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Equilibrium theory of a semiclassical fluid of nonanalytic potential:
Application to the Yukawa-tail fluid
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Using the quantum-mechanical hard-sphere system as a reference system and the attractive interaction as a
perturbation, we present computationally convenient theoretical methods for calculating the structural and
thermodynamic properties of a fluid in the semiclassical limit. This approach is based on the assumption that,
for a dense fluid, the quantum efFects are largely determined by the repulsion Pue to the hard core and the
attractive interactions play a minor role. The exponential approximation for the radial distribution function

and "{optimized random-phase approximation)+ B2" for the excess Helmholtz free energy have been applied
to calculate the structural and thermodynamic properties of the Yukawa-tail fluid in the semiclassical limit.

I. INTRODUCTION

The problem of calculating the structural and
thermodynamical properties of fluids in the semi-
classical limit has been a subject of considerable
interest in recent years. ' " In the semiclassical
limit, quantum effects are small and can be
treated as a correction to the classical behavior.
The contribution of the quantum correction is
usually calculated by using the signer-Kirkwood
(WK) methods' for the analytic potential and by
using the Hemmer-Jancovici (HJ) methods ' for the
nonanalytic potential. The basis of their methods
is an expansion of the physical properties of
interest about its classical limit.

Singh and Ram, " Gibson, "' Nienhuis, '
a,nd

Sinha and Singh'4 have investigated the quantum
effects on the structural and thermodynamic
properties of fluids. It has been shown that the
contributions of higher-order corrections in-
crease with the density. At liquid densities one
has to consider several terms of the series even
at high temperatures. In all these treatments,
however, the correction terms are written in
terms of the classical three-body and higher cor-
relation functions. But the evaluation of these
correction terms with reasonable accuracy is not
possible. Recently, Sinha and Singh, "using
cluster~expansion and topological-reduction tech-
nique, have developed computational. ly convenient
approximations for the structural and thermody-
namic properties of fluids in the semiclassical
limit. In this approach the classical hard-sphere
system is treated as a reference system and the
attractive tail and the quantum effects as a per-
turbation. For a class of potential. the series con-
verges slowly and this approach is not suitable
except at high temperatures and low densities.

In this paper, we develop a method for evaluating
the structural and thermodynamic properties of

fluids in the semiclassical limit, in which the
quantum-mechanical hard-sphere system is taken
as a reference system and the attractive interac-
tion as a perturbation on this hard-sphere system.
The basic physical concept, associated with this
approach, is that the quantum effects are largely
determined by the repulsion due to the hard core
and attractive interactions play a minor role.

A technique of cluster expansion and topol. ogical.
reduction is used here. In Sec. II, we review the
cluster theory of the structural and thermodynamic
properties of fluids in the presence of two- and
three-body Mayer functions in terms of usual
diagrams. "" In Sec. III, the series is trans-
formed using a topological reduction in terms of
h» bonds of reference system [Pi»(z,jjj,(i,j ) —l
is the quantum-mechanical pair-correlation func=
tion]. The "renormalized" potential is defined and
used in Sec. IV to reduce the series obtained in

Sec. III to a compact form. Expressions for the
radial-distribution function (RDF) and excess
Helmholtz free energy are given in a form suit-
able for computations. The theory is applied to
a fluid of the Yukawa-tail potential in Sec. V. The
results are discussed in Sec. VI.

The exchange effect is not considered in this
paper.

II. CLUSTER THEORY OF THE SEMICLASSICAL FLUID

The quantity of central importance in the quantum
theory of fluid is the Slater sum. In the semi-
classical l.imit, it can be written""

+'~ —&ar ~sr ~

where W„' is the classical value of S'„and is
defined as

. 8'„'=exp — »,j
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Here P=(kT), u(i, j) is the pair-potential energy
between particles i and j. A "modified" 8' function
W& is written in terms of "modified" Mayer
function f»..., by the relation""

W» = g (1+f;q) g (1+f,'~„').
$&j&k

Then (2) can be written in the form

is the perturbation. Equation (5) can be written

(10)

where

f„(i,j) =fI'„(i,2 )+ [1+'f„',(i,j)Jf,'~,

f~
(~ j) e-Bug~(~. sl

w»= II (1+f;,) II (1+f,'~~),
f &g&k

f g =f i; + (1+fig)f 'g

+c e JSQ(f J)

is ihe classical two-body Mayer function.
Recently, this problem has been discussed by

Sinha and Singh. " Thus the cluster series for
the correlation function and the Helmholtz free
energy can be written

p'@(1, 2) = 4,
where g& is defined as the sum of all distinct
connected diagrams (CD) with two white p circles
labeled 1, 2, respectively, some or no black p
circles, at most one f bond connecting any two
circles, at most one f"' bond connecting any
three circles, at least one f and/or f"' bond and
no articulation circles; and

(8)

where H[p, f] is the sum of all distinct connected
irreducible diagrams (CID) with no white circles,
two or more black p circles, at least one f and/or
f"' bond and no articulation circies. An articula-
tion circle is a circle in a connected diagram,
whose removal divides the diagram into two or
more separate parts in such a way that at least
one part contains no white circl.es.

Here &A. is the excess Helmholtz free energy
of the fluid relative to that of an ideal gas at the
same temperature, density, and volume.

Equations (7) and (8) are reduced further in the
following sections.

III. EXPANSION IN TERMS OF EFFECTIVE MAYER

FUNCTION

Substituting (10) into (7) and (8), we can define
(„andH[p, f ] in terms of f„andf~. We then intro-
duce the effective reference Mayer function f„"
defined as

f„"(1, 2) =f„(1,2) + [1+f„(1,2)] Z»

=fa.(1, 2) + [1+f«.(1,2)]f,",

+ [1+fi.(1 2)l[1+f~2 J &» (12)

z» —p d r,gl, (1, 8)g„',(2, 2)

xf,",,'(1+f,",)(1+f,",) +"~ .
But in the semiclassical limit it is expected that
all such diagrams in 2», which involve overlap
of f" and f" are of no importance.

Now with the help of (12) and the definition of
2», the equations (7) and (8) reduce to

p'h (1, 2) = p'k(l, 2) + L»,

where 8» is defined as a set of CID with two
white 1 circle labeled 1 and 2, respectively, one
or more black p circles, one f"' bond connecting
any three circles, some or no f„bonds connecting
any two black circles or one black and one white
circles, no articulation circles and 1, 2 irreduc-
ible. 1, 2 irreducible means there is no direct
link between circles 1 and 2 and if there is more
than one black circle, then we can pass between
any two of them without going through either
circle.

In order to evaluate Z», we substitute the
value of f, from (ll) and eliminate f„',in favor
of h.„',bonds of classical hard-sphere system, by
using lemma 6 of Ref. 18, where h„',(i,j)=g„',(i,j)
—1 is the pair-correlation function of the classical
hard-sphere system. This form of » is similar
to one recently taken by Sinha and Singh. " Eval-
uating the first few diagrams, we get

Our aim in this section is to develop a scheme
in which the quantum-mechanical hard-sphere
system is treated as the reference system. The
pair potential is divided into two parts

and

-A =-PEA+I .
Here we have

(15)

u(r) =u„,(r) +u~(r),

where u„,(r) is the hard-sphere potential and u~(r)

p'&(1, 2) =4, (16)

where g& is defined as the sum of CD with two
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white p circles labeled 1 and 2, respectively,
some or no black p circles, at most one f„"and

f~ bond connecting any two circles and no articula-
tion circles; and

-Pri =H[p,f"], (17)

where H[p, f"]is the sum of CID with no white
circles, two or more black p circles, at most
one f„"and f~ bond connecting any two circles
and no articulation circles. L» is a set of dia-
grams belonging to g„,which involve overlap of
f~ and f" between black and white circles or
involve two or more f"' bonds, all f"'bonds have
at least one black circle common or connected
together at least by two f„bond, while I belongs
to H[p, f], which involve overlap of f~ and f'
or involve two or more f'" bonds and all pair of
circles connected with f"' and/or f„bonds.

Negl. ecting diagrams appearing in I» and L, we
approximate h(l, 2) and H[p, f], respectively, by
h(1, 2) and H[p, f ' ].

ff(i, j) = exp[-Pu~(i, f)]- 1

= Q —([A(i,j)]", (18)

where Q(i, j) = [-Pu~(i, j)].
Substituting (18) into (16) and (17) and eliminat-

ing f„"bonds in favor of h„,bonds of the reference
system [h»(i, j)=g»(i, j) —1 is the pair-correlation
function of the quantum-mechanical hard-sphere
systemJ, by using lemma 6 of Ref. 18, we obtain

p'h(1, 2) =p'h„,(1, 2)+8„, (19)

where S& is the sum of CD with two white p circles
labeled 1 and 2, respectively, some or no black
p circles, at most one h» and any number of Q
bond connecting any two circles, at least one Q
bond, rio articulation circles and no reference
articulation pair circles; and

H[p, f"]=H»[p, f;"]+Sr, (20)

where 8& is sum of CID with no white circles, two
or more black p circles, at most one h&, bond and
any number of Q bond connecting any two circles,
at least one Q bond, no articulation circles, and
no reference-articulation pair circles. A "ref-
erence-articulation pair circles" is a pair of
circles in a connected diagram, whose removal
divides the diagram into two or more separate

IV. EXPRESSIONS FOR CORRELATION FUNCTION

AND HELMHOLTZ FREE ENERGY

Our next problem is to sum the series appearing
in h(1, 2) and H[p, f"].This can be done if we
write the perturbation Mayer function as

where

&(k) = +»(k)e(k) ~

Q(k) and &q, (k) are the Fourier transforms of Q(r)
and E»(r), respectively. F»(r) is the hyper-
vertex function and is given by

E»(r„r,}= p6(r, —r, ) + p'h„,(r„r,) . (22)

The details of the method of writing the series
for the correlation function. and Helmholtz free
energy in terms of &(r} are given by Stell and
Lebowitz, "Andersen and Chandler, "and
others. "' '" We discuss here only the final
results, which are obtained under different ap-
proximations. In the optimized random-phase
approximation (ORPA), we get an expression
for the radial distribution function g(r):

goop„(r„r,) g„,(r„r,) + 6(r„r,) .
The LEXP approximation for g(r) gives

gLFxp (rg~ r2) =g»(rgp r2)[1+ +(rg~ r2)J ~

(23)

(24)

A better result can be obtained from the exponen-
tial (EXP) approximation

g,„p(r„r,) =g„,(r„r,) exp[6(r„r,)], (25)

where g„,(r„r,) is the quantum-mechanical
hard-sphere RDF. To calculate the excess
Hel. mholtz free energy, we let

d(p, P) = (P &l~) = 1-' 'H[p f '
]

and we get

ORPA +h + HTA + RING

(26)

A better approximation, known as "ORPA+4, "
approximation, for a is

ORPA + 2 h + HTA+

where

(28)

parts, such that at least one part contains no
white circles.

In classical statistical mechanics, the summation
of the series is dog.e by introducing the concept
of renormalized potential. ' ' Recently Sinha
and Singh" have introduced a "renormalized"
Mayer function in the semiclassical statistical
mechanics. One can use any one of the above two
methods to sum the series. Here we follow the
method of Andersen and Chandler" and define
the renormalized potential t:(r„r~)by the relation

p'8(r„r,)=(2w)' fdke'"'
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~HTA = PP drgI1

@RING =—,d k(P (k) + In[1 —P(k) JI,RING 2 (2 R

(29)

(30)

V. YUKAWA- TAIL FLUID

B,= p' dry„,x —, Cx

2 (31)
n=3

and aj„is the excess Helmholtz free energy of the
quantum-mechanical hard-sphere fluid.

One may expect that the exp approximation for
the RDF and the ORPA+B, approximation for the
excess Helmholtz free energy provide an accurate
theory for semiclassical fluids with the non-
analytic potential.

u(r) =u„,(r )+u~(r),

where

s&d,u„,(r) =

0, ~&d,

(33)

e -~[(~/&) -z]

(re)

where c and z are constants and d is the hard-
sphere diameter of the molecule. Though un-
realistic in certain of its aspects, the Yukawa-
tail potential is a very useful model, which takes
into account both the attractive and repulsive
features of interactions.

We divide the pair potential into two parts: the
hard-sphere potential u„,(r) treated as the refer-
ence potential and perturbation u~(r). Thus

In this section, we consider the Yukawa-tail
fluid and represent the pair interaction by

t &d,
u(r) =

e-zt.(r lg) -y~
r&d,

(r d

(32)

For the sake of convenience, we take z =1.
We take the quantum-mechanical hard-sphere

system as the reference system. The RDF for
the quantum mechanical hard-sphere system is
determined by the exponential approximation, given
by Sinha and Singh
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FIG. 1. BDF for a Yu-
kawa-tail fluid in the
semiclassical limit at pd3
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FIG. 2. HDF for a Yuk-
awa-tail fluid in the semi-
classical limit at pd
=0.6, X/d=0. 2, and T*
= 1.4.

0,00
1.00

I

1.20
l

1.40
t

1.60
I

1.SO

I

2.00
I

2.20

The values of the RDF obtained from the exp
approximation are given in Figs. 1 and 2 for
pd' = 0.3 and 0.6, respectively, at A. /d = 0.2,
T*(=kT/e) = 1.4. The values of the quantum-
mechanical hard-sphere HDF are also given in
the figures for comparison. On comparison,
we find that the effect of the attractive interaction
on the RDF at densities pd' (0.6 is substantial.
This is not surprising, because, at moderate

densities pd' ~ 0.6, the attractive forces can play
a significant role. It is expected that at high
density —near the triple point, the contribution
of the attractive tail to the structure of liquids
is small "'"

In Table I, we give the values of excess Helm-
hoitz free energy. The results, tabulated, demon-
strate the effect of the attractive potential on the
excess Helmholtz free ener gy. Unfortunately

TABLE I. Excess Helmholtz free energy Pf (—= —a/p) for a Yukawa-tail fluid in semiclassical limit under
different approximations.

pd ) /d kT//e @RiNG I foRPA @ORPA + a

0.30
0.60

0.20 1.4
0.20 1.4

1.0039 —2.7685 —0.0627
2.7630 —5.6668 —0.1580

-0.0003
-0.0371

—1.8273
-3.0618

—1.8276
-3.0989
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computer experiments results are not known in

this case, we cannot check the accuracy of our
calculation.

VI. DISCUSSION

The purpose of this paper has been to obtain a
set of computationally convenient approximations
for the structural and thermodynamic properties
of the semiclassical fluids of the nonanalytic
potential, using quantum-mechanical hard-
sphere system as the reference system and the
attractive interaction as the perturbation on this
hard-sphere system. The basic physical concept,
associated with this approach is, that for a dense
fluid, the quantum effects are largely determined
by the repulsion due to the hard core and attrac-
tive interactions play a minor role. The effect

of perturbation is expressed in terms of the "re-
normalized potential" &(y). The "optimization"
condition, which in effect makes the renormalized
potential as small as possible, is not considered
in this paper. It is well known that an unoptimized
theory fails for classical systems. However, the
theory developed here may be expected to provide
an accurate theory for the semiclassical fluids
with the nonanalytic potential. Application of this
theory to some real fluids will be discussed in
futur e publication.
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