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A set of n coupled two-dimensional area-preserving mappings in taken as a model problem for the study of
the stochasticity of dynamical systems with n degrees of freedom. The connectance of the system is defined
as the percentage of two-dimensional mappings that are directly coupled. This work suggests that large
complex dynamical systems may be expected to be stable below some critical level of connectance, but that
as the connectance increases above that level they would become unstable.

1. INTRODUCTION

The behavior of dynamical systems is deeply in-
fluenced by the existence of isolating integrals and
by the size of the domain of the phase space where
such integrals exist.! Numerical experiments on
a one-dimensional self-gravitating system have
shown that the proportion of the measure of the er-
godic domain with respect to the whole volume of
the phase space increases very rapidly as the num-
ber of degrees of freedom increases.? This result,
however was obtained with a system that is fully
connected, i.e., where every variable has a di-
rect effect on every other variable.

For another dynamical system, Casartelli et al.’
using a Lennard-Jones potential between neighbor -
ing particles, found that, even for a large number
of degrees of freedom, non-negligible integrable
zones remained. Here the amount of connected-
ness (“connectance”) is very small. Only neigh-
boring particles interact. In many dynamical sys-
tems the connectance is far below 100%. Not
every person in a slum has an immediate effect on
every other person and not every cell in the brain
affects every other cell directly®; in a planetary
system each planet interacts with all the others
though there is a dominant attraction to the mas-
sive star. The ratios of the masses of the planets
to the mass of the star measure the connectance.
We have studied, using a discrete nonlinear dy -
namical system as a model, the effect of the con-
nectance on the existence and size of the domain
of phase space where the system behaves as
though it were integrable. The model is a 2n-di-
mensional symplectic mapping built from # two-
dimensional area-preserving mappings; such map-
pings have been studied extensively in the last few
years and display the well-known features of con-
servative dynamical systems with two degrees of
freedom.

II. THE MAPPING AS A MODEL
Let us consider N =2x variables x,,...,%,,

YyseesVn and S(y,,...,9,), an arbitrary function.

18

The mapping
A { x'=x+f(y)
y'=y
with f(y)= —8S/8y is canonical and one to one. It
is also a symplectic mapping, i.e., if M is the
Jacobian matrix of A we have !M JM =J, where 'M
is the transpose matrix of M and

J= ( 01 )
=1 0
In our model we have taken a mapping T=A4,°4,

from the two symplectic mappings A, and A, gen-
erated by

n
Sﬁi}d, cosy;+b i;cos(z;a”y,),

' EN)
X=Xy —8_377’
A
! = ?—S—2 1,:1 . n.
yi—y,—ax‘ ’ ’
1
S,= —i: 243,
=1
x:=xu
A,
EN)
y;= i—Bkj’ i=1,...,n

(The roles of x and y are exchanged in the defin-
ition of A,.) Finally we obtain the mapping T: .

xy=x;+a;sin(x;+y,)
T +bi:ai.ism(§:an(xk+yk)),
=1 =1

V=X +Y; =1, m
We have taken a;,=a;; and
a;;=1 forj—-i<N,
=0 forj-i=N,

with j = 1.
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FIG. 1. The mapping 7y fora;=-1.
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FIG. 2. The mapping 7( for a;=-1.3.



TABLE I. Datafor Figs.1 and 2. (x, ¢ are the ini-
tial conditions and M the total number of iterations for

each orbit,
Fig. ay % Yo M
1 -1 0.1571 0 500
0.3142 0 500
0.4712 0 500
0.6283 0 500
0.7854 0 500
0.9425 0 500
1.0996 0 500
1.2566 0 500
1.4137 0 500
1.5708 0 500
1.7279 0 500
1.8850 0 500
2.0402 0 500
2.1991 0 500
2.5133 0 500
2.6704 0 . 500
2.8274 0 500
2.9845 0 500
3.1416 0 500
0.6300 —~1.8850 500
0.6400 —1.8850 500
0.6280 —1.8850 500
—1.7500 ~1.7000 500
—2.0900 —~2.5100 500
—2.2000 0 500
—3.1400 1.8800 500
—-2.5100 ~1.9000 500
2.5000 2.5100 500
2 -1.3 0.1571 0 500
0.3142 0 500
0.4712 0 500
0.6283 0 500
0.7854 0 500
0.9425 0 500
1.0996 0 500
1.2566 0 500
1.4137 0 500
1.5708 0 500
1.7279 0 500
1.8850 0 500
2.0420 0 500
2.1991 0 500
2.3562 0 500
2.5133 0 500
2.6704 0 500
2.8274 0 500
2.9845 0 500
3.1416 0 500
0.6300 ~1.8850 500
0.6400 ~1.8850 500
0.6280 —~1.8850 500
—-1.7500 —~1.7000 500
—2.0900 -2.5100 500
—2.2000 0 500
—3.1400 1.8800 500
—2.5000 1.9000 500
2.5000 2.5100 500
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We call N, the connectance number. When N,
=1, the mapping T is the product of n two-dimen-
sional mappings 7,,

T {x; =x,+(a;+b) sin(x;+v,)

i
Vi=x+ 9,

When N,=# -1 the connectance between the map-
pings 7, is maximum; i.e., each mapping 7, inter-

" acts directly with the others with the same

strength. Already, for N,=3(n+2) if # is even and
N,= 3 (n+1) if n is odd, each mapping interacts
directly with the others but not with the same
strength.

The mapping T has been studied extensively for
N=4 by Froeschlé®and Froeschlé and Schei-
decker.® Inparticular, the shape of the set of points
(i.e., the sections of the invariant manifolds and their
disappearance) canbe clearly illustrated with visual
methods. We take at random thea,between1and1.3.
Figures 1 and 2 display typical sets of points for the
mapping 7, with initial conditions given in Table I.
Figures 1 and 2 exhibit all the characteristics and
well-known features of problems with two degrees of
freedom, such asinvariant curves and islands, which
correspond to the existence of isolating integrals,
and also wild zones, sometimes called “ergodic,”
where the points seem to fill a broad region in the
plane and which correspond to the nonexistence of
isolating integrals. When a, varies from -1.3 to

- -1, there is a continuous deformation of the in-

variant-curves zone around the invariant point
(0,0) and a shrinking of the ergodic zone. With »
ranging from 10 to 50 it is too costly to explore the
whole 2r-dimensional phase space. Therefore,

we have looked only at the dimension of the zone

of stability (or integrable zone) around the point
x;=0, 9,=0, i=0, i=1-n.

Among the various possible tests of the stochasticity
of adynamical system, the divergence of two initially
close orbits hasbeen selected,’ this being the cheapest
and quickest test. Indeed, inthe wild zones, thedi-
vergence of such orbits is roughly exponential, inop-
position to the linear divergence in the integrable
zone. For a given mapping T (r and N, given), we
have taken the initial condition of the first orbit
along the line A: x,=9,=8, i=1,...,n with a step
equal to 45 7. In the second orbit, the initial value
of the coordinate x, is increased by a quantity €
=10"1°, We define the distance between these two
orbits in the phase space by

4i=[ 5 (B im0 -z

Sl -sor)]
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FIG. 3. Variation of dygy as a measure of the stochas-
ticity plotted against & for N=30, b=0.01 and different
values of the connectance number N ..
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where x,x, and x;y} refer to the first and the sec-
ond orbits, respectively. We take K=2000. Figure
3 shows the variations of log,yd,,,, When the initial
conditions vary along the line A for different val-
ues of N, N being taken equal to 30. For N, =3
and 6 we see a drastic increase of d,y, for x;= 57,
which suggests the existence of an integrable zone
around the origin and a sharp transition zone to
the stochastic zone. This was well known for N =2
and N=4. On the other hand for N =9 the inte-
grable zone has disappeared. Figure 4 shows the
variations of log,,d,,,, for given initial conditions

* when N, increases. As suggested already by Fig.
3 the transition is rather sharp. We note an inter-
esting phenomenon for N,=8 and x,= gm: we still
have an integrable behavior in opposition to the
wild behavior for N,="7. By analogy to the well-
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FIG. 4. Variation of dyy as a measure of the stochas-
ticity plotted against the connectance number N, for N
=20 and 30 with the same initial conditions xi=y,-=-§‘31r.

known features of dynamical systems with two de-
grees of freedom we will call this an island pheno-~
menon. Figure 5 summarizes the results obtained
for N=10,20,30,40,50. We show for different val-
ues of the connectance number N, the dimension

of the main continent. For N small (even for 10),
there is a continuous change. But already for N
=20 there is a region of steep decline, and above

a certain critical value, N,=8, the integrable zone
has a very small measure. Thus, even for N=20,
questions of stability can be answered simply by
asking whether the connectance number N, is above

Ne
1 2 3 45 6 7 8 9 10 M12 131415 1617 18 19 20

FIG. 5. Dimension of the main continent as a function
of the connectance number N..



109,6(d5000)
T b=0100
b=0075

b=0100

520075~k =357]
7 /s

|
]
H
i

i b:ooso[ :’b=0,010
:
|
'

-0 678 12345678

5
I xlelo

FIG. 6. Variation of dyjy as a measure of the stochas-
ticity plotted against 6 for N=30, N,=5 and N=20, N
=3 and different values of the coupling number b.

or below the critical value.
This feature repeats as N increases. The curves

are shifted to the left but for N=40 and N=50 they
are almost the same and for N, =N, (N,="17 is called
the critical value of the connectance number N,),
the integrable zone has disappeared. If we con-
sider the values of D for N =6, the separations are
approximately (12,7, 3)s57 which looks like a geo-
metric progression. This is a further evidence
that N, has a nonzero limit when N tends to infinity.
However, if we consider the connectance c=N,/N
instead of N, the critical value ¢’ of ¢ decreases
with N. Gardner and Ashby* have shown for linear
systems where the connectance is defined as the
percentage of nonzero values in the distribution of
the matrix elements (i.e., a kind of diffuse connec-
tedness) that above N=10 questions of stability can
be answered only by asking whether the connec-

CONNECTANCE OF DYNAMICAL SYSTEMS WITH INCREASING...

281

‘tance ¢ (c is defined as the percentage of nonzero

values in the distribution of the matrix elements)
is below or above a fixed value ¢’=0.13. In the
present model we find a similar kind of answer,
but for N, not ¢, below or above 7. The reason
for this is that in the mapping T there is a local
connectedness: i.e., the mappings 7, interact only
with their neighbors.

Figure 6 shows the variations of log,,(d,,) With
distance to the origin when N and N, are given (N
=30, N,=5 and N=20, N, =3) but for different val-
ues of the coupling number b. As expected, we
see that the ergodicity of the system increases
with b with however an exception for N=20, N =3,
b=0.05, &7 <6 <Z&n for which we have again an is-

land phenomenon.
III. CONCLUSION

It appears that for this particular dynamical sys-
tem the dimension of the zone of stability around
the origin depends not only on the number of de-
grees of freedom but also on the connectance.
Moreover, if N is quite large (N> 40) it seems to
depend only on the connectance number. Above a
certain critical value of this number the system
is unstable and below it there is quite a large do-
main of stability. Of course there are only numer -
ical results for a particular model: Casati and
Ford® have shown numerically the total inte-
grability of the Calogero Hamiltonian where each

particle interacts with all other particles, i.e.,
maximum connectance. But integrable systems are
particular cases of measure zero in the class of
dynamical systems. On the other hand some pre-
liminary results that we have obtained with Schnei-
decker using an isolated one-dimensional self-
gravitating system consisting of N plane parallel
sheets with a predominant mass seem to show the
same results as those of the present paper.
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