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Jastrow wave function for condensed phases of Bose particles: Hard-sphere system
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By a Monte Carlo variational calculation, it is shown that the description of the ground-state properties of
a hard-sphere Bose system is improved if the Jastrow wave function contains a correlation structure at
distances intermediate between the first and the second shell of neighbors. We relate these correlations to
the zero-point motion of rotons. We predict that the oscillations of the structure factor S(k) and of the
radial distribution function g(r) increase at finite temperatures. Such intermediate-distance correlations
improve the description of the solid phase by a Jastrow wave function, but the description is still not
satisfactory compared to localized wave functions. Backflow associated with rotons induces explicit three-
particle correlations in the wave function, and a new form for such correlations is proposed for variational
calculation for 'He.

I. INTRODUCTION

In recent years our knowledge of the ground-
state properties of Bose particles at high density
has greatly improved. The most successful ap-
proach at high density is based on Monte Carlo
simulations of a large but finite number of parti-
cles. The ground-state properties of liquid 4He

have been rather successfully explained' on the
basis of variational calculations based on Jastrow
trial wave functions:

i ~ ~ eg

f~(r, , . . . , r„)= g exp[ ——,'u(r, -r,.)].
j&j

Here r, indicates the coordinate of the ith particle
and u(r) is a real function. More recently an
algorithm has been invented" which permits the
exact calculation of some properties of more than
100 particles in their ground state by a numerical
solution of the Schrodinger equation. The ground-
state energy and microscopic correlations, such
as the radial distribution function and the one-
particle density matrix, have been calculated using
both methods for Lennard- Jones particles"' and
for hard spheres. " The solid phase of such sys-
tems has been similarly studied, "' the variation-
al calculation being based on a Hartree- Jastrow
(HJ) trial wave function'

N

IHI(r ~ rN) = II 0(r —H )
k=1

J ~ ~ og

x g exp[--,'u(r, -r, )],

where g(x) is a localization factor, e.g. , p(r)

', at the prescribed sites R, of the equili-
brium lattice.

The possibility of performing exact calculations
for a many-body Bose system does not reduce the
interest in having a variational wave function as
good as possible. Different reasons can be ad-
duced. The structure of the wave function, which
is not given by the exact calculation, is of interest
in itself and in particular one would like to know
how different aspects of the system manifest them-
selves in go. The exact calculation requires as a
starting point an approximate wave function not
too far from the exact one, in particular for cal-
culation of quantities other than the energy. The
exact calculation requires a quite elaborate algor-
ithm and rather long computing time so that the
simpler variational method is in practice irre-
placeable, at least in a first stage, in the study
of different problems, for instance the effect of
the form of the pair potential on the properties of
the system.

On the basis of the previous variational calcula-
tions for the Lennard- Jones and the hard-sphere
system, three problems, which are most interest-
ing in our view, remain unsettled in the bulk sys-
tem. The variational results give a less-pro-
nounced short-range order, as shown by the oscil-
lations of the radial distribution function g(r) or
of the structure factor S(q), than the one shown
experimentally by liquid 4He or by the exact cal-
culation for hard spheres. Secondly 4He at zero
pressure forms a bound state at an equilibrium
density p„. The variational calculation gives,
indeed, a bound state, i.e., the expectation value
of the Hamiltonian has a minimum negative value
at a certain density, However this density is im-
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posed by suitable boundary conditions and is not
obtained as a self-bound-state as in the case of
the physical system which forms a drop of liquid
if the volume available to the particles is larger
than the one corresponding to the density p„. This
is because the Jastrow functions which have begn
used describe a system which fills uniformly any
allowed volume, apart from possible surface ef-
fects.

The final question concerns the solid phase. This
phase has a broken symmetry, the translational
invariance of the Hamiltonian. A wave function
such as (2) describes explicitly such a broken sym-
metry by the appearance in P» of the assumed
equilibrium position 8, and therefore there is a
fixed center of mass. Also the Jastrow wave func-
tion (1) can describe a solid phase4' but in this
case there is no fixed center of mass and gz de-
scribes a floating solid. ' However, the corre-
sponding energy was found by previous calcula-
tions4 ' to be very much higher than the one corre-
sponding to g„,. The interesting question, also in
connection with the possibility of Bose-Einstein
condensation in a solid, ' is if the broken symmetry
must appear explicitly in the wave function or if
the failure of nonlocalized wave functions to de-
scribe the solid phase is due to the fact that the
search has been performed on a too-restricted
family of Jastrow wave functions. In fact at helium
density the only computations that do not rely on
uncontrolled approximations are, so far, the ones
based on Monte Carlo computation of the config-
urational integrals4 or those based on the method
of molecular dynamics. ' These methods are taken
from the field of classical liquids because in the
Jastrow approximation the averages one has to
compute with yz' are identical to the ensemble
averages of a classica/ fluid at temperature 7*
and interacting by a pair potential U*(r) such that
U*(r)/keT*=u(r) With t.hese numerical methods
one needs to parametrize the pseudopotential g(~)
and, therefore, one can explore a very restricted
family of all possible Jastrow wave functions.
Therefore an open question is if the limitations of
the Jastrow wave functions described above are
due to this restriction or if they are due to the
fact that the true wave function has a structure
very much different from the one of (1) or from
the straightforward generalization obtained by in-
cluding three- or four-particle correlations in
addition to the two-particle term of (1).

There is a method for systematically improving
on a given Jastrow wive function: the paired-
phonon analysis. ' We have chosen not to foQow
this route for a practical reason, because that
method involves the computation of matrix ele-
ments on the Feynman phonon states and this com-

putation is difficult to perform reliably because
three- and four-particle correlations are involved
and some uncontrolled approximations have to be
introduced. In the second place the paired-phonon
analysis gives the best Jastrow wave function in
the space spanned by Feynman phonon states, i.e.,

g~ =p„g,/~X~, where p~ is the Fourier component
of the microscopic density and SI is the normali-
zation constant, and these states form by no means
a complete set of functions for particles with hard
core so that g, is either zero or exponentially
small when there is core overlap.

We have undertaken a study of the merits of
Jastrow wave functions both for hard spheres and
for Lennard- Jones particles by Monte Carlo com-
putation for a wider class of g~ than previously
considered. In previous calculations the pseudo-
potential u(x) has been chosen as smooth as pos-
sible and incorporating at very small distance the
behavior of the two-body problem. As a conse-
quence u(x) has been essentially constrained to be
a non-negative and monotonically decreasing func-
tion of x. Qur extension involves the introduction
of a negative term in g(r) so that f (r) =e " " '
can overshoot the unity and, moreover, of a re-
pulsive structure centered at an intermediate dis-
tance between the first and the second shell of
neighbors of a particle. The first term allows the
existence of a. self-bound-state so that it is con-
sidered only for the Lennard- Jones system. The
second one is related to the zero-point motion of
rotons as discussed in Sec. III and it is considered
both for the Lennard- Jones system and for hard
spheres.

A different approach ' has also been developed
in the variational calculation based on gz. %be

pseudopotential u(r) is eliminated in favor of the
radial distribution function g(r) by means of a
closure relation as the Bogoliubov-Born-Green-
Kirkwood-Yvon one, as introduced in the theory
of classical liquids. " In this case g(~) is con-
sidered as a variational function and minimization
of the energy determines also the pseudopotential.
Such calculation"'2 for liquid ~He produced some
structure in u(r) but the reliability of this result
remained untested because of the known breakdown
in the high-density regime of the closure relation
which has been used. In fact the discrepancy be-
tween M(r) thus obtained and the smooth one used
in numerical calculation~' was presented" more
as an effect of uncertainty of the theory than as a.
real difference.

In this paper we study the hard-sphere system.
In Sec. II we discuss the numerical method, in
Sec. III we present the results for the fluid phase
and the solid phase is discussed in Sec. IV. Sec-
tion V contains a discussion of our results and
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of some extensions of our work. In a separate
paper we present the results for the Lennpxd-
Jones system. Short communications of some of
these results have been presented previously. '~ "

II. COMPUTATIONAL ASPECTS

taken with the Jastrow wave function (1) can be
written in terms of the radial distribution function
g(r) and the energy per particle reads

s, -==
s ss v(r) +

s v'u(r)) s(r) .
The expectation value of the Hamiltonian

h'
3 1

gV,'+ —Q v(r, -r,.)2' f 2 f

I

p is the average density andg(r) is

(4)

(sis-r )=v (( ——
) fdr dr s (r - r 2rx. ~ dr„gz . (5)

For hard spheres of diameter g,

r(g
v(r) =

0, r)g (6)

the interaction term is not present in (4) so that

E~ =
6 dr[v'u(r)]g(r).

The computation of the multidimensional inte-
grals in (5) is performed by the usual Metropolis
Monte Carlo method. " We have considered sys-
tems of 64 and of 108 particles in a cubic box with
the nearest image convention. Averages have been
computed with Markovian chains of length from
10' to 4x 10' configurations; after that the first 60
moves per particles starting from the initial con-
figuration have been eliminated from the average.
To speed up convergence, we have introduced a
limitation on density fluctuations": the box is
partitioned in / parts and the moves of the parti-
cles are restricted by the condition that the number of
particles ¹ in each sub-box does not differ by more
than a from the average value N/l For 64 p.arti-
cles the typical values we have used are i =4 and

~ =6. The value of ~ is chosen so that it is larger
than the mean fluctuation expected for a macros-
copic system. '7 This eliminates some unlikely
configurations (we find that about one configura-
tion out of 10 is rejected because of this limi-
tation on density fluctuation) but the expected
error is well inside the statistical error and, more
important, it does not affect the comparison be-
tween similar wave functions. For computational
convenience we have discretized all distances on
the basis of a grid of about, oo of the repulsive
diameter. Typically, the reported result for a
given u(r) is the average of different runs, one
started from an ordered configuration and others
from an aged configuration.

Our computation produces a spherically averaged

g(r) for r & ,'I. , whe—re I. is the box side. We have
extended" g(r) at larger distances by use of the
Qrnstein-Zernicke relation and of the Percus-
Yevick relation c(r) =-g(r)(e" &") —1) for r& ,'L;—
c(r) is the direct correlation function. i' The ex-
tended g(r) is used to compute the structure factor

(8)

and the tail correction to the energy (4), i.e., the
contribution to the integral (4) from distances
r& 2L.

In the case of hard spheres the direct evaluation
of the contribution to the energy (7) from the re-
gion near the hard-sphere diameter g cannot be
performed directly because the variance of
g(r) V'u(r) is not bound at r =a. On the other
hand the ratio of g(r) and of the two-particle fac-
tor e " " is expected" to be a smooth function of
r. Thus in the interval a«&a(1+6) in the Monte
Carlo calculation we compute only g(r) and from

A, (r) =—g(r) e"~") a smoothed A, is produced. This
gives a smoothed radial distribution function

g, (r) =A, (r) e " ") that is used to compute analyti-
cally the contribution to the energy. We use
5=10 ' and the contribution to the energy from this
interval is about 3% of the total.

III. FLUID PHASE

For hard spheres a variational calculation has
been performed previously with the Jastrow factor'

f (r)=e "0(") =tanh, r&a
(r/a)" —1

r&a

m and b being variational parameters. We have
considered a pseudopotential which, in addition
to this short-range term, has a repulsive Gaus-
sian
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u(r) =uo(r) +Ae (10)

where

p
— eik. rg

and S(k) is the structure factor (8). The second

1.0—

0.5—

~ ~ ~ ~ 0 ~ 4g

3 I /t-

FIG. 1. Jastrow function for phonon-roton model.
Full line: vp(x) [Eq. (12)]. Dotted line: X (~) [Eq. (14)];

where'. , X, and A are new variational param-
eters with A. =2a: the Gaussian is centered around
the position of the first minimum of g(r) (see Fig.
s).

The initial evidence for the presence of this
structure in high-density Bose systems has been
obtained in our search'4 of a self-bound wave func-
tion for Lennard- Jones particles. By this struc-
ture we tried to simulate by a two-body term the
effect of a Jastrow three-body term~(r„r&, r, )
which had been hypothetized to the present in $0
in order to explain some features of the fluid-solid
phase transition7 and of the behavior of g(r) in the
fluid phase. '0 Afterwards we have found" a direct
physical motivation for the presence of the repul-
sive peak in (10) as an effect of the zero-point
motion of rotons.

Phonons and rotons are elementary excitations
of helium and the ground-state wave function po
is the vacuum of these excitations. This require-
ment on (0, as far as phonons are concerned, has
been considered some time ago ' and, as a conse-
quence, it was shown that u(r) must contain a
long-range term. With rotons one finds two dif-
ficulties. The first derives from the fact that we
do not have yet a good description" of these ex-
citations. If we content ourselves with a quali-
tative effect we may use the simplest descrip-
tion, ' i.e., Feynman's description of a roton as
a density fluctuation so that the one roton state is

difficulty derives from the fact that, k ' being of
the order of the interparticle distance, the corre-
spondence principle is no more of avail in iden-
tifying the position operator r with the coordinate
in the wave function. ' In any case if we assume
this identification, then the previous calculationa'
for phonons is directly extended with the provision
that the phonon energy he@ must be substituted
either by the true spectrum &(k) or by Feynman's
expression h'k'/2mS(k) for e(k). The ground state
has the Jastrow form (1) and the pseudopotential,
which we now call v,(r), is

k

if we use Feynman's expression for q(k), and

Ã ~
@'k' ) '

if we choose the use of e(k). Such a wave function
is formally identical~' to the one of a weak coupling
system if q(k) is the appropriate excitation spec-
trum.

We have computed these functions using the ex-
perimental2'S(k) and e(k): vo and vo have a similar
shape and in Fig. 1 po is plotted. Equation (12)
contains both the effect of zero-point motion of
phonons and of rotons. In order to put in evidence
the contribution due to rotons we have also plotted

(ls)

)
mc 1

x(
7T p C

(14)

the contribution of phonons (m is helium mass, c
is the sound velocity) ~ We have used k, =0.5 A '
for the phonon cutoff for the purpose of exempli-
fication. The rapid rise of v,(r) at r -z is roughly
similar to the behavior of the pseudopotential which
has been used previously for the Lennard- Jones
system. The other feature of po(r) is a repulsive
peak at r-5.4 A =2.lo (o =2.556 A is the Lennard-
Jones parameter we use) which is due to rotons
and this position corresponds to the position of the
first minimum of g(r). This calculation concerns
liquid helium but roton excitations are expected to
be present in any high-density Bose fluid when
appreciable short-range order is present as in the
case of hard spheres. Dug to the approximate
character of the Feynman wave function of a roton
we cannot take the shape of &0(r) too seriously
and we have chosen in (10) a Gaussian to represent
the roton structure.

We have performed extensive calculations for
hard spheres with the pseudopotential [Eqs. (9)
and (10)] at the reduced density pa'=0. 200 which
in some sense is near' to the equilibrium density
of liquid ~He and at the density pa'=0. 270 where
the fluid phase is metastable with respect to the
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TABLE I. Monte Carlo results at density pa3=0.20 for 64 particles. Energies in units of
$2/~; errors are standarddeviations of the averages. g~,~ and gml~ are the values of g(~)
at the first maximum and at; the first minimum, respectively. g is the average ofg(r) over the
r~e ««1.3a. ~max is the value of S (k) at the first maximum, n is the number of
configurations per particle of Monte Carlo run.

A. /a A/a 8 min Smax

0
0.05
0.10
0 ~ 15
0.20
0.-25

0.35
0.15
0.15

2.44
2.44
2.44
g.44
2.44
2,44
232
2.44

0.73
0.73
0.73
0.73
0.73
0.73
0.73

' 0.61

6.06 + 0.03
5.92 +0.04
5.92+ 0.04
6.01+0.03
6.08 +0.07
6,12 + 0,05
6.17+ 0,03
6.03 + O.Q 5
6.07 + 0.05

1.29
1.30
1.30
1.31
1.33
1o32
1.34
1.30
1.32

0.93
0.93
0.92
0.91
0.91
0.90
0.88
0.91
0.90

0.351
0.346
0.340
0.341
0.335
0.342
0.337
0.350
0.339

1.25
1.26
1.28
1.29
1.30
1.31
1.34
1.28
1.30

6.000
3.000
3.000
6.000
1.500
3.00Q

4,500
1.500
1.500

10.8—

10.6-

)[

"exact"

pa'-0. 2I

55-

pa' 0.20
'

"exact"

0 0.1 0.2 A

FIG, 2. Variational energy as function of the strength
parameter A at density pa3=0. 2 with A, /a =2.44 and
A/a = 0.73 ( ~ ~ ). Results at density pa 3= 0.27 with A, /a
=2.21 and A/a =0.55 |OO) and with X/a =2.38 and A, /a
= 0.55 (XX). The arrow marked "exact" gives the energy
of the exact calculation (Ref. 3).

solid phase. In Table I and in Fig. 2 the results
at the lower density are shown. All energies are
expressed in units of K2/ma2. Errors of E~ are
standard deviation of the averages. For the short-
range part (9) we have used the values m =2 and

& =1.2 determined by Hansen et al.' With only this
short-range part we find good agreement for the
energy Ez and for g(r) with the previous result'
(E~=6.0). From the position of the first minimum
of g(r) we have explored values of A, around 2.45a
for the repulsive Gaussian (10). We find that Ez
is lowered by the presence of the Gaussian (Fig. 2)

and the effect is outside the statistical errors. The
minimum is obtained for A =0.1 and this intensity
roughly corresponds to the one given by rotons
(Fig. 1). We have not optimized the choice of A.

and A but X =2.44a and A =0.73a appear to be close
to the optimum. The minimum energy (E~=5.92)
that we find should be compared with the exact
value' E, = 5.80 so we conclude that the roton
structure is responsible for half of the discrep-
ancy between exact and variational results.

Let us discuss the origin of the decrease of the
energy in presence of the roton structure. If it
were not for the presence of g(r) in the expression
(4) for EI the introduction of the Gaussian would
not cost any energy since the space integral of
V'u(r) is zero when u(r) is a regular function
everywhere. But the presence in (4) of g(r) makes
this contribution positive because the Gaussian
enhances the structure of g(r) and g(r) is de-
pressed where V'u(r) is negative and vice versa
V u(r) is positive where g(r) increases. However
the presence of the Gaussian not only enhances the
oscillations of g(r) but depresses g(r) near the
core r-a since the first peak of g(r) becomes
sharper. This effect is shown in Table I where
we give in addition to the value of g(r) at the first
maximum and at the first minimum also the aver-
age of g(r) over the range a &r & 1.3a. The result-
ing reduction of the contribution of uo(r) to .the
kinetic energy from the region r a, wher-e V u, (r)
is largest, more than compensates the direct con-
tribution from the Gaussian.

The main discrepancy between the previous vari-
ationalg(r) and the exactg(r) consists of the
more-pronounced structure of the exactg(r). The
presence of the roton structure improves the vari-
ational results at all distances as shown in Fig. 3
where the differences g(r, A =0.10) -g(r, A =0)
and g(r, A. = 0.15) -g(r, 0) are plotted as well as
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X
X

1.0-

0.0
"X'%.

~
~"

+4m~
-0 2- x'

X

2x

X tWe
p~o

I cf"
O~

"~ X se
'e
'o,

~~ r~~~o Wo~++~~4 r o

X X

FIG. 3. Radial distribution function of hard spheres
at density pa3=0.2. Full line gives our smoothed
variational result for & = 0. Dotted and dashed lines
give, respectively, 10& fg(r, A=0.1)-g(r, &=0)) and
10 &&[g(r, g =0.15)—g(r, g =0)). Crosses represent
the difference between exact (Ref. 3) aod variational
(Ref. 3) g(r) multiplied by 10.

the difference between the exact and the previous
variational result. ' For purpose of clarity of the
figure our g(r) has been smoothed by a five-point

~ interpolation algorithm. %e note that the roton
structure enhances also the second maximum of
g(r) but does not remove the discrepancy in the
position of the third zero of g(r) —1. The reason
for this might be due to an inadequacy of the Gaus-
sian to represent the roton structure at large dis-
tances and, in fact, v,(r) —it(r) is slightly negative
(Fig. 1) at distances of order of the second maxi-
mum of g(r).

We find similar results at the higher density
pa'=0. 2V (Table II and Fig. 2). . With the short-
range part u,(r) (with m = 3 and 5 = 1.2) we find
good agreement vrith the results of Hansen et al.'
(@~=11.0). For the repulsive Gaussian we have
considered bvo sets of parameters. . The first set,

Xy
t ~
I ~&

yt ~
I

t l' p

X P.H~
,f

~ I I

X - i 3 C/8
X I

x
~ ~ XP~

X ~~ X X '
p ~

x

FIG. 4. Radial distribution function at density pa
=0.27. Full line gives our smoothed variational result
for A = 0. Dots give 10 && fg(r, A = 0.15)—g(r, A = 0)]
with it/a=2. 21 snd A/a =0.55. Crosses represent the
difference between exact and variational g{r) of the Quid
phase (Ref. 3) multiplied by 10.

X =2.21 and A =0.55, is modeled on g(r) of the
liquid metastable phase and the second one, A. =2.38
and A =0.55, ong(r) of the solid phase. Both sets
have a minimum at a nonzero value of & with the
second set giving a slightly lower minimum. The
corresponding g(r) are shown in Fig. 4 together
with the results of the exact calculation. The
presence of the Gaussian centered at X 2.38 in-
duces fluctuations which make g(r) intermediate
between the exact g(r) of the liquid phase and the
one of the solid phase.

%e conclude that the Jastrow wave function of
hard spheres contains a correlation structure at
intermediate distances reflecting the zero-point

TABLE II. Monte Carlo results at density a =0.27.

0
0.10
0.15
0.25
0.35
0.15
0.15
0.25
0.35

2.21
2-21
2.21
2.21
2.13
2.38
2.38
2.3S

0.55
0.55
0.55
0.55
0.55
0.55
0.55
0.55

10,99+0.06
10,87 +0.06
10.83 +0.06
10.99+0.06
11.15+0.07
10.91+0 08
10.75+0.08
10.79+0.08
].1.02 +0.07

1.47
1.49
1.50
1.51
1.53
1.49
1.48
1.50
1,51

grnin

0.89
0.87
0.86
0.84
0.81
0.86
0.86
O.S4
0.84

0.432
0.418
0.408
0,399
0.389
0.424
0.410
0.397
0.389

Smax

1.39
1.43
1.46
1.52
1.56
1.46
1.46
1.50
1.55

4.000
3.000
3.000
3.000
2.000
1.500
1.500
1.500
2.500
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motion of rotons. This structure is density de-
pendent, the strength of the roton feature increas-
ing at higher density.

IV. SOLID PHASE

The solid phase of quantum systems has been
generally described by the Hartree- Jastrow wave
function (2) containing localization factors, so that
the translational broken symmetry is explicitly
contained in the wave function. Also a Jastrow
wave function gz without localization factors can
describe a solid phase. ~ The pseudopotential u(r)
is essentially repulsive at short distance, for in-
stance u(r) =(b/x)' for a Lennard- Jones system,
and the fluid-solid transition is similar to that of
classical hard spheres "H.owever g~ does not
give a satisfactory' description of the solid phase
because the corresponding expectation value of
the Hamiltonian is much higher than the value
corresponding to p». In fact Hansen and Pollock'
have presented an argument to explain this: in
classical systems it is known that the short-range
part of the intermolecular potential plays a basic
role in freezing but the precise x dependence is
not important. " For instance, an empirical rule"
says that a classical fluid freezes when the first
maximum of S(k) reaches the value S „„=2.85, the
value found at the soLidification point of classical
hard spheres. On the solid side of the transition
melting takes place when the Lindemann ratio f,
i.e., the ratio of the rms displacement to the near-
est-neighbor distance, is close to the value f -0.14.
Such rules extended to Jastrow wave functioris im-
ply, for instance, that also for quantum systems
at the solidification point the maximum of; S(k)
should have the value 2.85. This is wrong because
quantum hard spheres have S =1.40 at solidifi-
cation' and 4He has f =0.25 at melting7 so that
some other mechanism for solidification must be
present in quantum systems. For this reason it
was surmised that the non-Jastrow terms, for
instance three-body correlations, must play an
important role in Bose systems, at least near
solidif ication.

Our result on the presence of the roton structure
in gz makes the simple extension of the freezing
rule of classical systems to Jastrow wave func-
tions suspicious because g~ contains a structure,
absent in classical systems, which is density de-
pendent and directly related to the short-range
order present in the system. For this reason we
have investigated the transition to the solid phase
of quantum hard spheres on the basis of the new
Jastrow wave function.

In the first place we must choose the signature
of the solid phase of the small system on which we

perform the numerical simulation. For classical
system's different signatures of the solid phase
have been considered but the most precise one,
based on comparison of the free energies of the
fluid and of the solid phase, " cannot be used in the
present case. In fact this method would imply the
study at different densities of the same Jastrow
wave function. If the roton structure directly in-
fluences solidification, then we do not necessarily
expect that the phase diagram of g~ with fixed
pseudopotential has the simple behavior of the
physical systems because a given roton structure
helps to stabilize the solid phase only over the
small range of densities where the position of the
repulsive shoulder (10) corresponds to the position
of the minimum of g(r). For this reason we have
chosen the simpler but less precise method of de-
termining the phasd transition region by looking
at the presence of metastability phenomena: with
a given Jastrow wave function tl~ we start two dif-
ferent runs, one from the fcc configuration and
the second one from a disordered configuration.
If after 3000 moves per particle the two energies
have values well outside the average fluctuation
we conclude that g~ is in the phase transition re-
gion.

We have performed calculations at the density
pa'=0. 27 which is indicated by the exact calcula-
tion' to be roughly the melting density of hard
spheres. All our calculations are for 108 particles
so that the fcc lattice fits in our basic cube. In
addition to the pseudopotential (10) we have also
considered the more general form

I

u(r) =uo(r) +A.e " ~ -Be " " (15)

with lj. -3a so that u(r) can contain also attractive
correlations at a distance of order of the second
maximum of g(r). We have performed computa-
tions for quite a few choices of the parameters in
u(r) and here we present only some typical results.

The short-range order of the system is very
sensitive to the presence of the structure in u(r)
and with suitable choice of the parameters g(r)
can be made almost to coincide with the spherical
average of g(r) of the solid phase as given by the
exact computation. For instance in Fig. 5 the ex-
act solid g(r) is compared with our Jastrow result
for the parameters: m =3, 5 =1.2, A. =0.55,
g =2.38a, ~=0.39a, and B=O. The corresponding
energy is E~ =12.1 which should be compared with
the variational results' g „,=10.5 for the solid
wave function (2). Although the short-range order
given by this g~ is almost identical to the one of
the solid phase, this p~ describes a fluid because
it does not show any evidence of metastability at
this or at neighboring densities. Solidification can
be obtained only if u(r) contains much stronger
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a Jastrow wave function for the solid phase is that
the pseudopotential u(r) is anisotropic. Since in
a fcc lattice the spatial periodicity in the (100) or
equivalent. directions is larger than in the (111)direc-
tions, the basic anisotropy of u(r) should be con-
tained in the parameter A. of the pseudopotential
(10) with A. (r) increasing in such directions. This
wave function displays rotational broken symme-
try but it is translational invariant and allows
Bose-Einstein condensation. . Calculations with
such wave functions are feasible because the prob-
lem is similar to the one of simulation of a classi-
cal fluid composed of anisotropic molecules.

FIG. 5. Exact g(x) at density pa3=0.27 for the solid
phase (Ref. 3) (+++) and our variational result with g
=0.55, "A/g=2. 38, and A, /a=0. 39 ( ~ ~ ~ ).

structures but in this case the short-range order
becomes more pronounced than the exact one and
the energy rises too. For instance, metastability
is found for the following parameters: rn =3,
Q =1.6, A. =0.45, X=2.1a, ~=0.22a, B=0.6,
p, =3.05a, and M =0.22a. The runs started from
a disordered and from the ordered configuration
give, respectively, E~ =47.5 and F~ =78.6. From
g(r) of the disordered run we compute the value
S =2.0 of the structure factor at the first maxi-
mum, a value intermediate between the values
2.85 mentioned above relative to classical hard
sphe'res and 1.40 of quantum hard spheres at the
solidification point.

From such calculations we conclude that the
presence of intermediate-distance structures in
the pseudopotential improves the description of
the solid phase by the Jastrow wave function but

g~ is still not good enough and we doubt that any
modeling of a spherical symmetric pseudopoten-
tial u(r) can improve significantly our results.
We believe that this is due to the requirement of
self-consistency we have put in evidence for the
wave function of the fluid phase: the correlations
in the wave function depend on the spectrum of
elementary excitations of the system but this de-
pends on the short-range order which is present.
In a solid the spectrum of excitations, the phonon

spectrum, is anisotropic, for instance the maxi-
mum of q(k) in the (100) or equivalent directions in
a fcc lattice takes place at a smaller k value than
in the (111)direction. In the phase transition re-
gion we may think that the solidlike local order in-
duces an anisotropic excitation spectrum and, as a
consequence, anisotropic correlations. When the
solid phase becomes stable the angular-dependent
terms become locked together to the axis of the
crystal. Therefore the minimum requirement on

V. CONCLUSION

Qur calculations have shown that the wave func-
tion of quantum hard spheres in the fluid phase is
better described by a Jastrow wave function which
has a repulsive structure in the pseudopotential at
intermediate distances. This structure has been
related to the zero-point motion of rotons. Botons
are expected to exist in any high-density Bose
fluid of particles with hard core so that such struc-
ture is expected to be present in the wave function
of any Bose fluid and, in particular, of 4He; this
conclusion has been confirmed by our calcula-
tion. '4' 6 The roton structure removes roughly
half of the discrepancy on the energy and on the
radial distribution function g(r) between previous
variational calculations and the exact res~its for
hard spheres.

An important consequence" of the presence of
the roton structure in the ground state is that the
short-range order in a Bose fluid should increase
as the temperature increases at least as long as
rotons can be considered elementary excitations
of the system. In fact, one can take into account
thermal excitati. on of rotons by constructing the
density matrix. ~~ The radial distribution function
is determined by the diagonal part of the density
matrix which has the Jastrow form (1) with a tem-
perature-dependent u(r). For instance, in place
of expression (12) for p, (r) one obtains

This thermal population factor produces an en-
hancement of the roton peak of pr(r) and, there-
fore, the oscillations of g(r) and of S(k) increase.
Such behavior has been observed in liquid helium"
and has been interpreted successfully in this way. M

We have interpreted the structure in the pseudo-
potential as an effect of the zero-point motion of
rotons and this has been based on Feynman form
of the wave function of the roton excited state. It
is well known' that this form is quite rough be-
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cause it does not take into account interparticle
correlations, the so-called backflow. These cor-
relations are included, for instance, in the Feyn-
man-Cohen (FC) wave function":

1r-„=,i, Pe+' 1+i+ g-„(r, , l),
(18)

where r)i, is the ground-state wave function, Ot» is
the normalization constant, the prime in the l
summation indicates that lg j andgk is

I

g„(r) A, kyar/y', (19)

A~ being a variational parameter. The Feynman
form is recovered when A.~=0. Ãe should ask
which is the effect of the backflow on the ground
state. If we boldly proceed as in Sec. III with the
Feynman form, i.e. , we assume that I'~ has the
role of the coordinate of a normal mode, then
the ground state contains the factor

2
e-& r / s& l;»I tel (20)

which gives rise to two-, three-, and four-particle
correlation terms. The terms of second order in
the backflow parameter A~ are rather small and
for simplicity we do not write them here. Then
(20) contains only two- and three- particle terms:

r' = exp(- —Fvrc (rg —rs)2
egg

where I, and I» are three- and four-particle inte-
grals which have been evaluated for 'He by Feyn-
man-Cohen and more recently by Padmore and
Chester" and there one can also find the values
of A~.

From these data one can determine X(y) and

ir(y) but for our purpose a, qualitative description
is enough. The k dependence of g~ is similar to
the one of the structure factor S(k) but the first
maximum is more pronounced by roughly 50%%up.

Therefore X(y) has the same behavior as v(y),
Eq. (12), but with an enhanced structure at y 2o-
(see Fig. 1). A» is negative and has a minimum
roughly in correspondence to the first minimum of
S(k); as a result A»/X» has almost the same be-
havior as S '(k) in the roton region and we can
take ir(y)-, -A„,v, (y) A„. , is the value of A„at
the roton minimum. Therefore p, '(y) is large and
positive at short distances, has a negative min
imum at r -1.6cr and a positive maximum at y
-2.6'. In conclusion our computation gives the
two-particle term rrrc, Eq. (22), with the same
features of the Feynman form v„Eq. (12). The
three-particle term (23) has a negative minimum
for equilateral configurations with the inter-
particle distance slightly larger than the position
of the first maximum of g(y) of the fluid. This is
shown in Fig. 6 where we plot v~~ for the equilat-
eral configuration as function of the interparticle
distance. Since we are interested only in dis-
tances of order of nn distance or larger, in draw-
ing the figure we have neglected the short-distance
repulsive part of p(y) and we have taken

1 (,) ~
Z rr (rr rq rr)

)&/&i

vrc(y) =X(y)+(2/y')p'( )y,

rrFc(r„r&, r, )=2, +, cos8,.(») 4' (yrr) p' (yrr)
&ss

p, '(y„) p'(y~J),+2 2 + 2
. cos

p (yrr 9 (yrr)

t4

(21)

(22)

(22)

p(y) = -(0.15/4rrp)exp[-(y —X)'/A']

with the values A. =2cr and A=0. 6o' modeled on our
variational results for the I ennard-Jones system"
and we have taken into account that at the roton
minimum A.»

——1/4rrp.
We conclude that the roton backflow induces

thre|E, -particle correlations which favor equilateral
configurations as found in the solid phase. The
presence of such correlations has been suggested

where 8, is the angle corresponding to the i vertex
of the triangle determined by r&, r&, and r, and
similarly for 6& and 8„A. and p, read

g&3)
FC

0.0Z—

g(y) — Z sr% 'r1~1
(24) 0 i

3

(25)

X» =S(k) +kA»I, (k) + O'A'I, o(k), (25)

1
ir (y) Q» sl» r

N

and p'(y) = d p(y)/dy , The, norm. alization factor X»
ls

-0.0Z-

FIG. 6. &Fc (r, r, r) as a function for r forthechoiceof
p (r) discussed in the text. It includes also the second-
order contribution in addition to the first-order one
t Eq. y.3)] .
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before' "on the basis of the observed discre-
pancies between variational and experimental data.
Our result is in agreement with that suggestion
and gives to it a microscopic interpretation. The
presence of such three-particle correlations should
be confirmed by a variational calculation based
on the wave function

x
'

exp[ —-', ~(r„r„r,)] (27)

with the three-particle pseudopotential zo model. ed.
on the Feynman-Cohen form (23). We note that
form (23) differs qualitatively from a form sug-
gested" on the basis of the results of the weak
coupling system.

The present results for hard spheres and the similar
results that we find for the Lennard- Jones system"
concern Bose systems with strongly repulsive
core and, as already discussed, we believe that a
roton feature is present in the ground state of any
such system at high density. Recently some in-
terest has risen on soft-core systems, as a rough
guide on the properties of neutron matter. Vari-
ational and exact calculations" have been performed
for Bose systems interacting with the Yukawa po-
tential and also in this case the Jastrow function
gives, near the solidification line, much less short-
range order than the exact calculation. The el-
ementary excitations of such systems are not known
but it is found that the computed short-range order
can be as large as the one of liquid 'He and there-
fore we expect a phonon-roton spectrum to be
present also in this case. Actually the Feynman
excitation spectrum e(k) =k'k'/2mS(k) has in this
case an even more-pronounced structure because
themaximumof S(k) islocatedat a smaller k value
(k&x=3) than in 'He (ko'= 5). For this reason we

expect that the roton structure is present also in
the ground state of such a soft-core system and
we have in progress such calculation.

Our calculations indicate that no Jastrow wave
function with spherically symmetric pseudopoten-
tial is satisfactory for the solid phase of Bose
particles. The relation between pseudopotential
and excitation spectrum. suggests the investigation
of the Jastrow wave function with an angular-
dependent pseudopotential as a wave function of the
solid phase.

Also in liquid 'He the short-range correlations"
determined experimentally are more pronounced
than the theoretical prediction' obtained on the
basis of a wave-function product of a Slater de-
terminant and of a Jastrow term. This suggests
that also in this case the Jastrow term contains
a rotonlike structure. Really no roton excitation
is expected in 'He because of the presence of the
particle-hole continuum but some effect of short-
range correlations can be expected on the ex-
citation spectrum, for instance, as a k dependence
of the effective mass. The experimental situation
in this respect is not definite yet. A variational
calculation to test the presence of a rotonlike
structure in the ground state of 'He should give
useful information.
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