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A variational principle is applied to the generating functional of velocity correlations in an incompressible

fluid described by the Navier-Stokes equations with random Gaussian stirring forces. The generating.
functional of velocity correlations gives, in a field-theoretic language, a complete statistical description of
this driven, stationary Markov process in terms of path integrals and can be viewed as a generalized free

energy. The statistical properties of velocity fluctuations generated by white-noise stirring forces whose

energy-injection rate into the fluid is wave-number power-law distributed are investigated. A boundary

dimension d*. depending upon the forcing spectrum is found above which long-wavelength velocity

fluctuations are weakly coupled. In the strong-coupling regime d ( d~, static and dynamic exponents

characterizing the wave-number dependence of long-wavelength fluctuations are evaluated. For d ) d*,
corrections to the linear theory caused by the nonlinear mode-coupling terms are determined. The results are

compared with renormalization-group calculations. Turbulent velocity fluctuations are discussed in the limit

of vanishing viscosity. The relationship between forcing and energy spectrum in d dimensions is investigated

and the results are compared with second-order closure approximations of statistical turbulence theories. A
stirring-force spectrum —k leads to a Kolmogorov distribution of energy over wave number.

I. INTRODUCTION

A Lagrangian description of stochastic models
simulating the dynamics cf thermal systems near
their critical point' has recently been demon-
strated' to be an attractive alternative equivalent'
to the operator formalism for classical dynamics
of Martin, Siggia, and Rose.4 The Lagrangian is
derived from the path probability density' for non-
linear stochastic processes driven by Gaussian
random forces. The Navier-Stokes equation (NSE)
for incompressible fluids agitated by random stir-
ring forces describes such a process.

The weight e for different paths'~' is deter-
mined by a functional t" with the physical meaning
of a generalized Hamiltonian describing the dy-
namics and statics of the stochastic process. G is
positive and contains for the NSE up to quartic
field terms. In critical dynamics an integral rep-
resentation for the exponential e ~ in terms of
auxiliary response fields (equivalent to the conju-
gate fields of Martin et al.4) proved to be advan-
tageous with respect to perturbative expansions.

For.a variational approach, however, the origi-
nal path probability density e ~ seems to be more
appropriate' since the integral representation
leads to nonreal expressions. The convexity of the
weight e ~ suggests using the well-known in-
equality for such functions to apply a variation@1
principle to the generating functional of correla-
tions. In analogy with the free energy of Hamilto-
nian systems, the generating functional is given
by the logarithm of an integral over all paths (con-

figurations) with the weight e a.
The variational approach is a systematic method

to determine fluctuation spectra of driven stochas-
tic processes. Here we investigated the spectrum
of velocity fluctuations generated by white-poise
stirring forces whose energy injection rate into
the fluid is for mathematical convenience power-
law distributed over wave numbers. The varia-
tional correlation functions display all properties
following from the symmetries and invariances of
the fluid.

In Sec. III we apply the path-integral description
for stochastic processes given in Sec. II to the
forced NSE and we derive the generating functional
e ~ for correlations. Section IV presents formulas
for correlation functions which follow from the
variational principle for F with a trial functional
and variational parameters discussed in Sec. V.
The minimization of I' without auxiliary condition
in Sec. VI leads to a Dyson equation for the veloci-
ty correlation function. The physical character of
the variational approximation is explained. In Sec.
VII we discuss static and dynamic behavior of vel-
ocity fluctuations in d dimensions for various stir-
ring-force spectra Long-w. avelength properties
for finite viscosities are compared with renormal-
ization-group calculations. ' Correlations for the
inviscid case are compared with results from clo-
sure approximations' in turbulence theory. A
quadratic random force spectrum leading to equi-
librium dynamics and to statics determined by the
linear theory is shown to require a variational
principle with auxiliary conditions. That and the
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ensuing results are presented in Sec. VIII. Section
IX summarizes our work.

II. PATH INTEGRALS FOR STOCHASTIC PROCESSES

Consider a Markovian stochastic process char-
acterized by the nonlinear Langevin equations

x, (t) +X,(X(t))=f, (t)

for the set of random variables

x(t) =f. . . , x(t), . . .]

(2.1)

(2.2)

labeled by t',. Let the set of random forces E(t)
driving the stochastic process be Gaussian distrib-
uted with zero mean and independent of X(t). They
enforce a statistically stationary state provided
their correlations are time translational invariant.
For the sake of simplicity the force correlations
are usually assumed to have a white spectrum

(2.3)

although general spectra do not pose a problem.
According to Graham, ' the probability density for
paths between X, at t, and X, at t, for such a pro-
cess (2.1) is given by the functional

W, , [X]-e oti&or»g [X] (2.4a)

with

[Xl =2 f fg( d)It)txtftt(t)
0

where f,(t) stands for the left-hand side of Eq.
(2.1). The term

(2.4b)

d, g IX[
- xxp [

-
& f dt' '

)to +i
(2.5)

stems from the functional determinant' of the map-
ping (2.1) of the two sets X and E.

In order to express correlation functions in
terms of path integrals, one also needs the condi-
tional probability density

x (x,),P„„(X,) . (2.1o)

The above expression can be transformed into an
integral over all paths starting at t, = -~ and ending
at t, =+ ~ by using (2.9) for P„„(X,), inserting the
equality (2.7), and finally expressing the three
conditional probabilities according to (2.6) as a
product of three path integrals. Since the latter
can be combined together with the integration over
X, and X, to one extended path integral; one ob-
tains

(X, (t,l, (t,)) = fd [X[x,(t)x, (t)tX, [X,[., (2.11)

When J defined in (2.5) is independent of X, as we
shall assume throughout this paper, one fin'ally

deduces

with

J d [X]x,(t,)x,(t,)e e'»'

fd [X]e-G[x3
(2.12)

G[X]= G„„[X].
The notation (2.12) stresses that G may be inter-
preted as the dynamixc generalization of a Hamil-
tonian. Note that G[X] describes the dynamics as
well as the statics of the system.

(2.13)

sumption, ' since as a result of the action of the
random forces, the system should have "forgotten"
at any finite time t its initial condition Xo at
t, =-~. (For processes generated by Hamiltonian
dynamics, e.g. , time-dependent Ginzburg-Landau
models, ' one can in fact prove' that this condition
is Satisfied. It follows from the H theorem that
the system approaches equilibrium after sufficient
time and consequently that P„„[x]—e 'x'. ) The
correlation functions are then defined by

tdt(t, )x,(t,)) = fdX(xt)p, '...,(X, [X„t, —t),

P„,~(X2 ~x~; t2 —t, ) = d[X] Wq ~ fx]
Xg

which is normalized by

dX,P„,d X3 X»t, —t, —1,

p„„(x,~x„o)= &(x, -x,) .

(2.6)

(2.7)

(2.8)

III. NAVIER-STOKES EQUATIONS AND THE GENERATING

FUNCTIONAL FOR CORRELATIONS

In this section we want to apply the concepts
presented so far to the nonlinear NSE for the ve-
locity field of an incompressible fluid stirred by
random forces:

The integration in (2.6) is done over all paths be-
tween X, at t, and X, at t,.' The stationary proba-
bility distribution is given by

(s, + &a2)u„(k, t)+t ., (k)u„

„uz q, t u, k-q, t = k, t; 3.1
P. ..(X)=P,.„(X~X,; ), (2.9)

if the conditional probability density for finding X
at any finite time t is independent of the initial
value X, at to= -~. One commonly makes this as- P q(k) =5„p —k~kq/k'. (3.2)

Here v is the viscosity and I'
z is the transverse

proj ector



(3.3)

It appears when the pressure gradient is elimi-
nated using the incompressibility condition

k u (k, f) = 0 = k f (k, t) .

fields

Q (1)=P (12)P (2), f(1)=P(12)f(2) . (s.14)

We also assumed the random stirring forces to
be transverse. Before discussing applications of
the NSE, let us introduce a more economical and
condensed notation in terms of fields:

y(1) =y.,(p, )

dr dte""i' "&"u (s.4)

~(I) = ~.,(p, )

dr dte""~' "&" r, t . (3.5)

Throughout this paper we will use the abbrevia-
tions

(s.e)

Since P(1), 0(1) are Fourier transforms of real
fields, one has

y(-1) = y.,(-p, ) = y*(1) (3.7)

and a similar relation for f(1).
fields thus read

(3.8)

X,'„(12)=~., &(p, —p,)[-f~,+fl„,(k, H (S.~a)

with

and

Qyg~(k) = vk

a(p) = (2m)'"6(k)&((o) .

(3.8b)

(s.io)

The symmetrized form of the nonlinear coupling
function is

(s.iia)W(123) =P (11')P(22')P (33')so (1'2'3'),

w(i23) = --,'ia(p, —p, —p,)w, , (k,), (3.lib)

w ~„(k) =& ~k„+& „k~, (S.iic)
W(123) = W(132) = -W*(123)= -W(-1 —2 —3) .

(s.i2)

The projectors

P(12)= ~(p, —p,)P. . (k,)

explicitly display the transversality (3.3) of the

(s.is)

X~'„(12)Q(2)+W(123)$(2)$(3) = g(1),
where integration (f~) and summation (c.') over re-
peated arguments is implied. Except for the pro-
jector (3.2) the inverse response function of the
linear NSE is

We will consider random Gaussian correlated
forces with zero mean. Their spectrum will be white
in frequency, but may depend on the wave vector

«*(i)~(2))=P(»')D(i'2')P(2'2), (s.i5)

D(12) = &. .~(P, —P,)D(k,) . (S.ie)

Rotational symmetry implies D(k) to be a function
of ~k only. Time and space translational invari-
ance of the system is reflected by D(12) being di-
agonal with respect to frequency and wave vector.
The spectrum D(k) is positive and measures the
rate of energy input at wave vector k into the fluid
by the stirring forces. The energy input is neces-
sary to set up a stationary state. It balances the
dissipation described by the viscosity term and the
energy transfer caused by the nonlinear mode cou-
pling term iri (3.8).

The NSE's are the starting point for statistical
theories of strongly developed homogeneous iso-
tropic turbulence. Such turbulent states are sup-
posed to be created by injecting enough energy into
3. fluid within a small band at Low wave numbers
through stirring. It is commonly believed that the
ensuing inertial range energy cascade towards high
wave vectors is independent of the detailed form of,

the injection spectrum D(k) as long as the latter is
restricted to long wavelengths. Experiments so
far on man-made low-Reynolds-number turbulence
created by grids in wind tunnels are unable to de-
cide this question, although the small-scale motion
in the tunnel center far enough downstream seems
to be nearly isotropic and statistically independent
of the details of the grid. " The relation between
the energy spectrum of infinite-Reynolds-number
turbulence and the spectrum of the random stirring
forces will be investigated in Sec. VII.

Recently, Eqs. (3.1) and (3.8) together with an
injection spectrum D(k) k' have also been used
for a description of hydrodynamic excitations from
thermal equilibrium. '" The idea of using a stir-
ring force with spectrum -k2 to simulate the gen=
eration of thermally agitated long-wavelength low-
frequency excitations in fluids in thermal equili-
brium seems to be a reasonable one even though
one can question its usage with the not always
physically valid assumption of incompressibility.
It is supported by the fact that (only) a spectrum
D(k) -k' fulfills the potential conditions' "'~ neces-
sary for the random process (3.1), (3.8) to obey
detailed balance. In that case the stationary prob-
ability distribution is according to class 8 of
Deker and Haake" Gaussian in the fields u~(k),



VELOCITY CORRELATIONS IN A RANDOMLY STIRRED. . . 285

P„„[u] exp
( -2 f u„"(ic} „m, (k) (, (3.&v)

)

Fourier transform of the two-point velocity-corre-
lation function within the linear theory

with

(g* (k )g (k ))=P (k )(am} &(k, -k, )C(k,),
(3.13)

c„.(12)=x„,(13)D(34)X,*„(42)

=6, c (p, -p, )C„,(p, )

with

- (3.22a)

(s.aab)

so that the equal-time correlations are constant,

C(k) =D(k)/a@km (s.19)

and a fluctuation-dissipation-type relation'3 con-
nects response and correlation functions. With the
special choice D,„=avksT/p for the proportionality
constant in D(k) the Einstein relation is satisfied.
The resulting value of the equal-time velocity cor-
relation C(k) = (1/n)eat„ is independent of k and p. It
coincides with the equilibrium average value for a
classical fluid of particle density n in a canonical
or grand canonical ensemble.

The injection spectrum D(k)-k' discussed above
is a special, albeit important, case: For general
stirring spectra neither detailed balance nor the
fluctuation dissipation relation will obtain and the
stationary distribution will not be GausSian nor in-
dependent of the nonlinear terms in the NSE. Note
also that in the special case (3.19}energy balance
between injection and dissipation is riot only global
but also local ink space: avk'C(k) d'k is thekinetic
energy taken out of the volume element d ~k around k
by dissipation arid D(k) d 'k is the energy injected into
it with C(k) d'k the kinetic energy contained in
d'k."" Since this balance works via the Einstein
relation even for p-0, there is no way to set up
an energy cascade characteristic for turbulence.

We now proceed to obtain the dynamical function-
al Gf(P] for the NSE. Since J' [Eq. (2.5)] is indepen-
dent of the velocity field-contributions from the
nonlinear term in (3.'1) vanish-correlation func-
tions (2.12) a're determined by the functional G

alone. Replacing the time integral in

6=- dt ~
* k, t D"' A I k, t 3.20a

T (12, 34) = W*(512)D i(56)R'(634) (3.23)

is quadratic in the coupling functiori, i.e., propor-
tional to km/D(k).

The generating functional for correlations is

e ~'"'= d exp -6 +h* 1 (s.a4)

where an integration over all "paths" between
&o =-~ and (d= ~ must be carried out, i.e., d[/]
stands for II„(f(p(n). Considering paths as functions
of (t[ (k, [([) instead of u~(k, t) implies a linear
transformation whose Jacobian is irrelevant for
calculating averages according to

5
(1) ~ ~ g p (s)) eE 3F.[(~~ ~

&k*(1)
„r„

6k*(s) A=O

(3.26)
I' can be thought of as being the dynamic general-
ization of a free energy.

c„,(k, (o) =c„,(k), "; (3.22e)
Qp + lin

and C„,(k) denotes the equal-time correlation func-
tion of the linear theory

C„,(k) =C~„(k, f =0) =—
~ k

—
2 . (3.22d)

i D(k) D(k)
2 QI(, k 2pk2

Note that the choice D(k)-k' causes the equal-
time correlations C(k) [Eq. (3.19)] to be those of
the linear theory C(k) =C„,(k). For later use we
have expressed C„,(k, v) in terms of the static
correlations C„,(k) and the characteristic frequen-
cy G„,(k) of the linear theory.

The "coefficient" of the quartic term

by an integral over all frequencies, one finally ob-
tains

(s.aob)

where 0 abbreviates the left-hand side of Eq. (3.8).
The dynamical functional G is real and positive.

It contains terms quadratic, cubic, - and quartic in
the fields.

G[yl =-'y*(1)c-' (12)y(2)

+-.'y*(1)y*(a)&(ia, 34)y(s)y(4)

+ (cubic terms) . (3.21)

Here C„,(12) is, except for projectors (3.13), the

IV. VARIATIONAL PRINCIPLE

(4.i)e ~'"' ~ exp(-(G[(p] -G, [(p X))"]e ~s'"'

where e ~&~"' is given by (3.24) with G, replacing

The variational principle for E[k] relies on the
convexity of the exponential function"" (e")~ e'"'
which requires x to be real and the weight factors
implied in the average to be positive and normal-
ized to unity. The term k~(1)(P(1) in (3.24} is real
as long as k(1) is the Fourier transform of a real
field which we assume. Let G,[(p, X] be a real,
positive trial functional depending on a set of pa-
rameters X. Then" "



286 M. LUCKK

is complex. Our search for an inequality as pow-
erful as the one in Eq. (4.1) has been fruitless.

The variational "free energy"

F, [k; Xj =min((G -G, &.", +F,[k]}
= (G —Go) 0+Fo[k]

(4.3}

(4.4)

G. Averages with a subscript t are defined by

. fd[a]&[a) p(-G, [e)+k*(1)4(1)}

fd [y]em &-G,[y]+k*(1)y(1)}

For the cise h =0 the superscript h will beomitted.
It seems to be attractive to apply a variational

principle to the more general functional' which

generates correlation —as well as response —func-
tions. However, the exponent

J[y, y] =~y*(1)D(12)P(2)-if*(1}f(1)

produced by the integral representation of the ex-
ponential function by

s-"&'=e~[ —.'g*(1}D-'(12)C(2)]

&y(1)&, =0 (5.1)

The Latter restricts us to functionals G, quadratic
in the field P. Of course, one might argue that
this choice can not satisfy the first criterion since
a Gaussian dynamic weight for paths Q(k, ur) will
not reproduce all physical properties of the corre-
lations in strongly developed turbulence. However,
by optimizing the approximation to the nonlinear
mode coupling terms-i. e., the cubic and quartic
contributions to G—by relaxational quadratic terms
one may hope to retain some of the characteristics
of the nonlinear terms. Without calculations one
expects an approximation to the nonlinear NSE by
an optimized linear equation (leading to a quadratic
functional G, ) to be reasonable for small field am-
plitudes and for small nonlinear coupli:ngs —i.e.,
for the long-wavelength limit k -0. Whether the
variational principle allows one to treat also tur-
bulence characterized by strong nonlinear mode
coupling and large amplitudes can be decided only
a Posteriori. To that end we proceed towards the
calculations.

The most general quadratic form for G,[Q] which
ensures that the mean velocity vanishes

is determined by the parameter set X, which mini-
mizes the curly bracket in (4.3) via

is (see Appendix A}

G,[y] = 2y*(i)C, '(»)y(2) (5.2)

G, =G,[y, ~,]. (4.5) with

The extremal condition in (4.3) with respect to X is (y*(1)y(2)&, =S'(ll')C, (I'2')P(2'2) . (5.3)

0 &Gt
G G +

~G
G —G a (4.5)

and X, is the solution thereof.
The correlation functions generated by the func-

tional F, [k; X,] (4.4} are, according to Eq. (3.25),

&y(1)&, =&/(1)&.-s(1), (4.7)

(Q*(1)Q (2)&,~ = (P*(l)P(2))o -S(12)+s*(1)s(2) (4.8)

with.(1)= &y(1)[G —G.]&.-&y(1)&.« —Gg. ,

S(») = &y*(1)y(2)[G —GJ&,

-&y*(1)y(2)&.« —G.&. ,

(4.9)

(4.1O}

and the subscript 0 on the average brackets refers
to Go.

V. TRIAL FUNCTIONAL AND VARIATIONAL PARAMETERS

So far we have not said a word. about the trial
functional. In analogous problems in the literature
it is usually chosen in accordance with two criteri-
ons: (i) physical intuition —which means in this
case the ability to guess a trial functional contain-
ing the basic physics of G, and (ii) "calculability. "

Throughout this paper we will employ this trial
functional for which s(l) [Eq. (4.9)] vanishes (see
Appendix A). Homogeneity and stationarity re-
quires

C, (12)=5..~(P, P,)C,(k„~,) (5.4)

to be diagonal in frequency and momentum. The
spectrum C, (k, &o) of velocity correlations evaluated
with the weight e ~&~~' has to be real, positive,
even in &u, and a function only of

~

k ~.
In principle one should take the matrix C,(12) as

a set of variational parameters and ensure sym-
metries of the v3ri3tional correlation functions
(4.10) by auxiliary conditions. We will use a trial
and error approach with X(P) = C,(k, &u) as vari-
ational parameters and see whether the spectrum
Co(k, u) and C„,(k, &o) shows the invariances dis-
cussed abode. The result of this procedure (see
Sec. VI) with no auxiliary conditions imposed is
indeed that all. correlation functions meet all sym-
metry requirements discussed so far. If there is
more information on the spectrum of velocity cor-
relations available than the mentioned symmetries
one can incorporate it by auxiliary conditions (see
Sec. VIII). The question of invariance of G, under
the transformation P (1)—$(1)+v &(P,) and under
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Galilean transformations will be treated in a forth-
com ing publication.

VI. MINIMIZATION WITHOUT AUXILIARY CONDITIONS

In this section we will evaluate X,(k, ~) = C,(k, ~)
and C„„(k,&u) without auxiliary conditions. To de-
termine the minimal "free energy" by (4.6) we use
the chain rule of differentiation to express 6G,/
6X(p) as

(6.1)

where

6Cg'(12)
6 ~ n(Pg P)—

gP( ) 6y(p) aya2 1 2 C2(k ~)

S=PCOP[C, '„—Co'+ Zo]PC, P (6.12)

shows that the extremal condition (6.5) leads to a
Dyson equation for C,(12) with a self-energy Zo(12)
defined in analogy to (5.3) by

P(11')Zo(1'2')P(2'2) = Zo(12) . (6.13)

&4(I)4 (~)&.
v=2

x ($(1) ~ ~ ~ P(v 1)P(p+ 1).. .P(„)&,

is helpful. ) Note that only 8 out of the possible 12
pairings of (6.9) contribute since W(122) = 0.

The final result for S(12)

and

(6.2) It turns out (see Appendix B) that its spectrum is
white:

24 *(1)0 (2) = 6G g/6Ci'(12)

Thus, the extremal condition (4.6) reads

(6.3)

This implies, according to (4.10),

(6.5)

(6.6)

and Co(k, ro) satisfies Eq. (6.5). Since the cubic
field terms of G do not contribute to S(12) one
finds

0 = —,
'

gp(12) S(12), (6.4)

or since g~(12) [Eq. (6.2)] is a diagonal, negative
matrix in 1 and 2,

o=S(12)=&4 *(1)4(2)[G-G.]&.

Z.(12)=~(P,-P)Z'.. .(k) (614)
The absence of memory in the self-energy ker-

nel is caused by the white force spectrum and the
Markovian character of the NSE. This can be in-
ferred most easily from the graphical representa-
tion of Z, (12) in Fig. 1: Since D '(12) as well as
the nonlinear coupling functions W(123) are fre-
quency independent except for a 5 function the
frequency dependence of C, (k, u&) is integrated out
in the loop (3, 4, 5, 6) of Fig. 1. Note that the self-
energy is quadratic in the coupling function W'

[Eq. (3.11)] and has a mode coupling structure ex-
cept that one internal "leg" is replaced by D '. As
a result of the unrestricted variational procedure
the nonlinear, Markovian NSE is approximated by
a linear Markovian process whose correlations
are determined according to (6.12) by

S(12)=S„(12)+S,v(12),

where

Sy,(12) = &4 *(I)4 (3)&0[C i),(34) —Co'(34)]

(6.7)

x &4*(4)4 (2)&. (6.8)

gives the contribution to (6.5) from the quadratic
field term in G —Go. The contribution from the
quartic term reads with an obvious notation FIG. 1. Graphical representation of the self-energy

contribution T(13,42) (f15*(3)f36 (4)) p, Here
S,v(12) = ~[ &1*23*4~56&,

—(1*2&,(3*4*56&,]T(34, M) (6.9) n (12)
2

= &4 *(1)4'(3)&.Z, (34)&e*(4)4(2) &. (6.1o)

We have used the symmetry of W [Eqs. (3.11),
(3.12)] as well as (5.3), (5.4) to find (6.10) with

Z.(12) = 47'(», 42) &0*(3)4 (4)&. (6.11)

(In evaluating Gaussian averages the recursion
formula

= ((P(~) y(2})
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O=P „(k)i
(k )- (k" )+Z„'„(k) „.~( ).

(6.15)

The optimal dynamical weight e o for paths is
given according to (6.15), (6.11), and (6.13) by

G.[4]= l4*(l)[C,',.(»)+ 4T(13, 42)

&& &e*(3)e(4)& ]4 (2) (6.16)

The quartic field term of G [Eq. (3.21)] has been
approximated by replacing a product of fields by
its correlation (note however the factor of 4). The
latter is determined self-consistently by the func-
tional G, and thus the spirit of the variational so-
lution is that of a sej.f-consistent "mean-field-
products" approximation. In models for critical
statics the variational approach is equivalent" to
a mean- (single} field approximation. Here the
mean field (5.1) vanishes so that cubic terms of
the functional G do not contribute to (5.2) and
(6.16)—only even powers of the coupling function
W [Eq. (3.11)]enter G,.

action W [Eq. (3.11)] has been approximated here
by a relaxation (or decay) mechanism produced by
nonlinear interaction of fields. In turbulence theo-
ry this relaxation rate [D(k)ZO(k) p ' which accord-
ing to (7.2) enhances the viscous damping Q„,(k)
= v4' would be interpreted by an effective eddy
damping

(7.5)

The eddy viscosity t),(k) describes damping of ed-
dies (i.e. , velocity modes) by decay owing to coup-
ling to others. Note that p(k) [Eqs. (7.5), (7.4)]
retains the nonlocal triad coupling scheme of wave-
vectors characteristic of the NSE. Thus, our eddy
viscosity does not show the deficiency of earlier
theories" approximating energy-transfer terms by
interactions between pairs of wave numbers.

In the description of long-wavelength, low-fre-
quency fluctuations within the language of general-
ized hydrodynamics" the eddy damping would be
hidden in the complex renormalized viscosity
vs(k, e) introduced as a relaxation kernei2' into the
equations of motions for velocity fluctuations by

VII. CORRELATIONS
C(k, &u} = —2Im . , C(k) .

1
(7.6)

The velocity correlation function C,(k, e) of the
variational approach is determined by (6.15). Tak-
ing the trace one obtains

In view of the Markovian character of the varia-
tional solution one has to identify

C,(k, (d) = C,(k), ~, )

2Q, (k)
(V.l)

0 k) = v'(k, &u=O) = [v'+ p,'(k) ]'i' (V.V)

with

,n,'(k) = n'„,(k) + D(k)Z, (k),

Co(k) = C„,(k)
n„,(k)

(V.2)

(V.3)

Kx Co(q)
D( )f(x,y, z) (V.4)

is positive since f( ,xyz) ~ 0 for d~ 2. This func-
tion is also bounded from above and dimensionless
since it only depends on the three cosines x, y, z
of the triangle formed by k, q, ~ (see Appendix B).

The equal-time correlation function C,(k) of the
variational approach is the solution of the integral
equation defined by (7.2)-(7.4). The frequency
spectrum (V.l) of velocity fluctuations reflects
pure relaxational dynamics: The net effect of the
transfer terms in the NSE [Eq. (3.8) ] coupling dif-
ferent Fourier modes together via the triad inter-

Here (d- 1)Z,(k) denotes the trace over the last
term in (6.15) (see Appendix B). The "self-energy"

Before discussing the results (7.1)-(7.7) further,
one should note that the stirring force spectrum
D(k)- k' (see Sec. III) requires a special treat-
ment. Since Z, (k) is positive the variational equal-
time correlations C,(k) [Eq. (7.3) ] are smaller
than the ones stemming from linear theory. The
equilibrium dynamics enforced by D(k)-k', how-
ever, requires that C(k) =C„,(k)—static correla-
tions are independent of mode-coupling effects
since the velocity field amplitudes u (k) are Gaus-
sian distributed according to (3.17) with a variance
(3.22d) given by the linear theory. It is easy to
see why the unrestricted variational approach gives
wrong equal-time correlations in this case. The
latter are determined by the stationary distribu-
tion P,„,„[u] of the field amplitudes u (k, t=O)
which according to (2.9) and (2.6) is given by an
integral over paths from t = — to t =0 with the
weight e ~. In thermal equilibrium, mode-coupl-
ing effects on the paths u, (k, t) cancel out in (3.17)
when the integration along the paths is performed
with the proper weight. The variational dynamic-
al weight e ~0 for paths, which only approximates
the effect of mode coupling on the time evolution,
does not yield the delicate cancellation in path in-
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D(k) = Dk". (7.8)

Investigating pure power laws [Eq. (7.8)]' (with ar-
bitrary exponent p) is common practice so far and
a matter of convenience: The connection between
the behavior of static correlations C,(k) [Eq. (V.3)]
and the dynamic frequency Qo(k) [Eq. (7.2)] on the
one hand and the stirring spectrum on the other
hand is most easily established for power laws. In
order to extract the qualitative behavior of the
solution to the integral equation [Eqs. (7.2)-(7.4)]
for given exponent y we will henceforth discuss
power laws. Suppose

tegrals. Consequently the distribution of final
values u (k, t =.0) of the paths differs from the re-
sult in linear theory.

For general nonquadratic stirring spectra &(k)
(e.g. , for one creating turbulence) the stationary
distribution mill not be determined by linear theo-
ry, i.e. , mode-coupling effects will show up. In
this case our result indicates that the variational
treatment of nonlinear interactions is more suc-
cessful. This is not at all trivial since the varia-
tiorial procedure effectively amounts to an approxi-
mation for paths, or better their weight e ~0, which
might be a reasonable one for the dynamics. The
static behavior of the system is determined by the
stationary distribution which involves an integra-
tion over the approximated paths and an "accumu-
lation" of small errors could take place.

The deviation from the linear result when &(k)
-k' must be small in the limit of weak nonlinear
coupling (k-0, d&2). Then also the eddy viscosity
(7.5) is small and as we shall show later A, (k)-A«, (k), i.e. , C,(k) -C„,(k). In the strong coupl-
ing regime (d(2) large nonlinear field interactions
are approximated by a large eddy viscosity and the
integral equation [(7.2)-(7.4) ] gives a wrong power
law for

vso (k -0, &u = 0) (7.7) . An ad koc remedy
would be to violate the self-consi'. stency restric-
tion (V.3) and replace C2(k) in Eqs. (7.1), (7.2),
and (7.4) by the correct correlation C„„(k). Then

vi, (k-O, ~=0), [Eq. (V.V) ] shows for d(2 the ex-
pected divergence -k' "i'. A systematic treat-
ment when &(k) -k' is presented in Sec. VIII.

In the remainder of this section we will discuss
the variational solution (7.1}-(7.7) for nonquadra-
tic stirring spectra

To derive this approximation (V.10}for p'(k) we
have evaluated Z, (k) [Eq. (7.4) ]with the approxi-
mate solution (7.9) by introducing dimensionless
variables $ = Pc/k, g = q/k, e =k/k, so that

2m "5 -q-e Co g
~ g, y, z . (7.11)

p(k -0)/v «1 (7.12)

the nonlinear interaction of velocity modes yields
only small corrections to the linear theory

A, (k) =Q„.(k) 1+ I

/y(k) ) 2 &/2

(V.13a}

/p(k) 2 1/2
C2(k) = C,i,(k) 1+ I( (7.13b)

The condition p(k -0)/v «1 imposes a consistency
restriction since it requires that the exponent of
p'(k) [Eq. (7.10})be positive

d- 2+c&0, (7.14)

There are three regions in $, q space which might
give divergent contributions to K: (i) Long-wave-
length contributions from q-O, g -1. For C,(k)
showing power-1am behavior even in the limit k-0
there is no divergence if c&- d that means as long
as the kinetic energy per unit mass J„-Co(k) dis-
plays no divergence from long-wavelength fluctu-
ations. To ensure a finite kinetic energy for
e &- d one has to assume a rounding for very. small
k. Note, however, that the coupling function

f(x,y, z) is not defined at g =1, g= 0. (ii) Long-
wavelength contributions from $-0, g-1. They
converge for p (2+d mhich will be the case in our
investigations. (iii) uv contributions from q- ~
($ =2)). They remain finite if C,(k) show the phys-
ically expected exponential screening of very large
wave-number fluctuations. Convergence problems
do not occur, however, with a locality enforc-
ing cutoff procedure like, e.g. , min(1, g, g)
& 2max(1, q, g} which preserves scaling properties
and thus can be used to discuss overall power-law
behavior.

Let us first discuss the long-wavelength behav-
ior of velocity fluctuations generated by the stir-
ring forces. In the first limiting case of weak
nonlinear coupling

C2(k) kc (7 8)
c= p- 2. (7.15)

solves Eqs. (7.2)-(7.4) for a broad range of

wave numbers then also Z2(k) [Eq. (7.4)j and p(k)
[Eq. (7.5)] display approximately power-law be-
havior:

And c =+ —2 characterizes the power law of C,(k)
in the weak-coupling limit [Eqs. (7.12) and
(3.22d)]. The restriction (7.14) defines a boundary
dimension
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depending on p above which velocity fluctuations
are weakly coupled: [p(k)/vj'-k" 2*. In this re-
gime d) d* the long-wavelength form of (7.13) is weak coupling

Z=2

Q, (k) = vk'[1+ (const)k' "*]'/' (7.17a) c=g-2

C, (k) = (D/2v)k" '[1+ (const)k2 2 ] '/' (V.17b) 0—
Since the variational solution is Markovian the ef-
fects of nonlinear mode coupling —which also cause
long-time tail behavior of vs(k, ~) (Ref. 23)—show

up here only in 0 spa, ce, e.g. , as corrections 0
in the characteristic frequency Q, (k}.

For the other limiting case of strong nonlinear
coupling

strong coupling

I=2- d d
3

v/p(k-0) «I (7.18)

d"- dc=tp-2 +
3

2i 1/2
Q2(k) = P, (k)k 1+

t( k
(7.19a)

D(k)C(k)= „(), I+i „() (7.19b)

Again there is for finite v a consistency restric-
tion which, according to (7.10) reads

viscous damping of velocity fluctuations is small
compared with relaxation due to nonlinear inter-
action. Then

-4
2

FIG. 2. Long-wavelength behavior of velocity Quctu-
ations generated by stirring forces with a spectrum
D(k) =Dk" (cp & 2). The dynamical exponent z is defined
by the characteristic frequency Qo(k) k», the static ex-
ponent c by Co(k) -k . A Kolmogorov spectrum += -). 3
for the energy E(k) -k™is found along the dashed line
up=-d for infinite Reynolds number (v 0).

d- 2+ c (0. (7.20)

The exponent c in the strong coupling regime is
determined by (7.19b) and (7.10):

c = (/)- 2 —2(d- 2+c). (7.21)

[v/ t( (k) ]" k'"- (7.22)

We have used (7.21) and (7.16) to express c as

C = (I2 —2 + 3(d* -d) . (7.23)

The characteristic frequency Q, (k) and the equal-
time correlation C2(k) for long-wavelength fluctua-
tions in the strong coupling limit d(d* then read

Q (k) -k2 2(& &&/3[1+(const)v2k2(d" d)/3])/2

(V.24a)

(k) k2 2+(d 2)/3[I +(const)v2k2(If d)/3] )/2

(V.24b)

Combining the two last equations we find that long-
wavelength fluctuations are strongly coupled for
d(d* [Eq. (7.16)]:

The results obtained so far are summarized in
Fig. 2. They coincide with renormalization-group
calculations' done for p =0 and d~~ d*=4. At d=d*
viscous and eddy relaxation are equally important
and one expects logarithmic terms' in (7.24).
Within our qualitative discussion of Eqs. (V.2}-
(V.4) we can not argue about logarithmic behavior
of the solutions to (7.2) and (7.3) st d=d*.

Note that the dynamic exponent z = 2 ——,'(d*- d)
[Eq. (7.24a)] of velocity fluctuations generated by
nonquadratic stirring spectra differs in its depen-
dence on d" —d from s = 2 —2(d* —d) which des-
cribes the case D(k)-k' discussed in Sec. VIII
{also the ad koc treatment for V) = 2 yields the cor-
rect exponent). We have not investigated the cross-
over.

In order to discuss the behavior of turbulent vel-
ocity fluctuations we shall investigate correlations
in the limit of vanishing viscosity (infinite Reynolds
number'). To obtain a solution to (7.2)-(7.4) for
finite viscosity, say, in the inertial range between
the energy containing eddies and the dissipation
cutoff requires more numerical effort.

In the limit of v-0 the dissipation range is
pushed to higher and higher wave numbers and so
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-', (rT'(r, r)) =f dkk(k)
0

(7.25)

Since the average velocity square (u') can be writ-
ten

Tr„, (4'(1)k(2))=(d-2 )fC(k),
P] P2 Yl

(7.26)

the fluid balances in a stationary state the average
rate of energy input D(k)ddk into ddk by the stir-
ring forces against the net average rate with which
the nonlinear mode-coupling mechanism transfers
energy out of the volume d"k. Fournier and Frisch'
have shown within the eddy-damped quasihormal
Markovian (EDQNM) approximation"'" that a vel-
ocity spectrum -k" '""*"' ' leads to a convergent
negative transfer integral as long as d&d*. So
we will restrict ourselves in the following to forc-
ing spectra p&4-d.

In turbulence theory the spectral distribution of
energy (per unit mass) E(k) over wave numbers is
of considerable interest:

C&&, determined by the linear theory. In our vari-
ational approach we will guarantee

C„„(k)= Cg(, (8.1)

H(k, 2) = 4(())" f k(1) IC...(k, tr)
4

C„,(k, u))] (8.3)

represents the auxiliary condition (8.1). The
Lagrange multiplier g(k) should not be confused
with the eddy viscosity of Sec. VII. We have in-
troduced n(0) in (8.3) to compensate for a term
arising from functional derivatives. The trial
functional G, [(t), X] and the parameter set X(p)
=C,(P) are those of Sec. V. Since the variational
correlation function C „(p) was defined by

r

via an auxiliary condition. Instead of (4.3) one
now has to find the minimum of

(8.2)

one finds

E(k) = (const)kd 'C(k). (7.27)

C...(k) =
4 1 Tr,,-„f (4 '(1)4 (2)). , (2.4)

2

we obtain with (4.8) and (6.12)

Q (k) —i/(k)k2 k2-(d -d)/3 (7.28a)

C (k)
~ ) ke-24(d*-d)/2D~k

2 i/, (k)k'

and the characteristic exponents are

(7.28b)

x = g+ s(q +d), (7.29a)

For vanishing viscosity the variational approxima-
tion (7.2)-(7.4) is determined by (7.19):

(8.5)

(8.6)

c„,( p) = c,( p) c,(p) [c,'„(p) c,'( p)

+ Z, (k)]C,(p) .

Z, (k) [Eq. (7.4)] is a linear functional of the op-
timal parameter set Xc(p) = C,(p) determined by
the minimum of (8.2).

Variation of the two first terms in (8.2) with re-
spect to X(p) yields [cf. (4.6), (6.1)-(6.4), (6.12)]

——,
'

g~(12)S(12)= 4(0) ~(d —1)

x [C-,'„(p) C (p)+Z, (k)]

m =-', ——', (q +d).

Here m is defined by

(7.29b)
and the variation of the third term reads

p" =n(0)
2

4(k)co(p)[c((„(p)—C.'(P)

E(k)- k (7.30)

and z is the exponent of the frequency (7.28a).
Thus stirring forces which inject energy into the
volume dk around k at a rate D(k) =Dk cause the
kinetic energy contained in the velocity field to be
distributed according to Kolmogorov's law. " Note
that in this case (q) = —d) the energy input rate into
the wave-number band dk around k varies as k '.

where

+ z,(k)]+ r, (k)j,
(8.7)

1.(2) kf rdk')Cl(k') =4 '. (8.Sa)

A straightforward evaluation making use of the
symmetry f(x, y, z) =f(x, z, y) [Eq. (B8)] in Z, (k)
[Eq. (7.4)] shows that the functional dependence of

VIII. SPECIAL CASE D(k) =. Dk2 MINIMIZATION

WITH AUXILIARY CONDITIONS 1,(k) = 2& "Gled —q —k p, q

A stirring spectrum D(k)=Dk' enforces a Gaus
sian distribution (3.17j for the velocities with
wave- number- independent equal- time correlations

x C', (q, ~)f(x, y, z) (8.8b)

is quadratic in Cc(P) and linear in //, (k). The first
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extremal condition of (8.2) is

6&j(p)
'" =o=r, (k)+[1+

& (k)c, (P)]

x [C,'„(P)—C.'(P)+ Z.(k)], (8 9a)

the second reads

C„, C, (k) C, „-C, (k)
Q, (k) Q, (k) Q, (k)

C, (k) [I",(k) + Z, (k)]+ —Q, (k)R(k, v = 0)

C,(k)[r, (k)+ Z, (k)]+ Q„(k)

(8.15)

6K[»., p]
6 p(k)

C, p —C, p C-,'„p C,'p
(k0)CO(k)Q&&(k)

C„, Qo(k)

[C,(k) C„,]p(k)+ C,(k)1,(k)

= -Co(k)ZO(k) —Qs(k), (8.10b)

where the coefficients are functionals of C,(p) and

C„,(P). Here we defined

R(p) = [Co(P) —C».(p)]/Ci &.(P) (8 11)

Q„(k) = R(P): (8.12)

One obtains a single integral equation for C,(p)
alone by inserting the solutions p(k) and I',(k) of
(8.10) into Eq. (8.8). We will not try to solve this
equation for C,(p) but rather guess the zero-fre-
quency long-wavelength behavior of C,(p) which
is consistent with (8.10) and (8.8). But first let us
rewrite C„„(p) [Eq. (8.5)] in the following form:

c...(p) = c,(p)+ [c„, c,(k)]

C,(p)[I,(k) + Z, (k)]+R (p)
C (k)[I" (k)+ Z (k)]+ Q (k)

whjch obviously displays property (8.1) since the
frequency integral over the quotient gives unity.
Equation (8.13) was obtained by inserting», (k) of
(8.10b) into (8.9a).

To discuss the zero-frequency long-wavelength
properties of the variational spectrum (8.13) we
define frequencies Q(k) characterizing low-fre-
quency fluctuations according to (7.6) by zero-
frequency values of generalized viscosities

(8.13)

Q(k) = k v(k, &u = 0) .
Then Eq. (8.13) determines Q, (k) by

(8.14)

z.(k)]c.(p) —c„.(p)}.

(8.9b)

Equations (8.9) are coupled, noniinear integral
equations of C,(p) and p, (k). They can be rewritten
as a system of linear, algebraic equations in g(k)
and I', (k):

c.(p) [R(p)+ z.(k)c.(p)] u (k) + c.(p)r.(k)

= -Co(P)ZQ(k) —R(P) (8 loa)

The appearance of another frequency Q„(k) [Eq.
(8.12)] appears at first sight to be a salient feature
of (8.15) and of Eq. (8.10) at ~=0 for p, (k) and

1,(k). We will show however, that this spectral
moment Q„(k) for which we assume Iong wave
length power-law behavior

k"+ for d&2
Q&,(k) k" for d& 2

(8.16)

does not influence the characteristic exponent of
the low frequency Q„,(k). With the following an-
satz for the solution of Eq. (8.8) and Eq. (8.10) at
a)=0

C, (k) 1+ (const)k" ' for d) 2

C 1 in 1+ (const)k' ~ for d& 2,
(8.17)

1+(const)k"+ ~ for d)2
I'o(k) k x

1+ (const)k" for d & 2
(8.20)

for long wavelengths. To obtain (8.19) and (8.20)
we used the approximation [cf.(7.9)—(7.11)] Z, (k)
-k~. Inserting (8.19) into (8.8b) one verifies that
Eqs. (8.19) and (8.20) are consistent with (8.8b)
evaluated in the scaling approximation (7.9)-(7.11)
for all cases r, —d within the additional approxi-
mation

Cok~+ =0 k Cok, (u (8.21)

under the integral of (8.8b). Thus Co(k) [Eq. (8.17)]
and Qo(k) [Eq. (8.18)] satisfy the extremal condi-
tions (8.9) in the considered frequency and wave-
number regime. The results (8.16)-(8.18) and
(8.20) cause the quotient in (8.15) which contains

Q, (k) 1+ (const)k~ ' for d )2
Q (k) (const)k ' -~&~' for

one finds the solution p(k) and I', (k) of the inhomo-
geneous linear system (8.10) at ~ = 0 to behave
like

1+ (const)k"' " for d &2
p, (k) k x

k "~&~'[1+ (const)k"- ~] for d &2,

(8.19)
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I', (k) and Qz(k) to be constant for small k so that
the characteristic exponent of Q„,(k) is not in-
fluenced by Qz(k). The k' behavior of the quotient
in (8.15) for d &&2 holds for r, ~ d as well as for
r, &d since in the first case according to (8.20)
I',(k)-k and in the latter I",(k)-k"'. The final re-
sult for the. characteristic frequency of long-wave-
length fluctuations

Q„(k) 1+ (const)k" ' for d &2

(const)k (2-~ ~l for d & 2
(8.22)

has been obtained previously by other methods. "
IX. SUMMARY

We have applied a variational principle to the
generating functional of velocity correlations in
randomly stirred fluids described by forced NSE.
The generating functional is given Qy an integral
over all paths with a weight e ~'~'. The general-
ized Hamiltonian G [P] contains quadratic, cubic,
and quartic terms in the field P and describes the
statics as well as the dynamics of the Markov
process defined by the forced NSE. The optimal
quadratic trial functional Go [Q ] without subsidi-
ary conditions amounts to a self-consistent mean-
field-products approximation to G [Q] where two
fields of the quartic nonlinearity are replaced by
their correlation evaluated with weight e

The resulting spectrum- of velocity fluctuations is
positive. It displays a pure relaxational dynamics
since. the effect of nonlinear terms coupling differ-
ent modes together via triad interaction is approxi-
mated by a relaxation mechanism described by a
wave-number-dependent eddy viscosity. The ex-
pression for the eddy viscosity explicitly displays
the triad coupling scheme with a kinematic coeffi-
cient found also in second-order closure approxi-
mations.

We investigated the relationship between velocity
fluctuation spectra and Gaussian white-noise stir-
ring forces injecting energy at a rate -k into a
volume element d'k around k. Power-lam injection
spectra were discussed for mathematical conven-
ience only. There exists a boundary dimension
d*(y) =4 —p above (below) which long-wavelength
velocity fluctuations are weakly (strongly) coupled.
In the strong coupling regime static [c=y-2
+ —,'(d*- d) ] and dynamic [z =2- 3(d* —d) ] ex-
ponents characterizing the wave-number depend-
ence of velocity fluctuations were evaluated. In
the weak coupling limit me determined corrections
(-k" ' ) to the results of the linear theory (c = p
—2, z = 2) due to the nonlinear mode-coupling

terms. Our results agree with renormal. ization-
group calculations done so far for p = 0 and p = 2.

The latter case requires a variational principle
mith a subsidiary condition since a quadratic stir-
ring spectrum enforces an equilibrium situation
with a Gaussian distribution of velocity amplitudes
whose variance is determined solely by the linear
theory O.ne then obtains z =2- —', (d*- d) for d&d*
= 2 and corrections -0" ~ to the characteristic
frequency of the linear theory for d&d*. Random
forces with quadratic stirring spectrum obeying
the Einstein relation are irrelevant for turbulence
questions: They do not allow energy accumulation
at low or high wave numbers to set up a cascade
since the energy input is balanced locally in k
space against dissipation.

In nonequilibrium situations (y o2, no Einstein
relation) vanishing viscosity, i.e. , infinite Rey-
nolds number, entails strong coupling of velocity
modes which is characteristic for turbulence. In
a stationary state the energy input is then balanced
against transfer since the dissipation range is
pushed to higher and higher wave numbers for
v-0. The energy spectrum E(k)-k '~'"'"+"' ' re-
sulting from our variational principle for v=0 was
recently also derived mith the Galilean invariant
closure EDAM. ' The non-Galilean invariant DIA"
gives according to Fournier and Frisch' the same
power law as long as long-wavelength contribu-
tions of that power 1am to the total energy do not
diverge, i.e. , for p&1- d. Our variational result
bears some structural resemblance to the
EDQNM but we have not investigated that point
further.

Stirring forces injecting energy at a rate 0 '
(i.e., qr =- d) into the wave-number band dk around
k lead to a Kolmogorov A

' ' distribution of energy
over wave numbers. A study of the commonly as-
sumed universality of the Kolmogorov, exponent
with respect. to details of injection spectra that are
better limited to long wavelengths than power laws
seems to be- feasible within the presented frame-
work and of interest too.
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APPENDIX A E
(2 (q, K) = P„(q)P 2 (K)l8 (K)W (K). . (B4)

Consider the trial functional

G, =
2 [Q(l) —p,, (l) ]*C,'(l2) [(tt(2) —p, (2) ] (Ai)

with the variational parameters

The integrals over ~5 and &, can be performed too
with the final result

2 t(k| = f (2q) II( ttq-k(C (q, t =0)
IC

),(I) =(0(i)), (A2)
IP

X
D( )

f22(((qt K) ) (B5)

and with C,(12) the correlation function for fluc-
tuations around p, Since it has to be diagonal in
frequency and momentum with a real, positive
spectrum one finds

5G, /6P,*(1)= —C, '(12) [(tt(2) —P, (2) ]

where we replaced F ~(q, K) [Eq. (B4)]by Kmf &(q, K).
The factor ~' comes from the square of the
coupling functions and the matrix

f (8q, K)=&
~

1—
qK

The extremal condition (4.6) with respect to the
parameter set p, , thus reads +—"=,'—' d 3+4 q'

K - gK:

0 = C, '(12)s(2), (A4)

s(l) =0, and (P(1))„„=(u,,(1), (A5)

so that only p, =—0 ensures (I(tt(1)), =0. One can
verify directly that s(1) [Eq. (4.9) ] vanishes for
p, =0 caused by the coupling function u ~„(k) [Eq.
(3.llc) ] being odd in k.

2

APPENDIX B

where s(1) is defined by (4.9). Since C, (12) is diag-
onal in 1, 2, snd positive (A4) implies

Q' K~+K Q'g q ' K

gK qg
(B6)

P (E)f „(q, K)P„(R)= (d- 1)f(x,y, g),

(d —1)f(x,y, &) = 2(d- 2) —4y'g'

(B7)

—2xyz+ (3 —d)(y'+z') (B8)

depends only on the three cosines

is dimensionless.
In the following the trace over Eq. (B3a) with re-

spect to e „n, will be determined. lt turns out
that

First we will evaluate the self-energy

Z, (12) =4T(13,42)(Q"(3)(tt(4)), ~ (Bl)
= =oe, ,

k q
kq

The projectors from the correlation function can be
absorbed into the coupling functions so that

q K
=g = cos 62,

gK
(B9)

Zo(12) =4W*(513)D '(56)W(642)Cc(34). (B2) k v =z = cosew

Two integrations (summations), e.g. , over 6 and 4
can easily be done to yield

Z.(12)= &(P, —P.)P...;(k, )

(B3a)

of the triangle formed by k, q, x. One thus has

P„g(k)Zg„(k)P„(k)

= (d- 1) (2w)" &(K- q- k)

with

x F ~(k„k5) (B3b)

Kx C,(q, t =0)
D f(x,y, z). (B10)

Incidentally a'~~= —,'(d- 1)f(x,y, z) appears as kine-
matical coefficient' '" in the numerous and widely
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used second-order spectral equations approximat-
ing the dynamics of turbulence. Using trigonometric
transformations and the boundedness of the cosines
one can show"'"

0&f(x,y, z) for 2 &d. (B11)

A crude upper bound for f(x,y, z) is easily obtained
to be 4/(d- 1) for 2 ~ d ~ 3 and 2 for d ~ 3.
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