cos(2o.)]-il.125 sin(2n). (48)

VIII. CONCLUSION

We have obtained the analytic continuation of the
wave functions corresponding to the continuation
of the Hamiltonian operator. Using these results
and an analogy to other techniques for computing
resonances, we suggested a partitioning of the
wave function into a "boundlike" or "Q-space"
part and a "scatteringlike" or "P-space" part as
well as a functional form for each. Although we
do not have maximum or minimum bounds on the
complex energy, we can construct a variational
principle. We have used these results to compute
the complex energy corresponding to the lowest
'8 resonance in He using several variational wave
functions. The resulting complex energies obtained
are independent of the rotation angle e over about
two orders of magnitude of e and agree well with
other calculations.

The variational principle basically yields a var-
iational determination of the "continuum orbital"
in terms of a basis which consists of free-particle
orbitals multiplied -by cutoff factors. Although
this may not necessarily be an optimum basis,
it can be used successfully if one realizes that,
while the boundlike functions of pe' expand with
increasing e, these functions do not. Thus one
must have long-range and short- range functions
in the "continuum orbital" basis. In a future
publication we will consider other bases.

The inclusion of the "free-particle-like" func-
tions in the basis also improves, the representa-
tion of the actual scattering states. The energies
of these states should lie on rays beginning at the
thresholds and making an angle of -2e with re-

Thus, as one might expect from the nature of the
"continuum orbitals, " the scattering states for en-
ergies in the region given by the above expressions
are better represented than those at other energies.

spect to the real axis as discussed in Sec. II. We
find that the energies of scattering states which
satisfy Eg. (46) lie closest to this line.

In conclusion, we have presented an argument
suggesting a relationship between the complex-
coordinate method and the Siegert boundary con-
dition. In addition, we have presented a discussion
and numerical calculations which suggest the basic
structure of the resonant wave function. With this
technique of constructing the wave function, one
can incorporate physical insight into the choice of
configurations as one does i.n other methods and
can apply the complex-coordinate method to many-
electron systems with an expected rate of conver-
gence similar to other techniques. Its advantages
are that a single calculation yields the position and
width of the resonance, only square-integrable
functions are used, only a solution of a straight-
forward eigenvalue problem is required unlike
some methods, arbitrarily accurate target states
are easily incorporated, and polarization terms
can easily be explicitly included.

Finally, employing these techniques for con-
structing the wave functions when applying the
complex-coordinate method to other atomic pro-
cesses, one should be able to improve the rate
of convergence and precision of the parameters
being calculated. In particular, if "continuum
orbitals" with a range of values for p are included
in "P-space" configurations in a variational cal-
culation, the scattering states should be better
represented. For example, in applying this meth-
od to photoionization one could probably get better '

convergence if one included "continuumlike" or-
bitals in the energy region corresponding to the
ejected particle energy.
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